(intel.

Intel® Itanium® Architecture
Software Developer’s Manual

Volume 3: Instruction Set Reference

Revision 2.2

January 2006

Document Number: 245319-005

THIS DOCUMENT IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR
SAMPLE.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved"” or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Intel processors based on the Itanium architecture may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling
1-800-548-4725, or by visiting Intel's website at http://www.intel.com.

Intel, Intel486, Itanium, Pentium, VTune and MMX are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Copyright © 2000-2005, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

ii Volume 3: Intel® Itanium® Architecture Software Developer’s Manual

Contents

Part I: Intel® Itanium® Instruction Set Descriptions

1 ADOUL thiS MBNUAL ..ottt e e s e e s naaeeeas 3:1
11 Overview of Volume 1: Application ArChiteCtUre..........cuuvviiiiiiiiiie e 3:1

1.1.1 Part 1: Application Architecture GUIAEcocccviviiiiiiiieee e 3:1

1.1.2 Part 2: Optimization Guide for the Intel® Itanium® Architecture...................... 3:2

1.2 Overview of Volume 2: System ArChiteCtUreueeceiiiiiii e 3:2

1.2.1 Part 1: System ArchiteCture GUIAEcooiiiiiiiiiiiiieee e 3:2

1.2.2 Part 2: System Programmer’'s GUIAE..........cc.uuuiiiiiiiiiiiiiii e 3:3

1.2.3 APPENTICESeeiiiiiiiieie ettt ettt e et e et e e e e e 3:4

1.3 Overview of Volume 3: Instruction Set Reference.........cccccvvvivviiiiiiii e, 34

1.3.1 Part 1: Intel® Itanium® Instruction Set DESCHPHONSv.veveeeeeeeeeeeeseereeans 34

1.3.2 Part 2: IA-32 Instruction Set DesCriPtioNS..........cccoovviviiiieeeecr e 34

1.4 =] 10110 To] o] e | TP PPPPPPPPPT 35

15 [YC1F= L= To I Lo Yot U 0 1T o £SO RERRR 35

1.6 REVISION HISEOMY ...ttt ettt e e e abneeeeeas 3:6

2 INSTIUCTION REFEIENCE ..o e e e e e es 3:11
2.1 INStruction Page CONVENLIONSccuuuiiiiiiiiiiisieie e e eee e e ee e s e e e e aaeaae e 3:11

2.2 INSErUCLION DESCHPLIONScceiiiieeeeeeee e e e e e e e aaaaeees 3:13

3 PSeUAO-COAE FUNCLIONS ..uiiiiiiiiiiiee ettt e e st e e st e e e s snbreeeeeanes 3:259
4 INSTIUCTION FOTMALS . oiiiiiiiieii ittt e e e e e e s e s s s e e e e e aeeeeseesnnsnnbeeneeeeees 3:271
4.1 FOIMAat SUMMIATY ...t e e e et e e e e e e e s e e e eeraans 3:272

4.2 A-Unit INSruction ENCOTINGS ...ttt e e e e 3:278

421 INEEGET ALU .o 3:278

4.2.2 INtEGEI COMPAIE ..oiiieiiiiieieitr ettt e e e e e s e rer e e e e e e e 3:281

4.2.3 MUIMEIA . .eeeeeieiiiiiiie ettt e e e e e anaeeeees 3:284

4.3 I-Unit INStruction ENCOINGScovviiiiiiiiiii i a e 3:288

4.3.1 Multimedia and Variable ShiftS..........ccccoiiiiii e, 3:288

4.3.2 INteger SHIftS ...eeiiiiiiiiiie e 3:293

N T T =] = | USSP 3:295

4.3.4 Miscellaneous I-Unit INStrUCLIONS.........ccuuviiiiiiiiiiie e 3:296

4.3.5 GR/BR MOVES ...ttt ettt ettt e e 3:299

4.3.6 GRI/PrediCate/IP MOVESuuuiiiiiiiieeieea ettt 3:300

4.3.7 GR/AR MOVES (I-UNIL)..eeiiiieiiiiiiie ettt eneee s 3:300

4.3.8 Sign/Zero Extend/Compute Zero INAEXuuueeeeiiiiiiaiaiiiiiiiiiiiieeeeeeae e 3:301

4.3.9 TESEFEATUIE ... oot 3:302

4.4 M-Unit INStruction ENCOAINGSvvviiiiiiiiiie ettt 3:302

O A o Y= Lo K= T g o S (o] S PP 3:302

4.4.2 LiNE PrefetCh ... e e 3:316

4.4.3 SEMAPNOIES ... oo e 3:318

444 SEUGELFR ..oeeiiii ittt 3:319

Volume 3: Intel® Itanium® Architecture Software Developer’'s Manual iii

Part II:

1

4.4.5 Speculation and Advanced Load Checks...........coccuuviiiiiiiiiiieeiiiiiieeee 3:320

4.4.6 Cache/SynchronizatioN/RSEJALATovviiiiiiiiee et 3:321
4.4.7 GR/AR MoVES (M-UNIL) ..eceeiiiiieiiiiie e e s 3:322
4.4.8 GRICR MOVESctiieiiiie ittt 3:323
4.49 Miscellaneous M-UNit INSIFUCLIONS..........cccoiiiiiiieiiiiiee e 3:324
4.4.10 System/Memory ManagemeENntcuoeeiiiiiiiiiiiiiiiite e e e e eee e 3:325
4.4.11 NOP/HINE (IM-URIE) ©eeteiiiiiiiiie e 3:330
4.5 B-Unit INStruction ENCOTINGSeeviiiiiiiiiieiiiiiiiee et 3:330
451 BrANCRES ..oooiiiiie ittt 3:331
4.5.2 Branch Predict/NOP/HINt..........cooi e e e 3:334
4.5.3 Miscellaneous B-Unit INStrUCIONScoviiiiiiiiieiiiee e 3:336
4.6 F-Unit INStruction ENCOAINGSuuiiiiiiiiiiieaaeee e 3:337
4.6.1 AMNMELIC .oeeiieiiee e e 3:340
4.6.2 Parallel Floating-point SEIECL............ccoiiiiiiiiiie e 3:341
4.6.3 Compare and ClassSifyccicciiiiiiiiiie e 3:341
S Y o o 0 {1 4= L1 [PP 3:342
4.6.5 Minimum/Maximum and Parallel Compareccccccccceiiiiiiiiiieeeeeeeeeeeeeeens 3:343
4.6.6 Merge and LOGICAI.....cccuuiiiiiiiiiiieeiee ettt 3:344
T A ©70]11Y/=] £ (o] o PP TR PR OPPRP 3:344
4.6.8 Status Field Manipulationcoooiiiiiiiiiii e 3:345
4.6.9 Miscellaneous F-Unit INSTIUCIONScccvviiiiieiiiciee e 3:346
4.7 X-Unit INStruction ENCOAINGSooiiiiiiiiiiieiieeee e e e e e e e e e e e e e 3:346
4.7.1 Miscellaneous X-Unit INStrUCIONSovviiririiiieiiiie e 3:346
4.7.2 Move Long Immediateqyo, 3:347
4.7.3 LONG BranCRESouiiiiiiiiiii e 3:348
4.7.4 NOP/HINE (X-UNIE) cooiiiiiie e 3:349
4.8 Immediate FOMEALIONceviiiiiiiii e 3:349
Resource and Dependency SEMANTICS . .oooc.uuiiiiiiiiiiiee e 3:353
5.1 Reading and Writing RESOUICES.........ccoiiviiiiiiiiiiici e e e e e e e e e ee e 3:353
5.2 Dependencies and SerialiZationoouiii e 3:353
5.3 Resource and Dependency Table Format NOtESoccueeiiiiiiiieiieiiiiecee e, 3:354
5.3.1 Special Case INSruction RUIESccuiiiiiiiiiiiiieii e 3:356
5.3.2 RAW Dependency Table.......cccuuuuiiiiiiiiee e 3:356
5.3.3 WAW Dependency Tableciiiiiiiiii e 3:365
5.3.4 WAR DependencCy Table........icciiiiiiiiiie s aaae e 3:369
5.3.5 Listing of Rules Referenced in Dependency Tablesccooiiiiiiiiiieennnn. 3:369
5.4 SUPPOIT TADIES ...ttt e e e 3:371

IA-32 Instruction Set Descriptions

Base IA-32 INStruction RefEIreNCEeooo oo 3:381
1.1 Additional INtel® HANUM® FAUIESovoveeeeeeeeeeeeeeeee ettt ee s 3:381
1.2 Interpreting the 1A-32 Instruction Reference Pagesoooovcvvvvvieiiiieiee e 3:382
1.2.1 1A-32 INSErUCLION FOIMAL.......eiiiiiiiiiiiiiiiei e 3:382
I © o T= T - 1 [1S 3:385
1.2.3 Flags AffECIEAceiiiieiii e 3:388
1.2.4 FPU Flags AffECLEAo.eeeiiiiiiieiee e 3:388

Volume 3: Intel® Itanium® Architecture Software Developer's Manual

1.2.5 Protected MOde EXCEPLIONSuueiiiiiiiiiiiaiiiiiiiiiieee e 3:389

1.2.6 Real-address Mode EXCEPLONSeeviiiiiiiiiiiiiiiecc e 3:389
1.2.7 Virtual-8086 Mode EXCEPLIONScceeeeeeiiie it e e 3:390
1.2.8 Floating-point EXCEPLIONSvvvriiiiiiiiieieeeeiisciiiiiieere e e e e e e e e s esssnnvnnneeeeeeeeeee s 3:390
1.3 IA-32 Base Instruction REfErenCeeiiiiiiiiii e 3:390
2 IA-32 Intel® MMX™ Technology Instruction Reference........ccccccoevvcciiiiiieeiec s 3:769
3 IA-32 SSE INStruCtioN REEIENCE ..uvuueiii i e eee e 3:833
3.1 IA-32 SSE INSIIUCLIONSuttiiiiiiiieieei ittt e e e e e e e eeeaaeeeas 3:833
3.2 ADOUL the INLEI® SSE AICHIIECIUIEveeeeeeeeeeeeeeeeeeee ettt ereree e, 3:833
3.3 Single Instruction MUltiple Data...........cooiiiiiiiiiii e 3:834
3.4 NEW DAt TYPES .. .ot e e e e 3:834
3.5 S ES] L= 11] (= £ P 3:835
3.6 Extended INSTUCHION SEL........coiiiiiiiiiie i 3:835
3.6.1 INStruction Group REVIEWcceveiiiiiiiiiiiiieie s e e e e e e e e 3:836
3.7 IEEE COMPIIANCE ...ttt a e e e e e e as 3:843
3.7.1 Real NUMDEr SYSIEMcuiiiiiiiiiiiii e 3:844
3.7.2 Operating 0N NANS.......cooiiiiiiie e e 3:849
3.8 DAtA FOMMIALS.....cc ittt e et e e e e e e e s e s rr e e eeeeeeeas 3:850
3.8.1 Memory Data FOrMALS........cccoiiiiiiii e e e e e e e e e e e e e e e eeeennnnnnas 3:850
3.8.2 SSE Register Data FOrMALScuvvviiiiiiiiiiiiisie e eeeee e e 3:850
3.9 INSTIUCLION FOMMALS........ooiiiiiiic e e e e e e e e e e 3:852
700 O I 0153 (0 o 1o I o €= 1) =T 3:852
3.11 Reserved Behavior and Software Compatibilitycoooviiiiiiinii e, 3:853
0 2 (o) = 1T LS PR PRP 3:853
3.13 SIMD Integer Instruction Set EXtENSIONS.........cccuvviiiiiiiieiee e e e e 3:930
3.14 Cacheability Control INSIrUCHIONSccoiiiiiii e e e 3:944
Figures
Part I: Intel® Itanium® Instruction Set Descriptions
2-1 N (o N 0T o1 1= PR PRTP 3:15
2-2 S =Tt = 1 = PSPPI 3:16
2-3 Operation of br.ctop and Br.CeXIt........cccuuiiiiiiieiieee e e e e e e e e anneees 3:23
2-4 Operation of br.wtop and DIWEXIEoiiieiiiiiiiiii e 3:23
2-5 Deposit Example (Merge_fOrM) ... e r e e e e e e e e s aee s 3:48
2-6 Deposit EXample (ZEr0_fOIM)........uiiiiiieiiiee e s s e e e e e e e e e e s s e e nnnae e neeees 3:48
2-7 T a = (o B - 0 o] o] - 3:51
2-8 Floating-point Merge Negative Sign OPErationcoocueiieeiiiiiiiee e 3:75
2-9 Floating-point Merge Sign OPEIatiONcciieieeeeiiiiiiiiieiieeeeeeee e e s e s s ssssrrrrre e reeeeeeeesanannnnnneees 3:75
2-10 Floating-point Merge Sign and EXponent OPerationccccuvviireirereeeenesisssiieinneeeeeaeeeees 3:75
2-11 Floating-point MIX Left ... e e e e e e e r e e e e e e e e 3:78
2-12 Floating-point MiX RIGNL........cooiiiiiiii e e 3:78
2-13 Floating-point MiX LEt-RIGNTuuviiiiiiiiiiiiccce e e e eeeee e s 3:78
2-14 Floating-POINt PACK.......ccoi ittt e e e e r e e e e e e e e s e s a i n e raeaeeae s 3:89
2-15 Floating-point Parallel Merge Negative Sign Operationccueveeveereeeeeeiiiniiciieninneeeeeeeeeens 3:101
2-16 Floating-point Parallel Merge Sign Operationcoouiuviiieiiiiiiiee e sniieee e srieeee e 3:101
2-17 Floating-point Parallel Merge Sign and Exponent Operationccccccceeeveviiiicicivnvnnnneeneneens 3:102

Volume 3: Intel® Itanium® Architecture Software Developer’'s Manual

2-18
2-19
2-20
2-21
2-22
2-23
2-24
2-25
2-26
2-27
2-28
2-29
2-30
2-31
2-32
2-33
2-34
2-35
2-36
2-37
2-38
2-39
2-40
2-41
2-42
2-43
2-44
2-45
4-1

Part II:

11
1-2
1-3
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17

vi

FlOAtING-POINT SWAP .eeiiiiiiiiii ettt e e e e e e e e e bbbt e e e e e e e e e e e s e s annbbbbaeaeaaaeas 3:124

Floating-point SWap Negate Lefl.......... e 3:124
Floating-point Swap Negate RIght ... 3:125
Floating-point Sign EXIENd Left ... 3:126
Floating-point Sign EXtENd RIGNT........oooiiiiii e 3:126
FUNCHION OF GOt XD e eeieiiiieee it e e e e e e e e be e e e e e e as 3:130
FUNCLION OF GOTF.SIG e eeieiiiiiie ettt e e e e e e bbb e e e as 3:130
IMIX EXAIMPIES ...ttt ettt ettt e e e e e e e e s a bbbt bt b e e e e e e e e e e e e e s annbabbaeeeaeaeas 3:156
Mux1 Operation (8-bit €IEMENLS).......ceiiiiiiiiii e 3:174
Mux2 Examples (16-bit @IEMENTS)......ccuii i 3:175
PACK OPEIALIONttetieeeiitie ettt ettt e e e e e e e e e s e s bbb e et e e e e e e e e e e e s e annbnbbaneaaeaeas 3:179
Parallel Add EXAMPIES ...ttt e e e e e e aaa s 3:181
Parallel Average EXAMPIEuu it e e e 3:184
Parallel Average with Round Away from Zero Example............cceeeeiiiiiiiiiiiiiiiieeeee, 3:185
Parallel Average Subtract EXAmMPIEcooiiiiiiiiiiiiiieeet e 3:187
Parallel Compare EXAMPIES...........uuuiiiiiiiiiiiaaii et 3:189
Parallel MaxXimum EXAMPIESeiiiiiiii et e e eeeeeas 3:191
Parallel MinimUuM EXAMPIESuueiiiiiiiiee ettt et e e e e e eb b eeeeea s 3:192
Parallel MUIIPIY OPEIALIONuuiiiiiiiiieee ettt e e e e e e e e e e e enbb e eeeeeeeeens 3:193
Parallel Multiply and Shift Right Operation............cccuuuiiiiiiiiieie e 3:194
Parallel Sum of Absolute Difference EXample...........ooiiiiiiiiiiiiiiiiieee e 3:199
Parallel Shift Left EXAMPIES ...ttt e e e e e e e ee e eee s 3:200
Parallel Subtract EXamMPIES ... 3:205
FUNCHION OF SO OXP ceeeettiiie ettt e e e e e e e e e anb e e e e e e as 3:220
FUNCHION OF SEU.SI ..eeieiiiiiiiii ittt e e e e e e e baeeeaeaeas 3:220
Shift Left and Add POINTETooiiiiieei et 3:224
ShIft RIGNT P <.ttt e e e e e e et e et e e e e e e e s e e e aeeeeeaeas 3:226
UNPACK OPEIALIONeeeeiiiiie ettt e ettt et et e e e e e e e s e s e bbbt ae et e eeaaaaaeeasaannnnbenbeaaaeas 3:248
BUNGIE FOIMAL....... ittt e e e s e e e e s e e e e e e ann e e e s nnes 3:271

IA-32 Instruction Set Descriptions

Bit OffSet fOr BIT[EAX,2L] ..oeiiiiiiciiiiieeee et e e e e e e s e st e e e e e e e e e e s ss s e e ea e e e e e e e s e s snnnnnrnnneeeees 3:388
Y =T Lo VA =71 A [T [T 3:388
Version Information in REQISIEIS EAXcccc oo e e e e e e e e e e e e e e e ee e 3:449
Operation of the MOVD INSIIUCLIONuuuiiiiiiis e e e e e e e e e e e e e e e aeaenaaen 3771
Operation of the MOVQ INSITUCHIONvvviiiiiiiie i e e e e e e e e e e e e e e e eeeeaaeees 3773
Operation of the PACKSSDW INSIIUCHIONcccooiiiiiccccccceeeeeeeeess s e e e e e 3:775
Operation of the PACKUSWB INSIIUCHIONc.ccoeiiiiiiiei e s e e e e e e e e e e e e e e e eeeenanens 3:778
Operation of the PADDW INSIIUCHIONc.vvviiiiiiiiiii e e e s e e e e e e e e e e e e e eeaenees 3:780
Operation of the PADDSW INSIUCHIONuuuiuiiiiiiie e e e eee e ss e s e e e e e e e e e e e aeeeaannes 3:783
Operation of the PADDUSB INSEIUCLIONciiiiiiic e e e e e e e e e e e e e e e e eeaenaaens 3:786
Operation of the PAND INSITUCHIONvviieeiiiiis e e e e e e e e e e e e e eeeeaaanes 3:789
Operation of the PANDN INSTIUCHIONuvvuiiiiiiiiiiie e e e e e e e e e e e e eeaenens 3:791
Operation of the PCMPEQW INSIIUCLIONccciiiiiiieiiici e e e e e e e e e e e e e e e e eeaenneens 3:793
Operation of the PCMPGTW INStIUCLIONuuuiiiiiiiiie e e e e e e e e e e e e e e eeaenanens 3:796
Operation of the PMADDWND INSTUCLIONcooiiiieicee et s e e e e e e e e e e e e e e e eeeenaaens 3:799
Operation of the PMULHW INSTIUCHIONuuiiiiii i e e e e e e e e e e e e aeaenaaens 3:801
Operation of the PMULLW INSIIUCHIONuuuiuiiiiiiiiiie et e s e e e e e e e e e e e eeanaanees 3:803
Operation of the POR INSIIUCLION.c.vviiieiiiiiiie et e e e e e e e e e e e e e eeaeeaenes 3:805
Operation of the PSLLW INSTIUCHION.........uuuiiiiiii et e e e e e e e e e e e e e eeeaaeanens 3:807
Operation of the PSRAW INSIIUCHON.........uuuiiiiii it e e e e e e e e e e e e eeeeaanenees 3:810

Volume 3: Intel® Itanium® Architecture Software Developer's Manual

2-18 Operation of the PSRLW INSIIUCLIONccooiiiiiiiiiiiiieeeec e 3:813
2-19 Operation of the PSUBW INSIIUCHONcoiiiiiiiiiiiieieeee et 3:816
2-20 Operation of the PSUBSW INSIIUCHONcooiiiiiiiiiiiiiiieeee e 3:819
2-21 Operation of the PSUBUSB INSIIUCLIONccoiiiiiiiiiieiiiie e 3:822
2-22 High-order Unpacking and Interleaving of Bytes with the PUNPCKHBW Instruction 3:825
2-23 Low-order Unpacking and Interleaving of Bytes with the PUNPCKLBW Instruction............ 3:828
2-24 Operation of the PXOR INSIUCHONccoiiiiiiiiiiiiieeeee e 3:831
3-1 Packed SINGIE-FP Data TYPEccoiiiiiiiiii ettt e e e e e e e e 3:834
3-2 SSE REQISIET SEL ...eeeiiiiiiiiii ittt e e e e ettt e e e e e e e e e s s e nnb b e beeeeaaaaaaeaaaaan 3:835
3-3 1o = To @ o =T = 1110 o PP U P TP 3:836
3-4 Yo 1Tl @] o 1= =1 1Te] o HO PP TR UPPUPTTPPPPRPR 3:836
3-5 Packed Shuffle OPerationc...euiiiiiiiii e e e 3:838
3-6 UNPack High OPEIatioNcooi ittt e e e e e e e e e e e e ababbeeeeeeeeas 3:839
3-7 UNPACK LOW OPEIALIONiii ittt ettt e e e e e e e s e e bbb et e e e e e e e e e e e e s annnbnbesaeeeeaeas 3:839
3-8 Binary Real NUMDEr SYSIEMuiiiiiiiiiieee et e e 3:844
3-9 Binary Floating-point FOIMALuuiiiiiiiiiiiie et a e e e 3:845
3-10 Real NUMDErS @and NANS ...t e e e e e e e e e e e e e s b aebeeeeees 3:847
3-11 Four Packed FP Data in Memory (at address 1000H)ccuuviiiiiiiiiieaiieiiieeeeeee e 3:850
Tables

Part I: Intel® Itanium® Instruction Set Descriptions

2-1 INSErUCtiON Page DESCIIPLION.uuiiitiicieee e e e e e e e e et e et r e s e s e e e e e e e eeeeeeeeeeeeeeeeneananns 3:11
2-2 Instruction Page FONt CONVENLIONScccoiiiiiiiiiiiiiiccrs i e e e e e e e e e e e e e 3:11
2-3 =T TS (=T g T =T AN o] = U1 o o 3:12
2-4 (O3 a1 v= a1 11T (=] o= S 3:12
2-5 Pervasive Conditions Not Included in Instruction Description Code............ccceevvvvivvivnennnnnnn. 3:12
2-6 =T = 1T I 1= 3:20
2-7 Branch Whether Hintoo et e e e e e e 3:24
2-8 Sequential PrefetCh HiNt..........ccooo oo a e e e e 3:24
2-9 Branch Cache Deallocation Hint...........oooiiiiiiiiiiii e 3:24
2-10 (o oo I = = Vo T o T IV = 3:29
2-11 IP-relative Branch Predict Whether HiNt.............ouuiii e 3:31
2-12 Indirect Branch Predict Whether Hint ... 3:31
2-13 g oY = T ot o 11 | 3:31
2-14 ALAT Clear COMPIBLET ... oo e e e e e e et et e e a e s e s e e e e aaeaeaeeeeeeeanenes 3:34
2-15 (OF0] g pT o= T 170 o IR I8/ 011 R 3:37
2-16 64-bit Comparison Relations for Normal and unc Compares..........ccccvvvvvvvvvviviiiiiiiieieeeeeeenn, 3:38
2-17 64-bit Comparison Relations for Parallel COmMpParescccceeeeeeiiiiiieeeeiece e 3:38
2-18 Immediate Range for 32-bit COMPAIESccoiiiiiiii e 3:40
2-19 Memory Compare and EXChanQe SIZ€........ccoooeiiiiiiiiii s 3:43
2-20 Compare and Exchange Semaphore TYPESuvviuriiuiiiiiiiiii e eeeee e e e e e e e e 3:43
2-21 T U = U0 =30 (0] g 07 3:46
2-22 Specified PC MNEMONIC VAIUESccooeiiieeeeeeecre e a e e e e e 3:53
2-23 ST IMNEMONIC VAIUES ...ttt et e e e e e e e e e s e e 3:53
2-24 Floating-point Class RElatiONS..........uuuiiiiiii e e e e e e e e e e e e e e e 3:60
2-25 L o T LT o T o Lo] g A F= U] T 3:60
2-26 Floating-point COMPAriSON TYPES.uuuuuuiiieieieeeeeeeeeeeeeeeeeeiatet e s e s e e e eeaaaaeeeeeeaerrrrnrnn 3:63
2-27 Floating-point Comparison RElAtiONScccoiiiiiiiiieiieer e 3:63
2-28 Fetch and Add SEmMaPNOre TYPES....uuuuui it ee e e e e e e e e e e e e s 3:70
2-29 Floating-point Parallel Comparison RESUILScooiiiiriiiiiiiciic e 3:94

Volume 3: Intel® Itanium® Architecture Software Developer’'s Manual vii

2-30
2-31
2-32
2-33
2-34
2-35
2-36
2-37
2-38
2-39
2-40
2-41
2-42
2-43
2-44
2-45
2-46
2-47
2-48
2-49
2-50
2-51
2-52
2-53
2-54
2-55
2-56
2-57
2-58
2-59

4-1
4-2
4-3
4-4

4-6
4-7

4-9

4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20
4-21

viii

Floating-point Parallel Comparison Relationscciiiiiiiiiiiiiiiiee e 3:94

HINE IMMEAIALES ...ttt e e e e e e e ettt e e e e e e e e e e s e e e annnbeeaees 3:132
Sy 0] 0011 (=] (=T 1= PP TTPPPPRR 3:138
(o= To I Y/ o= F TP PPPPPPT TP 3:138
(o= To [o 1101 £ PP PPPPPT PP 3:139
L5740 6] 141 0] (5] 1= £ TP UPTP TP TTOPPP 3:143
[e o T To N Y/ o 1= TP PPURPPPT PP 3:143
[ftype MNEMONIC VAIUBSooiiiiiiiiiii ittt e e e e e e e e e e e e aannes 3:150
IFhINt MNEMONIC VAIUES ...ttt e e e e e e e e e e ennes 3:151
Move t0 BR Whether HINtS ... 3:160
Indirect Register File MNEMONICScoiiiiiiiiiee e a e 3:166
Mux Permutations for 8-Dit EIEMENTSooiiiiiiiie e 3:174
Pack SAtUration LIMITS........coiiiiiiiiiiiee ettt e e e e e e e e e e e e 3:179
Parallel Add Saturation COMPIELETSeeiiiiiieiiiii et a e 3:181
Parallel Add Saturation LIMILSooiiiiiiiiiiiie e e e e e e e e 3:181
PCMP REIALIONS ...ttt e et e e e e e e e e e e s e aneeees 3:189
Parallel Multiply and Shift Right Shift OptionS ..ot 3:194
Parallel Subtract Saturation COMPIELErScooiiiiiiieee e 3:205
Parallel Subtract Saturation LIMISeeiiiiiiiiiiiiiie e 3:205
Y 0] (N Y 012 TP PUPUTOTPRPRRRUPPRPRIN 3:229
Y (o] (= 11 | £ PP T PP PUUOPPPTRTTR 3:230
XSZ MNEMONIC VAIUES ...ttt e e e e e e e e e e e e e e eeeee s 3:235
Test Bit Relations for Normal and UNnC thitS ... 3:238
Test Bit Relations for Parallel thits ... 3:238
Test Feature Relations for Normal and Unc tfeeiii e 3:240
Test Feature Relations for Parallel tf............oooi e 3:240
Test Feature Features ASSIGNMENTooii i 3:240
Test NaT Relations for Normal and UNC thatsSeeiiiiiiiiiiiiiiiee e 3:243
Test NaT Relations for Parallel tNatS...........ooooiiiii e 3:243
MEMOrY EXChANQE SIZEccooiiiii ettt e e e e e e e e e e e 3:251
PSEUAO-COUE FUNCHONS.......coiiiiiitiie ettt e e e e e e e e e e s e nnnbeeeees 3:259
Relationship between Instruction Type and Execution Unit TYPeccveveeieiiiiiiiiiiinnns 3:271
Template Field Encoding and Instruction Slot Mappingccccvvveieieiiiiieeniiniiiiieeeeee 3:272
Major OPCOdE ASSIGNIMENTScciiiiiiiieiiiiiie ettt e st e e et e e e e s st e e e e s abreeeeesnneneeas 3:273
INSrUCHION FOrMAL SUMMATYeiiiiiiiiiiiii ettt e st e e e snnneeee s 3:274
INSrUCHION FIeld COIOr KBYoiiiiiiiiiiie ittt 3:276
INSTIUCHION FIEIA NBIMES......eiiiiiiiii et e st e e e s sbne e e e 3:276
Special INSrUCION NOTATIONScoueiiiiieiiiiiit et 3:277
Integer ALU 2-bit+1-bit Opcode EXENSIONScciiiiiiiiiiiiiiiiiee it 3:279
Integer ALU 4-bit+2-bit Opcode EXtENSIONScviiiiiiiiiiiiiiiiie it 3:279
Integer Compare OPCOde EXIENSIONSccciiiuriiiieiiiiiiiie ettt e e eeeeeeee s 3:281
Integer Compare Immediate Opcode EXIENSIONScocuvveiiiiiiiiiiiie e 3:281
Multimedia ALU 2-bit+1-bit Opcode EXENSIONS.........uviiiiiiiiiiei it 3:284
Multimedia ALU Size 1 4-bit+2-bit Opcode EXIENSIONS.........cccoiiiiiiieiiiiiiiie e 3:285
Multimedia ALU Size 2 4-bit+2-bit Opcode EXIENSIONS.........cccoviiiiiieiiiiiiiie e 3:285
Multimedia ALU Size 4 4-bit+2-bit Opcode EXIENSIONS.........cccoiiiiiiieriiiiiiie e 3:286
Multimedia and Variable Shift 1-bit Opcode EXIENSIONSccoccuvviiiiiiiiiiiieiiieee e 3:288
Multimedia Opcode 7 Size 1 2-bit Opcode EXIENSIONScccoviurieiieiiiiiiiee it 3:288
Multimedia Opcode 7 Size 2 2-bit Opcode EXIENSIONScccoiiiriiiieiiiiiiiee e 3:289
Multimedia Opcode 7 Size 4 2-bit Opcode EXIENSIONScccoiiuriiiieiiiiiiiee e 3:289
Variable Shift Opcode 7 2-bit Opcode EXIENSIONSocuvviiiiiiiiiiiee e 3:290
Integer Shift/Test Bit/Test NaT 2-bit Opcode EXtENSIONS.........ccuuvvieeiiiiiiiieiiiiiee e 3:293

Volume 3: Intel® Itanium® Architecture Software Developer's Manual

4-22
4-23
4-24
4-25
4-26
4-27
4-28
4-29
4-30
4-31
4-32
4-33
4-34
4-35
4-36
4-37
4-38
4-39
4-40
4-41
4-42
4-43
4-44
4-45
4-46
4-47
4-48
4-49
4-50
4-51
4-52
4-53
4-54
4-55
4-56
4-57
4-58
4-59
4-60
4-61
4-62
4-63
4-64
4-65
4-66
4-67
4-68
4-69
4-70
4-71
4-72
4-73

Deposit OPcode EXLENSIONSciiiiiiiiiiiee ittt e e eeeee e e e e e e e 3:293

Test Bit OpCOdE EXIENSIONScoiiieiiiiiiieie ettt et e e e e e e e s e abb b e e e e eaaaaeeeaaeannnnnes 3:295
Misc [-Unit 3-bit OpCOdE EXIENSIONSuueiiiiiiiiaiaiiiiiiiiiiii et e e e e e e e e e 3:296
Misc [-Unit 6-bit OpCOdE EXIENSIONSuueiiiiiiiiaeaiie ittt e e e e e e e e e 3:297
Misc [-Unit 1-bit OpCOdE EXIENSIONSueeiiiiiiiieeaiie ittt e e e e e e e e e e e 3:297
Move to BR Whether Hint COMPIELETuuuiiiiiiiiiiieei e 3:299
Integer Load/Store/Semaphore/Get FR 1-bit Opcode EXtenSioNnsccooovvviiiiiiviiiieenen. 3:302
Floating-point Load/Store/Load Pair/Set FR 1-bit Opcode EXtensionsccccccceeeeviennee 3:302
Integer Load/Store Opcode EXIENSIONS.ciiiiaii ittt e e e e e 3:303
Integer Load +Reg Opcode EXIENSIONSccoiiiiiiiiiiiiiiiiiiiiee et e e e e e e e e 3:303
Integer Load/Store +Imm Opcode EXIENSIONSocooiiiiiiiiiiiiiieeee e 3:304
Semaphore/Get FR/16-Byte Opcode EXIENSIONS.........ccooiiiiiiiiiiiiiiiiieeeee e 3:304
Floating-point Load/Store/Lfetch Opcode EXIENSIONSeeuiiiiiiiiaeiiiiiiiiiiiieiiieee e 3:305
Floating-point Load/Lfetch +Reg Opcode EXtENSIONSuuviiiiiiiiiiieaiiiiiiiiiiiieeee e 3:305
Floating-point Load/Store/Lfetch +Imm Opcode EXtENSIONScoooviiiiiiiiiiiiiiiiiiieaaeeeee 3:306
Floating-point Load Pair/Set FR Opcode EXteNSIONSuvuiiiiiiiiiiiaiiiiiiiiiiiiceee e 3:306
Floating-point Load Pair +Imm Opcode EXteNSIONSccuuiiiiiiiiiiiieeiiiiiieeeee e 3:307
LOAA HiNt COMPIBLETttt et e e e e e e e et e e e e e e aaaeeeaas 3:307
StOre HiNt COMPIELEToeiiiiieeee et e e e e e e e e e e e e e nnneeees 3:307
Line Prefetch Hint COMPIELETooi i a e e 3:316
Opcode 0 System/Memory Management 3-bit Opcode EXtensions.............ccccuveeeeeeeeenenn. 3:325
Opcode 0 System/Memory Management 4-bit+2-bit Opcode Extensions...........cccccceee.... 3:326
Opcode 1 System/Memory Management 3-bit Opcode EXtensions.............cccccuveeeeeeeenenn. 3:326
Opcode 1 System/Memory Management 6-bit Opcode EXtensions.............cccccveeeeeeeeeenn. 3:327
Misc M-Unit 1-bit Opcode EXIENSIONScccuiiiiiiiiieiiiee et a e 3:330
IP-RelativVe BranCh TYPES.oe ittt ettt et e e e e e e e bbb aeeeeaaaeaaeaeas 3:331
Indirect/Miscellaneous Branch Opcode EXtENSIONSc.uuveiiiiiiiiiiiiiiiiiiiiiiiieeee e 3:331
INAIFECE BranC TYPES. ... ittt ettt et e e e e e e e e bbb e e e e e e e aaaeaeeaas 3:332
Indirect RetUrN BranCh TYPES e ittt e e e e e 3:332
Sequential Prefetch HINt COMPIEEroooiiiiiii e 3:332
Branch Whether Hint COMPIETET.........ooi i 3:332
Indirect Call Whether Hint COmMPIELET ... 3:333
Branch Cache Deallocation Hint COMPIETEToooiiiiiiiiiiiiiiiieeeeee e 3:333
Indirect Predict/Nop/Hint Opcode EXIENSIONSccooiiiiiiiiiiiiiieeeiie e 3:335
Branch Importance Hint COMPIELETc.uviiiiiiiiiee e 3:335
IP-Relative Predict Whether Hint COMPIELErcooviiiiii i 3:335
Indirect Predict Whether Hint COMPIELET ..o 3:336
Miscellaneous Floating-point 1-bit Opcode EXtENSIONS.........c.ueveeiiiiiieeeiiiiieee e 3:337
Opcode 0 Miscellaneous Floating-point 6-bit Opcode EXtENSIONSovcvvveeeeeiiiiieeeennns 3:338
Opcode 1 Miscellaneous Floating-point 6-bit Opcode EXtENSIONSovcvvveeeeriiiiieeeennns 3:338
Reciprocal Approximation 1-bit Opcode EXIENSIONScocciiiiiiiiiiiiiieiieee e 3:339
Floating-point Status Field COMPIELETcoiiiiiiii e 3:339
Floating-point Arithmetic 1-bit Opcode EXIENSIONS.........ccccoiiiiiiieiiiiiieeeeniiee et 3:340
Fixed-point Multiply Add and Select Opcode EXIENSIONScccoovuviiieeiiiiieeeeeiiieeeee e 3:340
Floating-point Compare Opcode EXIENSIONSccoiiiiiiiieiiiiiiie et 3:341
Floating-point Class 1-bit Opcode EXIENSIONS.c.coiiiiiiieiiiiiiee e 3:341
Misc F-Unit 1-bit Opcode EXIENSIONSueviiiiiiiiiie it 3:346
Misc X-Unit 3-bit Opcode EXIENSIONSccoiiiiiiiieiiiiiiee ettt 3:347
Misc X-Unit 6-bit OPcode EXIENSIONSccciiiiiiiieiiiiiiee ettt e 3:347
Move Long 1-bit Opcode EXIENSIONS.........uuiiiiiiiiiiiie ettt 3:348
LONG BranCh TYPES ...ttt s e e e e e e 3:348
Misc X-Unit 1-bit Opcode EXIENSIONSccoiiiiiiiiaiiiiiiee ettt 3:349

Volume 3: Intel® Itanium® Architecture Software Developer’'s Manual ix

4-74
5-1
5-2
5-3
5-4
5-5

IMMEdIAE FOIMMALION ... ieeiiiieee e e e e e e st s e et e e s b e s st e e eaaaaas 3:349

Semantics of DEPENdENCY COUEBS ...ttt e e e e e e e e 3:355
RAW Dependencies Organized DY RESOUICEcc.uuiiiiiiiiiiiieaeiee et 3:357
WAW Dependencies Organized by RESOUICEcoeiiiiiiiiiiiiiiiiiiiieeie e 3:365
WAR Dependencies Organized by RESOUICEueeiiiiiiiaiiiiiiiiiiiieeee e 3:369
INSTIUCTION CIASSESceiiiiiiiiie ettt e e et e e st e e e s sb e e e e e s anrneeen e 3:371

Part II: IA-32 Instruction Set Descriptions

11
1-2
1-3
1-4
1-5
1-6
1-7
1-8
1-9
1-10
1-11
1-12
1-13
1-14
1-15
1-16
1-17
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9

Register Encodings Associated with the +rb, +rw, and +rd Nomenclature 3:383
Exception Mnemonics, Names, and Vector NUMDErS..........vvveeiiiiiiicciiiieiccccce e 3:389
Floating-point Exception MNemonics and NAMESceuviireeeeeiiiiieiiierieeee e e e e e e e e s ensnneees 3:390
Information Returned by CPUID INStIUCLIONuvviiiiiiiiriee e e e e 3:448
Feature Flags Returned in EDX REQISTENccccoiiiiiiiiiiiieeeeee e e e e e e s ss s e e r e e e e e e e e e s ennns 3:450
FPATAN ZeroS ant NANScoutiiiii ittt e e e e e snnaeeae s 3:519
FPREM ZEroS @na NANS......ccciiiiiiieiiiiiii ettt et e et e e st e e e s snaeee e e s snneeeae s 3:521
FPREML Zeros and NANS........cuuiiiiiiiiiiii ettt ettt e s naee e e e eae s snneeeae s 3:524
FSUB ZEroS ant NANS........ueiiiiiiiiiiiie ittt ettt e st e e e st e e s snneeeeas 3:553
FSUBR ZEr0S ana NANSccciiiiiiiieiiiiiiie ettt e et e et e e e s nbe e e e s snnneeae s 3:556
FYL2X ZEroS @nt NANSoeiiiiiiiiiiiie ittt sttt st e e e st a e s snneeeeas 3:569
FYL2XP1 ZEroS @and NANS......cccueiiiieiiiiiiiie ettt ettt e st et ae e senae e e e s snnneeeeas 3:571
1] AV @ o T= =TT £ SRR 3:574
INT CABSES ..oiiiiieeeiie ittt e et ettt e e e e e e s e s bbbt e e ettt e e e e e e s e e e e b bbb e e reetaeeeeeeaanrnnne e 3:588
[G T ESY ol]) (o Y 2 1o [SR 3:623
LEA Address and OPErand SiZES.........uuuuueiiiiiiieeeeiiiiiicieiieieeeeeeae s e s s s ssssssreneeereeaeeessessnnnnnns 3:628
(=T 01T 1 @] o 11T 1SR 3:708
Real NUMDET NOTALIONveiiiiiiiiiiee e e s e e s eae s 3:845
DEeNOrMAliZAtiON PTOCESSccciiiiiiiieiiiiiiee ettt e ettt ettt e et e e e st e e e s sbbe e e e s snnneeeae s 3:848
Results of Operations with NAN OpPerands.........ccccuuviiiiiiiiiieeeeii s ee e e e e e s e ennnnnees 3:850
Precision and Range Of SSE DatatyPeccvvvvieeiiiiiiiieiiiiiieieie e e e s sssssieeeeee e e e e e e e e e snnneneeees 3:851
Real Number and NaN ENCOTINGS ...ovvvviiieiiiiiiiiiiiiieeecee e e e e ssiee e e e e e e e e e e e s nnnananees 3:851
SSE Instruction Behavior With PrefiXes ... 3:852
SIMD Integer Instructions — Behavior with Prefixes ... 3:852
Cacheability Control Instruction Behavior with Prefixescccoceeeeiiiiiiiiiciiiieieeeiien 3:852
Key to SSE Naming CONVENLIONccovviiiiiiiiiiiiiisi e s e s e e e e e eeee e e e e e eee e s e s e e e e e aeaaaaeeeeeees 3:854

Volume 3: Intel® Itanium® Architecture Software Developer's Manual

Part I Intel®Itanium® Instruction
Set Descriptions

About this Manual 1

The Intel® Itanium® architecture is a uni gue combination of innovative features such as explicit
parallelism, predication, speculation and more. The architecture is designed to be highly scalable to
fill the ever increasing performance requirements of various server and workstation market
segments. The Itanium architecture features arevolutionary 64-bit instruction set architecture (1SA)
which applies a new processor architecture technology called EPIC, or Explicitly Parallel
Instruction Computing. A key feature of the Itanium architecture is | A-32 instruction set
compatibility.

The Intel® Itanium® Architecture Software Devel oper’s Manual provides a comprehensive
description of the programming environment, resources, and instruction set visible to both the
application and system programmer. In addition, it also describes how programmers can take
advantage of the features of the Itanium architecture to help them optimize code.

1.1 Overview of Volume 1: Application Architecture

This volume defines the Itanium application architecture, including application level resources,
programming environment, and the 1A-32 application interface. This volume also describes
optimization techniques used to generate high performance software.

1.1.1 Part 1: Application Architecture Guide

Chapter 1, “About this Manual” provides an overview of al volumesin the Intel® Itanium®

Architecture Software Developer’s Manual.

Chapter 2, “Introduction to the Intel® Itanium® Architecture” provides an overview of the
architecture.

Chapter 3, “Execution Environment” describesthe Itanium register set used by applications and the
memory organization models.

Chapter 4, “ Application Programming Model” gives an overview of the behavior of Itanium
application instructions (grouped into related functions).

Chapter 5, “Floating-point Programming Model” describes the Itanium floating-point architecture
(including integer multiply).

Chapter 6, “IA-32 Application Execution Model in an Intel® Itanium® System Environment”
describes the operation of 1A-32 instructions within the Itanium System Environment from the
perspective of an application programmer.

Volume 3: About this Manual 31

ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf

1.1.2

1.2

121

3:2

Part 2: Optimization Guide for the Intel® Itanium®

Architecture
Chapter 1, “ About the Optimization Guide” gives an overview of the optimization guide.

Chapter 2, “Introduction to Programming for the Intel® Itanium® Architecture” provides an
overview of the application programming environment for the Itanium architecture.

Chapter 3, “Memory Reference” discusses features and optimizations related to control and data
speculation.

Chapter 4, “ Predication, Control Flow, and Instruction Stream” describes optimization features
related to predication, control flow, and branch hints.

Chapter 5, “ Software Pipelining and Loop Support” provides a detailed discussion on optimizing
loops through use of software pipelining.

Chapter 6, “Floating-point Applications’ discusses current performance limitationsin
floating-point applications and features that address these limitations.

Overview of Volume 2: System Architecture

This volume defines the Itanium system architecture, including system level resources and
programming state, interrupt model, and processor firmware interface. Thisvolume also provides a
useful system programmer's guide for writing high performance system software.

Part 1. System Architecture Guide

Chapter 1, “About thisManual” provides an overview of al volumesin the Intel® Itanium®

Architecture Software Developer’s Manual.

Chapter 2, “ Intel® 1tanium® System Environment” introduces the environment designed to support
execution of Itanium architecture-based operating systems running 1A-32 or Itanium
architecture-based applications.

Chapter 3, “ System State and Programming Model” describes the Itanium architectural state which
isvisible only to an operating system.

Chapter 4, “ Addressing and Protection” defines the resources availabl e to the operating system for
virtual to physical address trandlation, virtual aliasing, physical addressing, and memory ordering.

Chapter 5, “Interruptions” describes all interruptions that can be generated by a processor based on
the Itanium architecture.

Chapter 6, “Register Stack Engine” describes the architectural mechanism which automatically
saves and restores the stacked subset (GR32 — GR 127) of the general register file.

Chapter 7, “Debugging and Performance Monitoring” is an overview of the performance
monitoring and debugging resources that are available in the Itanium architecture.

Volume 3: About this Manual

ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf

1.2.2

Chapter 8, “Interruption Vector Descriptions’ lists al interruption vectors.

Chapter 9, “I A-32 Interruption Vector Descriptions” lists |A-32 exceptions, interrupts and
intercepts that can occur during I A-32 instruction set execution in the Itanium System
Environment.

Chapter 10, “Itanium®Architecture-based Operating System Interaction Model with 1A-32
Applications’ defines the operation of | A-32 instructions within the Itanium System Environment
from the perspective of an Itanium architecture-based operating system.

Chapter 11, “Processor Abstraction Layer” describes the firmware layer which abstracts processor
implementation-dependent features.

Part 2: System Programmer’s Guide

Chapter 1, “About the System Programmer’s Guide” gives an introduction to the second section of
the system architecture guide.

Chapter 2, “MP Coherence and Synchronization” describes multiprocessing synchronization
primitives and the Itanium memory ordering model.

Chapter 3, “Interruptions and Serialization” describes how the processor serializes execution
around interruptions and what stateis preserved and made available to low-level system code when
interruptions are taken.

Chapter 4, “Context Management” describes how operating systems need to preserve Itanium
register contents and state. This chapter also describes system architecture mechanisms that allow
an operating system to reduce the number of registersthat need to be spilled/filled on interruptions,
system calls, and context switches.

Chapter 5, “Memory Management” introduces various memory management strategies.

Chapter 6, “Runtime Support for Control and Data Speculation” describes the operating system
support that is required for control and data speculation.

Chapter 7, “Instruction Emulation and Other Fault Handlers’ describes a variety of instruction
emulation handlers that Itanium architecture-based operating systems are expected to support.

Chapter 8, “Floating-point System Software” discusses how processors based on the Itanium
architecture handle floating-point numeric exceptions and how the software stack provides
complete |EEE-754 compliance.

Chapter 9, “I1A-32 Application Support” describes the support an Itanium architecture-based
operating system needs to provide to host |A-32 applications.

Chapter 10, “External Interrupt Architecture” describes the external interrupt architecture with a
focus on how external asynchronous interrupt handling can be controlled by software.

Chapter 11, “1/O Architecture” describes the 1/0 architecture with afocus on platform issues and
support for the existing 1A-32 1/0 port space.

Chapter 12, “Performance Monitoring Support” describes the performance monitor architecture
with afocus on what kind of support is needed from Itanium architecture-based operating systems.

Volume 3: About this Manual 3:3

ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf

1.2.3

1.3

131

1.3.2

34

Chapter 13, “Firmware Overview” introduces the firmware model, and how various firmware
layers (PAL, SAL, EFI) work together to enable processor and system initialization, and operating
system boot.

Appendices

Appendix A, “Code Examples’ provides OS boot flow sample code.

Overview of Volume 3: Instruction Set Reference

This volume is a comprehensive reference to the Itanium instruction set, including instruction
format/encoding.

Part 1: Intel® Itanium® Instruction Set Descriptions

Chapter 1, “About this Manual” provides an overview of all volumesin the Intel® Itanium®

Architecture Software Developer’s Manual.

Chapter 2, “Instruction Reference” provides a detailed description of al Itanium instructions,
organized in alphabetical order by assembly language mnemonic.

Chapter 3, “Pseudo-Code Functions” provides atable of pseudo-code functions which are used to
define the behavior of the Itanium instructions.

Chapter 4, “Instruction Formats® describes the encoding and instruction format instructions.

Chapter 5, “Resource and Dependency Semantics’ summarizes the dependency rules that are
applicable when generating code for processors based on the Itanium architecture.

Part 2: IA-32 Instruction Set Descriptions

Chapter 1, “Base | A-32 Instruction Reference” provides a detailed description of al base 1A-32
instructions, organized in aphabetical order by assembly language mnemonic.

Chapter 2, “1A-32 Intel® MMX ™ Technol ogy Instruction Reference” provides a detailed
description of al 1A-321 ntel® MMX ™ technol ogy instructions designed to increase performance
of multimediaintensive applications. Organized in alphabetical order by assembly language
mnemonic.

Chapter 3, “IA-32 SSE Instruction Reference” provides a detailed description of all 1A-32
Streaming SIMD Extension (SSE) instructions designed to increase performance of multimedia
intensive applications, and is organized in alphabetical order by assembly language mnemonic.

Volume 3: About this Manual

ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf

1.4 Terminology

The following definitions are for terms related to the Itanium architecture and will be used
throughout this document:

Instruction Set Architecture (I SA) — Defines application and system level resources. These
resources include instructions and registers.

Itanium Architecture—The new | SA with 64-hit instruction capabilities, new performance-
enhancing features, and support for the 1A-32 instruction set.

| A-32 Architecture — The 32-bit and 16-bit Intel architecture as described in the 1A-32 Intel®
Architecture Software Developer’s Manual.

Itanium System Environment — The operating system environment that supports the execution of
both I A-32 and Itanium architecture-based code.

| A-32 System Environment — The operating system privileged environment and resources as
defined by the |A-32 Intel® Architecture Software Devel oper’s Manual. Resources include virtual
paging, control registers, debugging, performance monitoring, machine checks, and the set of
privileged instructions.

Itanium® Architecture-based Firmware — The Processor Abstraction Layer (PAL) and System
Abstraction Layer (SAL).

Processor Abstraction Layer (PAL) — The firmware layer which abstracts processor features that
are implementation dependent.

System Abstraction Layer (SAL) — The firmware layer which abstracts system features that are
implementation dependent.

1.5 Related Documents

The following documents can be downloaded at the Intel’s Devel oper Site at
http://devel oper.intel.com:

« Inted® Itanium® 2 Processor Reference Manual for Software Development and
Optimization — This document (Document number 251110) describes model-specific
architectural featuresincorporated into the Intel® Itanium® 2 processor, the second processor
based on the Itanium architecture.

« Intel® Itanium® Processor Reference Manual for Software Devel opment — This document
(Document number 245320) describes model-specific architectural features incorporated into
the Intel® Itanium® processor, the first processor based on the Itanium architecture.

« 1A-32Intel® Architecture Software Developer’s Manual — This set of manuals describes the
Intel 32-bit architecture. They are available from the Intel Literature Department by calling
1-800-548-4725 and requesting Document Numbers 243190, 243191and 243192.

« Intel® Itanium® Software Conventions and Runtime Architecture Guide — This document
(Document number 245358) defines general information necessary to compile, link, and
execute a program on an Itanium architecture-based operating system.

Volume 3: About this Manual 35

« Intel® Itanium® Processor Family System Abstraction Layer Specification — This document
(Document number 245359) specifies requirements to develop platform firmware for Itanium
architecture-based systems.

» Extensible Firmware I nterface Specification — This document defines a new model for the
interface between operating systems and platform firmware.

1.6 Revision History

Date of Revision Description
Revision Number P
December 2005 2.2 Added TF instruction in Vol 3 Ch 2.

Updated IA-32 CPUID I-page in Vol 4 Ch 2.

Add support for the absence of INIT, PMI, and LINT pins in Vol 2, Part I,
Section 5.8.

Add text to "ev" field of Vol 2, Section 7.2.1 Table 7.4 to define a PMU external
notification mechanism as implementation dependent.

Extensions to PAL procedures to support data poisoning in Vol 2, Part |, Ch
11.

Virtualization Addendum - Requires that processors have a way to
enable/disable vmsw instruction in Vol 2, Part |, Sections 2.2, 3.4 and 11.9.3.

Change the description of CR[IFA] and CRJ[ITIR] to provide hardware the
option of checking them for reserved values on a write. Also mention this
option in the description of the Translation Insertion Format.

Addition of new return status to PAL_TEST_PROC in Vol 2, Part I, Ch 11.

Fix small holes in INTA/XTP definition in Vol 2, Part |, Sections 5.8.4.3 and
5.8.4.4.

Virtualization Addendum - Unimplemented Virtual Address Checking in Vol 3
Ch 2.

Fix small discrepancies in the cmp8xchgl6 definition in Vol 3 Ch 2.

Change rules about overlapping inserts to allow Itanium 2 behavior in Vol 2,
Part I, Section 4.1.8.

Update PAL_BUS_GET/SET_FEATURES bit 52 definition in Vol 2 Ch 11.

Allow register fields in CR.LID register to be read-only and CR.LID checking
on interruption messages by processors optional. See Vol 2, Part |, Ch 5
“Interruptions” and Section 11.2.2 PALE_RESET Exit State for details.

Relaxed reserved and ignored fields checkings in 1A-32 application registers
in Vol 1 Ch 6 and Vol 2, Part |, Ch 10.

Introduced visibility constraints between stores and local purges to ensure
TLB consistency for UP VHPT update and local purge scenarios. See Vol 2,
Part I, Ch 4 and description of ptc. 1 instruction in Vol 3 for details.

Architecture extensions for processor Power/Performance states (P-states).
See Vol 2 PAL Chapter for detalils.

Introduced Unimplemented Instruction Address fault.

Relaxed ordering constraints for VHPT walks. See Vol 2, Part |, Ch 4 and 5 for
details.

Architecture extensions for processor virtualization.

All instructions which must be last in an instruction group results in undefined
behavior when this rule is violated.

Added architectural sequence that guarantees increasing ITC and PMD
values on successive reads.

3:6 Volume 3: About this Manual

Date of

Revision

Revision Number Description
December 2005 2.2 Addition of PAL_BRAND_INFO, PAL_GET_HW_POLICY,
(Continued) PAL_MC_ERROR_INJECT, PAL_MEMORY_BUFFER,
PAL_SET_HW_POLICY and PAL_SHUTDOWN procedures.
Allows IPI-redirection feature to be optional.
Undefined behavior for 1-byte accesses to the non-architected regions in the
IPI block.
Modified insertion behavior for TR overlaps. See Vol 2, Part |, Ch 4 for details.
“Bus parking” feature is now optional for PAL_BUS_GET_FEATURES.
FR32-127 is now preserved in PAL calling convention.
New return value from PAL_VM_SUMMARY procedure to indicate the
number of multiple concurrent outstanding TLB purges.
Performance Monitor Data (PMD) registers are no longer sign-extended.
New memory attribute transition sequence for memory on-line delete. See Vol
2, Part I, Ch 4 for details.
Added 'shared error' (se) bit to the Processor State Parameter (PSP) in
PAL_MC_ERROR_INFO procedure.
Clarified PMU interrupts as edge-triggered.
Modified ‘proc_number’ parameter in PAL_LOGICAL_TO_PHYSICAL
procedure.
Modified pal_copy_info alignment requirements.
New bit in PAL_PROC_GET_FEATURES for variable P-state performance.
Clarified descriptions for check_target_register and
check_target_register_sof.
Various fixes in dependency tables in Vol 3 Ch 5.
Clarified effect of sending IPIs to non-existent processor in Vol 2, Part |, Ch 5.
Clarified instruction serialization requirements for interruptions in Vol 2, Part Il,
Ch 3.
Updated performance monitor context switch routine in Vol 2, Part |, Ch 7.
October 2002 2.1 Added New fc. i Instruction (Sections 4.4.6.1 and 4.4.6.2, Part |, Vol. 1;

Sections 4.3.3,4.4.1,4.45,4.4.7,5.5.2,and 7.1.2, Part |, Vol. 2; Sections 2.5,
2.5.1,25.2,2.5.3,and 4.5.2.1, Part I, Vol. 2; and Sections 2.2, 3, 4.1, 4.4.6.5,
and 4.4.10.10, Part I, Vol. 3).

Added New Atomic Operations 1d16, st16, cmp8xchglé (Sections 3.1.8,
3.1.8.6,4.4.1,4.4.2, and 4.4.3, Part |, Vol. 1; Section 4.5, Part |, Vol. 2; and
Sections 2.2, 3, 5.3.2, and 5.4, Part I, Vol. 3).

Added Spontaneous NaT Generation on Speculative Load (Sections 5.5.5
and 11.9, Part I, Vol. 2 and Sections 2.2 and 3, Part |, Vol. 3).

Added New Hint Instruction (Section 2.2, Part I, Vol. 3).

Added Fault Handling Semantics for 1fetch. fault Instruction (Section 2.2,
Part I, Vol. 3).

Added Capability for Allowing Multiple PAL_A_SPEC and PAL_B Entries in
the Firmware Interface Table (Section 11.1.6, Part I, Vol. 2).

Added BR1 to Min-state Save Area and Clarified Alignment (Sections 11.3.2.3
and 11.3.3, Part I, Vol. 2).

Added New PAL Procedures: PAL_LOGICAL_TO_PHYSICAL and
PAL_CACHE_SHARED_INFO (Section 11.9.1, Part I, Vol. 2).

Added Op Fields to PAL_MC_ERROR_INFO (Section 11.9, Part |, Vol. 2).
Added New Error Exit States (Section 11.2.2.2, Part [, Vol. 2).

Added Performance Counter Standardization (Sections 7.2.3 and 11.6, Part I,
Vol. 2).

Modified cPUID [4] for Atomic Operations and Spontaneous Deferral
(Section 3.1.11, Part I, Vol. 1).

Volume 3: About this Manual

3.7

3.8

Date of

Revision

Revision Number Description
October 2002 2.1 Modified PAL_FREQ_RATIOS (Section 11.2.2, Part I, Vol. 2).
(continued) Modified PAL_VERSION (Section 11.9, Part |, Vol. 2).
Modified PAL_CACHE_INFO Store Hints (Section 11.9, Part I, Vol. 2).
Modified PAL_MC_RESUME (Sections 11.3.3 and 11.4, Part |, Vol. 2).
Modified IA_32_Exception (Debug) IIPA Description (Section 9.2, Part I,
Vol. 2).
Clarified Predicate Behavior of alloc Instruction (Section 4.1.2, Part I, Vol. 1
and Section 2.2, Part I, Vol. 3).
Clarified ITC clocking (Section 3.1.8.10, Part I, Vol. 1; Section 3.3.4.2, Part |,
Vol. 2; and Section 10.5.5, Part Il, Vol. 2).
Clarified Interval Time Counter (ITC) Fault (Section 3.3.2, Part I, Vol. 2).
Clarified Interruption Control Registers (Section 3.3.5, Part |, Vol. 2).
Clarified Freeze Bit Functionality in Context Switching and Interrupt
Generation (Sections 7.2.1, 7.2.2, 7.2.4.1, and 7.2.4.2, Part |, Vol. 2).
Clarified PAL_BUS_GET/SET_FEATURES (Section 11.9.3, Part I, Vol. 2).
Clarified PAL_CACHE_FLUSH (Section 11.9, Part I, Vol. 2).
Clarified Cache State upon Recovery Check (Section 11.2, Part I, Vol. 2).
Clarified PALE_INIT Exit State (Section 11.4.2, Part I, Vol. 2).
Clarified Processor State Parameter (Section 11.4.2.1, Part I, Vol. 2).
Clarified Firmware Address Space at Reset (Section 11.1, Part I, Vol. 2).
Clarified PAL PMI, AR.ITC, and PMD Register Values (Sections 11.3, 11.5.1,
and 11.5.2, Part |, Vol. 2).
Clarified Invalid Arguments to PAL (Section 11.9.2.4, Part |, Vol. 2).
Clarified itr/itc Instructions (Section 2.2, Part |, Vol. 3).
December 2001 2.0 Volume 1:

Faults in Id.c that hits ALAT clarification (Section 4.4.5.3.1).

IA-32 related changes (Section 6.2.5.4, Section 6.2.3, Section 6.2.4, Section
6.2.5.3).

Load instructions change (Section 4.4.1).

Volume 2:

Class pr-writers-int clarification (Table A-5).
PAL_MC_DRAIN clarification (Section 4.4.6.1).

VHPT walk and forward progress change (Section 4.1.1.2).
1A-32 IBR/DBR match clarification (Section 7.1.1).

ISR figure changes (pp. 8-5, 8-26, 8-33 and 8-36).

PAL_CACHE_FLUSH return argument change - added new status return
argument (Section 11.8.3).

PAL self-test Control and PAL_A procedure requirement change - added new
arguments, figures, requirements (Section 11.2).

PAL_CACHE_FLUSH clarifications (Section 11).
Non-speculative reference clarification (Section 4.4.6).

RID and Preferred Page Size usage clarification (Section 4.1).
VHPT read atomicity clarification (Section 4.1).

1IP and WC flush clarification (Section 4.4.5).

Revised RSE and PMC typographical errors (Section 6.4).
Revised DV table (Section A.4).

Volume 3: About this Manual

Date of
Revision

Revision
Number

Description

December 2001
(continued)

2.0

Memory attribute transitions - added new requirements (Section 4.4).
MCA for WC/UC aliasing change (Section 4.4.1).

Bus lock deprecation - changed behavior of DCR ‘Ic’ bit (Section 3.3.4.1,
Section 10.6.8, Section 11.8.3).

PAL_PROC_GET/SET_FEATURES changes - extend calls to allow
implementation-specific feature control (Section 11.8.3).

Split PAL_A architecture changes (Section 11.1.6).
Simple barrier synchronization clarification (Section 13.4.2).

Limited speculation clarification - added hardware-generated speculative
references (Section 4.4.6).

PAL memory accesses and restrictions clarification (Section 11.9).

PSP validity on INITs from PAL_MC_ERROR_INFO clarification (Section
11.8.3).

Speculation attributes clarification (Section 4.4.6).

PAL_A FIT entry, PAL_VM_TR_READ, PSP, PAL_VERSION clarifications
(Sections 11.8.3 and 11.3.2.1).

TLB searching clarifications (Section 4.1).

IA-32 related changes (Section 10.3, Section 10.3.2, Section 10.3.2, Section
10.3.3.1, Section 10.10.1).

IPSR.ri and ISR.ei changes (Table 3-2, Section 3.3.5.1, Section 3.3.5.2,
Section 5.5, Section 8.3, and Section 2.2).

Volume 3:

IA-32 CPUID clarification (p. 5-71).

Revised figures for extract, deposit, and alloc instructions (Section 2.2).
RCPPS, RCPSS, RSQRTPS, and RSQRTSS clarification (Section 7.12).
IA-32 related changes (Section 5.3).

tak, tpa change (Section 2.2).

July 2000

11

Volume 1:
Processor Serial Number feature removed (Chapter 3).
Clarification on exceptions to instruction dependency (Section 3.4.3).

Volume 2:
Clarifications regarding “reserved” fields in ITIR (Chapter 3).

Instruction and Data translation must be enabled for executing 1A-32
instructions (Chapters 3,4 and 10).

FCR/FDR mappings, and clarification to the value of PSR.ri after an RFI
(Chapters 3 and 4).

Clarification regarding ordering data dependency.

Qut-of-order IPI delivery is now allowed (Chapters 4 and 5).

Content of EFLAG field changed in IIM (p. 9-24).

PAL_CHECK and PAL_INIT calls — exit state changes (Chapter 11).
PAL_CHECK processor state parameter changes (Chapter 11).
PAL_BUS_GET/SET_FEATURES calls — added two new bits (Chapter 11).

PAL_MC_ERROR_INFO call — Changes made to enhance and simplify the
call to provide more information regarding machine check (Chapter 11).

PAL_ENTER_IA_32_Env call changes — entry parameter represents the entry
order; SAL needs to initialize all the 1A-32 registers properly before making
this call (Chapter 11).

PAL_CACHE_FLUSH — added a new cache_type argument (Chapter 11.
PAL_SHUTDOWN - removed from list of PAL calls (Chapter 11).
Clarified memory ordering changes (Chapter 13).

Clarification in dependence violation table (Appendix A).

Volume 3: About this Manual

3.9

3:10

Date of
Revision

Revision
Number

Description

July 2000
(continued)

11

Volume 3:
fmix instruction page figures corrected (Chapter 2).
Clarification of “reserved” fields in ITIR (Chapters 2 and 3).

Modified conditions for alloc/loadrs/flushrs instruction placement in bundle/
instruction group (Chapters 2 and 4).

IA-32 JMPE instruction page typo fix (p. 5-238).
Processor Serial Number feature removed (Chapter 5).

January 2000

1.0

Initial release of document.

Volume 3: About this Manual

Instruction Reference 2

2.1

Table 2-1.

Table 2-2. Instruction Page Font Conventions

This chapter describes the function of each Itanium instruction. The pages of this chapter are sorted
alphabetically by assembly language mnemonic.

Instruction Page Conventions

The instruction pages are divided into multiple sections aslisted in Table 2-1. Thefirst three
sections are present on al instruction pages. The last three sections are present only when
necessary. Table 2-2 lists the font conventions which are used by the instruction pages.

Instruction Page Description

Section Name Contents
Format Assembly language syntax, instruction type and encoding format
Description Instruction function in English
Operation Instruction function in C code
FP Exceptions |IEEE floating-point traps
Interruptions Prioritized list of interruptions that may be caused by the instruction
Serialization Serializing behavior or serialization requirements

Font Interpretation
regular (Format section) Required characters in an assembly language mnemonic
italic (Format section) Assembly language field name that must be filled with one of a range
of legal values listed in the Description section
code (Operation section) C code specifying instruction behavior
code italic (Operation section) Assembly language field name corresponding to a italic field listed

in the Format section

In the Format section, register addresses are specified using the assembly mnemonic field names
given in the third column of Table 2-3. For instructions that are predicated, the Description section
assumes that the qualifying predicate is true (except for instructions that modify architectural state
when their qualifying predicate is false). The test of the qualifying predicate isincluded in the
Operation section (when applicable).

In the Operation section, registers are addressed using the notation reg[addr].field. The register file
being accessed is specified by reg, and has a value chosen from the second column of Table 2-3.
The addr field specifies aregister address as an assembly language field name or aregister
mnemonic. For the general, floating-point, and predicate register files which undergo register
renaming, addr is the register address prior to renaming and the renaming is not shown. The field
option specifies a named bit field within the register. If field is absent, then all fields of the register
are accessed. The only exception is when referencing the datafield of the general registers (64-bits
not including the NaT bit) where the notation GR[addr] is used. The syntactical differences between
the code found in the Operation section and ANSI Cislisted in Table 2-4.

Volume 3: Instruction Reference 3:11

3:12

Table 2-3.

Table 2-4.

Register File Notation

Register File C Notation l\’:ise?nrgali):: I'Ar\lgéreescst

Application registers AR ar

Branch registers BR b

Control registers CR cr

CPU identification registers CPUID cpuid Y

Data breakpoint registers DBR dbr Y

Instruction breakpoint registers IBR ibr Y

Data TLB translation cache DTC N/A

Data TLB translation registers DTR dtr Y

Floating-point registers FR f

General registers GR r

Instruction TLB translation cache ITC N/A

Instruction TLB translation registers ITR itr Y

Protection key registers PKR pkr Y

Performance monitor configuration registers PMC pmc Y

Performance monitor data registers PMD pmd Y

Predicate registers PR p

Region registers RR rr Y

C Syntax Differences

Syntax Function

{msb:lsb}, {bit} Bit field specifier. When appended to a variable, denotes a bit field extending from the
most significant bit specified by “msb” to the least significant bit specified by “Isb”
including bits “msb” and “Isb.” If “msb” and “Isb” are equal then a single bit is
accessed. The second form denotes a single bit.

u>, U>=, U<, u<= Unsigned inequality relations. Variables on either side of the operator are treated as
unsigned.

u>>, u>>= Unsigned right shift. Zeroes are shifted into the most significant bit position.

u+ Unsigned addition. Operands are treated as unsigned, and zero-extended.

u* Unsigned multiplication. Operands are treated as unsigned.

The Operation section contains code that specifies only the execution semantics of each instruction
and does not include any behavior relating to instruction fetch (e.g., interrupts and faults caused
during fetch). The Interruptions section does not list any faults that may be caused by instruction
fetch or by mandatory RSE loads. The code to raise certain pervasive faults and actions is not
included in the code in the Operation section. These faults and actions are listed in Table 2-5. The
Single step trap appliesto all instructions and is not listed in the Interruptions section.

Table 2-5. Pervasive Conditions Not Included in Instruction Description Code

Condition

Action

Read of a register outside the current frame.

An undefined value is returned (no fault).

Access to a banked general register (GR 16 through GR 31).

The GR bank specified by PSR.bn is accessed.

PSR.ss is set.

A Single Step trap is raised.

Volume 3: Instruction Reference

2.2 Instruction Descriptions

The remainder of this chapter provides a description of each of the Itanium instructions.

Volume 3: Instruction Reference 3:13

add

add — Add

Format: (gp) add ry=ryr3 register_form Al
(ap) add ry=rp,r3 1 plusl_form, register_form Al
(gp) add ry =imm,r3 pseudo-op
(gp) adds ry =immyg, r3 imm14_form A4
(gp) addl rq=immy,, r3 imm22_form A5

Description: The two source operands (and an optional constant 1) are added and the result placed in GRr4. In
the register form the first operand is GR r,; in theimm_14 form the first operand is taken from the
sign-extended immy 4, encoding field; in theimm?22_form the first operand is taken from the
sign-extended immy,, encoding field. In theimm22_form, GR r3 can specify only GRsO0, 1, 2 and 3.

The plusl_form isavailable only in the register form (although the equivalent effect in the
immediate forms can be achieved by adjusting the immediate).

The immediate-form pseudo-op chooses the imm14_form or imm22_form based on the size of the
immediate operand and the value of r5.

Operation: if (PR[ap]) {
check_target_register(rq);
if (register_form) Il register form
tmp_src = GR([r,];
eseif (imml4_form) I/ 14-bit immediate form
tmp_src = sign_ext(immyy, 14);
dse /I 22-bit immediate form

tmp_src = sign_ext(immyy, 22);
tmp_nat = (register_form? GR[r] .nat: 0);
if (plusl_form)

GR[rq] =tmp_sric+ GR([r3] +1;
dse

GRIrq] =tmp_src + GR[r];

GR[r4].nat = tmp_nat || GR[r3].nat;
}

Interruptions: Illegal Operation fault

3:14 Volume 3: Instruction Reference

addp4

addp4 — Add Pointer

Format: (gp) addp4 ry=ryr3 register_form Al
(gp) addp4 rq=immy,, r3 imm14_form A4

Description: The two source operands are added. The upper 32 hits of the result are forced to zero, and then bits
{31:30} of GR r5 are copied to bits{62:61} of the result. Thisresult isplaced in GR r4. In the
register_form the first operand isGR r5; in theimm14_form the first operand is taken from the
sign-extended immy 4 encoding field.

Figure 2-1. Add Pointer

32 0 32 30 0

GRry:

GRry:

63 61 32 0

Operation: if (PR[gp]) {
check_target_register(ry);

tmp_src = (register_form? GR[r,]: sign_ext(immy,, 14));
tmp_nat = (register_form? GR{r].nat: 0);

tmp_res=tmp_src + GR[r3];
tmp_res = zero_ext(tmp_res{ 31:0}, 32);
tmp_res{ 62:61} = GR[r4]{31:30};
GR[r4] =tmp_res,
GR[r].nat = tmp_nat || GR[r3].nat;

}

Interruptions: 1llegal Operation fault

Volume 3: Instruction Reference 3:15

alloc

alloc — Allocate Stack Frame

Format:

Description:

(gp) dloc rq=ar.pfs,i,l,o,r M34

A new stack frameis allocated on the genera register stack, and the Previous Function State
register (PFS) is copied to GR r;. The change of frame sizeisimmediate. The write of GRr4 and
subsequent instructions in the same instruction group use the new frame.

The four parameters, i (size of inputs), | (size of locals), o (size of outputs), and r (size of rotating)
specify the sizes of the regions of the stack frame.

Figure 2-2. Stack Frame

3:16

GR32
Local Output
=| . sof >
sol
-
sor

The size of the frame (sof) is determined by i + | + 0. Note that thisinstruction may grow or shrink
the size of the current register stack frame. The size of thelocal region (sol) isgiven by i +1. There
isno real distinction between inputs and locals. They are given as separate operandsin the
instruction only as a hint to the assembler about how the local registers are to be used.

The rotating registers must fit within the stack frame and be a multiple of 8 in number. If this
instruction attempts to change the size of CFM.sor, and the register rename base registers
(CFM.rrb.gr, CFM.rrb.fr, CFM.rrb.pr) are not al zero, then the instruction will cause a Reserved
Register/Field fault.

Although the assembler does not allow illegal combinations of operands for aloc, illegal
combinations can be encoded in the instruction. Attempting to allocate a stack frame larger than 96
registers, or with the rotating region larger than the stack frame, or with the size of locals larger
than the stack frame, or specifying a qualifying predicate other than PR O, will cause an Illegal
Operation fault.

Thisinstruction must be the first instruction in an instruction group and must either bein
instruction slot 0 or ininstruction slot 1 of atemplate having a stop after slot O; otherwise, the
results are undefined.

If insufficient registers are available to allocate the desired frame aloc will stall the processor until
enough dirty registers are written to the backing store. Such mandatory RSE stores may cause the
data related faults listed below.

Volume 3: Instruction Reference

alloc

Operation: I/ tmp_sof, tmp_sol, tmp_sor arethe fields encoded in the instruction

tmp_sof =i +1+0;

tmp_sol =i +1;

tmp_sor=r u>>3;

check_target_register_sof(r,, tmp_sof);

if (tmp_sof u>96 || r u> tmp_sof || tmp_sol u> tmp_sof || gp!=0)
illega_operation fault();

if (tmp_sor!l= CFM.sor & &

(CFM.rrb.gr!=0 || CFM.rrb.fr!= 0 || CFM.rrb.pr!= 0))

reserved register_field_fault();

aat_frame_update(0, tmp_sof - CFM.sof);

rse_new_frame(CFM.sof, tmp_sof);// Make room for new registers; Mandatory
/I RSE stores can raise faults listed below.

CFM.sof = tmp_sof;

CFM.sol =tmp_sal;

CFM.sor = tmp_sor;

GRIr] = AR[PFS];

GR[rq].nat =0;

Interruptions: |llegal Operation fault Data NaT Page Consumption fault
Reserved Register/Field fault DataKey Miss fault
Unimplemented Data Address fault Data Key Permission fault
VHPT Datafault Data Access Rights fault
Data Nested TLB fault Data Dirty Bit fault
Data TLB fault Data Access Bit fault
Alternate Data TLB fault Data Debug fault

Data Page Not Present fault

Volume 3: Instruction Reference 3:17

and

and — Logical And

Format: (gp) and ry=ryr3 register_form Al
(ap) and rq=immg, r3 imm8_form A3

Description: The two source operands are logically ANDed and the result placed in GR r. In the register_form
thefirst operand is GR ro; in theimm8_form the first operand is taken from the immg encoding
field.

Operation: if (PR[gp]) {
check_target_register(ry);

tmp_src = (register_form? GR{r,]: sign_ext(immy, 8));
tmp_nat = (register_form? GR{[r,].nat: 0);

GRIrq] =tmp_src & GR(r3];
GR{r4].nat = tmp_nat || GR[r3].nat;
}

Interruptions: Illegal Operation fault

3:18 Volume 3: Instruction Reference

andcm

andcm — And Complement

Format: (gp) andcm rq=ry, I3 register_form Al
(gp) andcm rq =immg, r3 imm8_form A3

Description: Thefirst source operand islogically ANDed with the 1's complement of the second source operand
and the result placed in GR r4. In the register_form the first operand is GR ro; in theimm8_form
the first operand is taken from the immg encoding field.

Operation: if (PRap]) {
check_target_register(ry);

tmp_src = (register_form? GR{[r,]: sign_ext(immg, 8));
tmp_nat = (register_form? GR[r].nat: 0);

GR[rq] =tmp_src & ~GR(r3];

GR[r].nat = tmp_nat || GR[r3].nat;
}

Interruptions: 1llegal Operation fault

Volume 3: Instruction Reference 3:19

br

br — Branch
Format: (gp) br.btype.bwh.ph.dh target,s ip_relative_form B1
(gp) br.btype.bwh.ph.dh b, = target,s call_form, ip_relative_form B3
br.btype.bwh.ph.dh target,s counted_form, ip_relative form B2
br.ph.dh target,s pseudo-op
(gp) br.btype.bwh.ph.dh b, indirect_form B4
(gp) br.btype.owh.ph.dh by = b, cal_form, indirect_form B5
br.ph.dh b, pseudo-op

Description: A branch condition is evaluated, and either a branch is taken, or execution continues with the next
sequential instruction. The execution of a branch logically follows the execution of all previous
non-branch instructions in the same instruction group. On ataken branch, execution begins at slot
0.

Branches can be either IP-relative, or indirect. For IP-relative branches, the target,s operand, in
assembly, specifies alabel to branch to. Thisis encoded in the branch instruction as a signed
immediate displacement (immy4) between the target bundle and the bundle containing this
instruction (immy = target,s - IP >> 4). For indirect branches, the target addressis taken from BR
b,.

Table 2-6. Branch Types

btype Function Branch Condition Target Address
cond or none Conditional branch Qualifying predicate IP-rel or Indirect
call Conditional procedure call Qualifying predicate IP-rel or Indirect
ret Conditional procedure return Qualifying predicate Indirect
ia Invoke 1A-32 instruction set Unconditional Indirect
cloop Counted loop branch Loop count IP-rel
ctop, cexit Mod-scheduled counted loop Loop count and epilog IP-rel
count
wtop, wexit Mod-scheduled while loop Qualifying predicate and | IP-rel
epilog count

There are two pseudo-ops for unconditional branches. These are encoded like a conditional branch
(btype = cond), with the gp field specifying PR 0, and with the bwh hint of sptk.

The branch type determines how the branch condition is calculated and whether the branch has
other effects (such aswriting alink register). For the basic branch types, the branch condition is
simply the value of the specified predicate register. These basic branch types are:

 cond: If the qualifying predicate is 1, the branch is taken. Otherwise it is not taken.

« call: If the qualifying predicate is 1, the branch is taken and several other actions occur:

» The current values of the Current Frame Marker (CFM), the EC application register and
the current privilege level are saved in the Previous Function State application register.

e Thecaller's stack frameis effectively saved and the callee is provided with aframe
containing only the caller’s output region.

» Therotation rename base registersin the CFM are reset to 0.
* Areturnlink valueisplaced in BR by.

3:20 Volume 3: Instruction Reference

br

* return: If the qualifying predicate is 1, the branch is taken and the following occurs:

* CFM, EC, and the current privilege level are restored from PFS. (The privilege level is
restored only if this does not increase privilege.)

* Thecaller's stack frameis restored.

« If the return lowers the privilege, and PSR.Ip is 1, then a Lower-Privilege Transfer trap is
taken.

« ia: The branch istaken unconditionally, if it is not intercepted by the OS. The effect of the
branch is to invoke the |A-32 instruction set (by setting PSR.isto 1) and begin processing
IA-32 instructions at the virtual linear target address contained in BR by{ 31:0}. If the
qualifying predicate isnot PR 0, an lllegal Operation fault israised. If instruction set
transitions are disabled (PSR.di is 1), then a Disabled Instruction Set Transition fault is raised.

The lA-32 target effective address is calculated relative to the current code segment, i.e.
EIP{31:0} = BR by{31:0} - CSD.base. The |A-32 instruction set can be entered at any
privilege level, provided PSR.di is 0. If PSR.dfhis 1, a Disabled FP Register fault is raised on
the target 1A-32 instruction. No register bank switch nor change in privilege level occurs
during the instruction set transition.

Software must ensure the code segment descriptor (CSD) and selector (CS) are loaded before
issuing the branch. If the target EIP value exceeds the code segment limit or has a code
segment privilege violation, an I1A_32_Exception(GPFault) israised on the target |A-32
instruction. For entry into 16-bit 1A-32 code, if BR b, is not within 64K -bytes of CSD.base a
GPFault israised on the target instruction. EFLAGrf is unmodified until the successful
completion of the first IA-32 instruction. PSR.da, PSR.id, PSR.ia, PSR.dd, and PSR.ed are
cleared to zero after bria completes execution and before the first 1A-32 instruction begins
execution. EFLAG.rf isnot cleared until the target | A-32 instruction successfully completes.

Software must set PSR properly before branching to the 1A-32 instruction set; otherwise
processor operation is undefined. See Table 3-2, “Processor Status Register Fields’ on
page 2:21 for details.

Software must issue amf instruction before the branch if memory ordering isrequired between
| A-32 processor consistent and Itanium unordered memory references. The processor does not
ensure |tanium-instruction-set-generated writes into the instruction stream are seen by
subsequent 1A-32 instruction fetches. bria does not perform an instruction serialization
operation. The processor does ensure that prior writes (even in the same instruction group) to
GRs and FRs are observed by the first |A-32 instruction. Writesto ARs within the same
instruction group as br.ia are not allowed, since briamay implicitly reads all ARs. If anillegal
RAW dependency is present between an AR write and br.ia, thefirst |A-32 instruction fetch and
execution may or may not see the updated AR value.

| A-32 instruction set execution leaves the contents of the ALAT undefined. Software can not
rely on ALAT values being preserved across an instruction set transition. All registersleft in
the current register stack frame are undefined across an instruction set transition. On entry to
IA-32 code, existing entriesin the ALAT areignored. If the register stack contains any dirty
registers, an lllegal Operation fault is raised on the briainstruction. The current register stack
frameisforced to zero. To flush the register file of dirty registers, the flushrsinstruction must be
issued in an instruction group preceding the briainstruction. To enhance the performance of the
instruction set transition, software can start the register stack flush in parallel with starting the
IA-32 instruction set by 1) ensuring flushrs is exactly one instruction group before the br.ia, and
2) briaisinthe first B-slot. briashould aways be executed in the first B-slot with a hint of
“static-taken” (default), otherwise processor performance will be degraded.

Volume 3: Instruction Reference 3:21

ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf

br

3:22

If abriacauses any Itanium traps (e.g., Single Step trap, Taken Branch trap, or Unimplemented
Instruction Addresstrap), I1Pwill contain the original 64-bit target IP. (The value will not have
been zero extended from 32 hits.)

Another branch typeis provided for simple counted loops. This branch type uses the Loop Count
application register (LC) to determine the branch condition, and does not use a qualifying
predicate;

* cloop: If the LC register is not equal to zero, it is decremented and the branch is taken.

In addition to these simple branch types, there are four types which are used for accelerating
modul o-scheduled loops (see al so Section 4.5.1, “Modulo-scheduled Loop Support” on page 1:70).
Two of these are for counted loops (which use the L C register), and two for while loops (which use
the qualifying predicate). These loop types use register rotation to provide register renaming, and
they use predication to turn off instructions that correspond to empty pipeline stages.

The Epilog Count application register (EC) is used to count epilog stages and, for some while
loops, a portion of the prolog stages. In the epilog phase, EC is decremented each time around and,
for most loops, when EC is one, the pipeline has been drained, and the loop is exited. For certain
types of optimized, unrolled software-pipelined loops, the target of abr.cexit or brwexit is set to the
next sequential bundle. In this case, the pipeline may not be fully drained when EC is one, and
continues to drain while EC is zero.

For these modul o-scheduled [oop types, the calculation of whether the branch is taken or not
depends on the kernel branch condition (L C for counted types, and the qualifying predicate for
while types) and on the epilog condition (whether EC is greater than one or not).

These branch types are of two categories: top and exit. The top types (ctop and wtop) are used
when the loop decision is located at the bottom of the loop body and therefore a taken branch will
continue the loop while afall through branch will exit the loop. The exit types (cexit and wexit) are
used when the loop decision islocated somewhere other than the bottom of the loop and therefore a
fall though branch will continue the loop and a taken branch will exit the loop. The exit types are
also used at intermediate points in an unrolled pipelined loop. (For more details, see Section 4.5.1,
“Modul o-scheduled Loop Support” on page 1:70).

The modul o-scheduled loop types are:

* ctop and cexit: These branch types behave identically, except in the determination of whether
to branch or not. For br.ctop, the branch is taken if either LC is non-zero or EC is greater than
one. For br.cexit, the opposite istrue. It is not taken if either LC is non-zero or EC is greater
than one and is taken otherwise.

These branch types also use LC and EC to control register rotation and predicate initialization.
During the prolog and kernel phase, when LC is hon-zero, L C counts down. When br.ctop or
br.cexit is executed with LC equal to zero, the epilog phase is entered, and EC counts down.
When br.ctop or br.cexit is executed with LC equal to zero and EC equal to one, afinal
decrement of EC and afinal register rotation are done. If LC and EC are equal to zero, register
rotation stops. These other effects are the same for the two branch types, and are described in
Figure 2-3.

Volume 3: Instruction Reference

ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf

Figure 2-3. Operation of br.ctop and br.cexit

br

ctop, cexit
== 0 (Epilog) (Special
Unrolled
>1 =0 LOOpS)
(Prolog/ | =0
Kernel)
Y y
[lc-] | c=c | [c=c | [Lc=Lc |
1] L] 1]]
[eEc=ec | [_Ec-]| [__EC- | [EC=EC]
L] L] L] L]
[PR63]=1 | | PRI63]=0 | [PR[63]=0 | [PR[63]=0 |
L] L]
[RRB~= | | RRB- | [RRB- | [RRB=RRB|
ctop: Branch ctop: Fall-thru y
cexit: Fall-thru cexit: Branch

wtop and wexit: These branch types behave identically, except in the determination of whether
to branch or not. For brwtop, the branch is taken if either the qualifying predicate is one or EC
is greater than one. For br.wexit, the opposite istrue. It is not taken if either the qualifying
predicate is one or EC is greater than one, and is taken otherwise.

These branch types also use the qualifying predicate and EC to control register rotation and
predicate initialization. During the prolog phase, the qualifying predicate is either zero or one,
depending upon the scheme used to program the loop. During the kernel phase, the qualifying
predicate is one. During the epilog phase, the qualifying predicate is zero, and EC counts
down. When br.wtop or brwexit is executed with the qualifying predicate equal to zero and EC
equal to one, afinal decrement of EC and afinal register rotation are done. If the qualifying
predicate and EC are zero, register rotation stops. These other effects are the same for the two
branch types, and are described in Figure 2-4.

Figure 2-4. Operation of br.wtop and br.wexit

wtop, wexit

==0 (Prolog / Epilog) (|
Special

PR[gp]?
[ap] Unrolled

Loops;
(Prolog / =1 >1 Pe)

Kernel) (Prolog /
Epilog) (Epilog)

Y \
EC = EC | EC-- | | EC-- | | EC=EC |

] L]] L]
PRI63] = 0 | PR[63] = 0 | | PR[63] = 0 | | PR[63] = 0 |

v L] L] L]
RRB-- | RRB-- | | RRB-- | | RRB = RRB |

- | | ;I

wtop: Branch "‘ wtop: Fall-thru V‘

wexit: Fall-thru wexit: Branch

Volume 3: Instruction Reference

3:23

br

Table 2-7.

Table 2-8.

The loop-type branches (br.cloop, br.ctop, br.cexit, brwtop, and br.wexit) are only alowed in instruction
slot 2 within abundle. Executing such an instruction in either slot 0 or 1 will cause an Illegal
Operation fault, whether the branch would have been taken or not.

Read after Write (RAW) and Write after Read (WAR) dependency requirements are slightly
different for branch instructions. Changes to BRs, PRs, and PFS by non-branch instructions are
visible to a subsequent branch instruction in the same instruction group (i.e., alimited RAW is
allowed for these resources). Thisallowsfor alow-latency compare-branch sequence, for example.
The normal RAW requirements apply to the LC and EC application registers, and the RRBs.

Within an instruction group, a WAR dependency on PR 63 is not allowed if both the reading and
writing instructions are branches. For example, abr.wtop or brwexit may not use PR[63] asits
qualifying predicate and PR[63] cannot be the qualifying predicate for any branch preceding a
br.wtop or br.wexit in the same instruction group.

For dependency purposes, the loop-type branches effectively always write their associated
resources, whether they are taken or not. The cloop type effectively alwayswritesLC. When LC is
0, acloop branch leaves it unchanged, but hardware may implement this as a re-write of LC with
the same value. Similarly, br.ctop and br.cexit effectively always write LC, EC, the RRBs, and
PR[63]. br.wtop and br.wexit effectively always write EC, the RRBs, and PR[63].

Values for various branch hint completers are shown in the following tables. Whether Prediction
Strategy hints are shown in Table 2-7. Sequential Prefetch hints are shown in Table 2-8. Branch
Cache Deadllocation hints are shown in Table 2-9. See Section 4.5.2, “Branch Prediction Hints’ on
page 1:72.

Table 2-9.

Operation:

3:24

Branch Whether Hint
bwh Completer Branch Whether Hint
spnt Static Not-Taken
sptk Static Taken
dpnt Dynamic Not-Taken
dptk Dynamic Taken
Sequential Prefetch Hint
ph Completer Sequential Prefetch Hint
few or none Few lines
many Many lines
Branch Cache Deallocation Hint
dh Completer Branch Cache Deallocation Hint
none Don't deallocate
clr Deallocate branch information
if (ip_relative form) /I determine branch target

tmp_IP=IP+sign_ext((immy, << 4), 25);
ese//indirect form

tmp_IP=BR[b,];
if (btypel="ia) // for Itanium branches,
tmp_IP=tmp_IP & ~Oxf; /I ignore bottom 4 bits of target

lower_priv_transition =0;

Volume 3: Instruction Reference

ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf

br

switch (btype) {
case‘cond': /I smple conditional branch
tmp_taken = PR[qp];
break;
cae‘cdl’: // call savesareturn link

tmp_taken = PR[qp];
if (tmp_taken) {
BR[b;] =P+ 16;

AR[PFS].pfm = CFM; /l... and saves the stack frame
AR[PFS].pec = AR[EC];
AR[PFS].ppl = PSR.cpl;

aat_frame_update(CFM.sal, 0);
rse_presarve frame(CFM.sol);

CFM.sof -= CFM.s0l; /I new frame sizeissize of outs
CFM.sol =(;
CFM.sor =0;
CFM.rrb.gr =0;
CFM.rrb.fr=0;
CFM.rrb.pr=0;

}

break;

case'ret’: /] return restores stack frame

tmp_taken = PRqp];
if (tmp_taken) {
/I tmp_growth indicates the amount to move logical TOP *up*:
/l tmp_growth = sizeof (previous out) - sizeof (current frame)
Il anegative amount indicates a shrinking stack
tmp_growth = (AR[PFS].pfm.sof - AR[PFS].pfm.sal) - CFM.sof;
aat_frame_update(-AR[PFS].pfm.sol, 0);
rse fatal =rse restore frame(AR[PFS].pfm.sol,
tmp_growth, CFM.sof);
if (rse_fata) {
/I See Section 6.4, “RSE Operation” on page 2:131
CFM.sof =0;
CFM.sol =0;
CFM.sor =0;
CFM.rrb.gr=0;
CFM.rrb.fr=0;
CFM.rrb.pr=0;
} ese// normd branch return
CFM = AR[PFS].pfm;

rse_enable_current_frame_load();
AR[EC] = AR[PFS].pec;
if (PSR.cpl u< AR[PFS].ppl) { /1... and restores privilege
PSR.cpl = AR[PFS].ppl;
lower_priv_trandtion =1,
}
}
break;

case'id: I/ switchto 1A mode
tmp_taken=1;
if (PSR.ic==0||PSR.dt==0||PSRmc==1] PSR.it==0)
undefined_behavior();
if (qp!=0)
illega_operation fault();
if (AR[BSPSTORE]!= AR[BSP])

Volume 3: Instruction Reference 3:25

ftp://download.intel.com/design/Itanium/manuals/245318.pdf

br

illegd_operation fault();
if (PSR.di)
disabled instruction_set_trangtion fault();
PSRis=1, Il set 1A-32 Ingtruction Set Mode
CFM.sof = O; [[force current stack frame
CFM.sol =0; [lto zero
CFM.sor = 0;
CFM.rrb.gr=0;
CFM.rrb.fr=0;
CFM.rrb.pr=0;
rse_invalidate_non_current_regs();
[lcompute effective instruction pointer
EIP{31:0} =tmp_IP{31:0} - AR[CSD].Base;

/I Note the register stack is disabled during I A-32 ingtruction
/I st execution
break;

case‘cloop’: // smple counted loop
if (dot!=2)
illegal_operation fault();
tmp_taken = (AR[LC]!=0);
if (AR[LC]!=0)
AR[LC]--;
bresk;

case‘ctop’:
case ‘cexit': /I SW pipelined counted loop
if (dot!=2)
illegal_operation_fault();
if (btype=="ctop’) tmp_taken = ((AR[LC]!=0) || (AR[EC] u> 1));
if (btype=="cexit’) tmp_taken =!((AR[LC]!=0) || (AR[EC] u> 1));
if (AR[LC]!'=0){
AR[LC]--;
AR[EC] = AR[EC];
PR[63] = 1;
rotate_reg();
} dseif (AR[EC]!=0) {
AR[LC] = AR[LC];
AR[EC]--;
PR[63] =0;
rotate_regy();
} else{
AR[LC] = AR[LC];
AR[EC] = AR[EC];
PR[63] = 0;
CFM.rrb.gr = CFM.rrb.gr;
CFM.rrb.fr = CFM.rrb fr;
CFM.rrb.pr = CFM.rrb.pr;

}
break;

case ‘wtop':
case ‘wexit': /I SW pipelined while loop
if (dot!=2)
illegal_operation_fault();
if (btype == ‘wtop’) tmp_taken = (PR[qp] || (AR[EC] u> 1));
if (btype=="wexit") tmp_taken =!(PR[qp] || (AR[EC] u> 1));
if (PRgp) {
AR[EC] = AR[EC];
PR[63] = 0;
rotate_regy();

3:26 Volume 3: Instruction Reference

} d=eif (AR[EC]!=0) {
AR[EC]-;
PR[63] =0;
rotate_regs();

} dsef
AR[EC] = AR[EC];
PR[63] =0;
CFM.rrb.gr = CFM.rrb.gr;
CFM.rrb.fr = CFM.rrb.fr;
CFM.rrb.pr = CFM.rrb.pr;

}
break;

}
if (tmp_taken) {
taken_branch=1;
IP=tmp_IP, /I set the new vauefor IP
if (limpl_uia fault_supported() & &
((PSR.it && unimplemented_virtual_address(tmp_IP, PSR.vm))
I ("PSR.it && unimplemented physica_address(tmp_IP))))
unimplemented_instruction_address _trap(lower_priv_transition,

tmp_IP);
if (lower_priv_transition && PSR.Ip)
lower_privilege _transfer_trap();
if (PSRtb)
taken_branch_trap();
}
Interruptions: Illegal Operation fault Lower-Privilege Transfer trap
Disabled Instruction Set Transition fault Taken Branch trap

Unimplemented Instruction Address trap
Additional Faults on |A-32 target instructions:

|A_32_Exception(GPFault)
Disabled FP Reg Fault if PSR.dfhis 1

Volume 3: Instruction Reference

br

3:27

break

break — Break

Format:

Description:

Operation:

Interruptions:

3:28

(gp) break immy, pseudo-op

(gp) break.i immy, i_unit_form 119
(gp) break.b immyy b_unit_form B9
(gp) break.m immy, m_unit_form M37
(gp) break.f immy,y f_unit_form F15
(gp) break.x immg, x_unit_form X1

A Break Instruction fault istaken. For thei_unit_form, f_unit_form and m_unit_form, the value
specified by immy is zero-extended and placed in the Interruption Immediate control register
(1Mm).

For the b_unit_form, immy,; isignored and the value zero is placed in the Interruption Immediate
control register (11M).

For the x_unit_form, the lower 21 bits of the value specified by immg, is zero-extended and placed
in the Interruption Immediate control register (11M). The L slot of the bundle contains the upper 41
bits of immg,.

A bresk.i instruction may be encoded in an MLI-template bundle, in which case the L slot of the
bundleisignored.

This instruction has five forms, each of which can be executed only on a particular execution unit
type. The pseudo-op can be used if the unit type to execute on is unimportant.

if (PRap]) {
if (b_unit_form)
immediate=0;
eseif (x_unit_form)
immediate = zero_ext(immgp, 21);
ese//i_unit_form || m_unit_form || f_unit_form
immediate = zero_ext(immy,, 21);

bresk_ingtruction_fault(immediate);
}

Break Instruction fault

Volume 3: Instruction Reference

brl

brl — Branch Long

Format:

Description:

(gp) brl.btype.bwh.ph.dh targetg, X3
(gp) brl.btype.bwh.ph.dh b, = targetg, cal_form X4
brl.ph.dh targetg, pseudo-op

A branch condition is evaluated, and either a branch istaken, or execution continues with the next
sequential instruction. The execution of abranch logically follows the execution of al previous
non-branch instructions in the same instruction group. On a taken branch, execution begins at slot
0.

Long branches are always | P-rel ative. The targetg, operand, in assembly, specifiesalabel to branch
to. Thisis encoded in the long branch instruction as an immediate displacement (immgg) between
the target bundle and the bundle containing thisinstruction (immgg = targetg, - IP>> 4). The L slot
of the bundle contains 39 bits of immgg.

Table 2-10. Long Branch Types

btype Function Branch Condition Target Address
cond or none Conditional branch Qualifying predicate IP-relative
call Conditional procedure call Qualifying predicate IP-relative

There is apseudo-op for long unconditional branches, encoded like a conditional branch (btype =
cond), with the gp field specifying PR 0, and with the bwh hint of sptk.

The branch type determines how the branch condition is cal culated and whether the branch has
other effects (such aswriting alink register). For al long branch types, the branch condition is
simply the value of the specified predicate register:
 cond: If the qualifying predicate is 1, the branch is taken. Otherwise it is not taken.
« call: If the qualifying predicate is 1, the branch is taken and several other actions occur:
 The current values of the Current Frame Marker (CFM), the EC application register and
the current privilege level are saved in the Previous Function State application register.
» Thecaler'sstack frameis effectively saved and the callee is provided with aframe
containing only the caller’s output region.
 Therotation rename base registers in the CFM are reset to 0.
* A return link valueis placed in BR b;.

Read after Write (RAW) and Write after Read (WAR) dependency requirements for long branch
instructions are dightly different than for other instructions but are the same as for branch
instructions. See page 3:24 for details.

Thisinstruction must be immediately followed by a stop; otherwise its behavior is undefined.

Values for various branch hint completers are the same as for branch instructions. Whether
Prediction Strategy hints are shown in Table 2-7 on page 3:24, Sequential Prefetch hints are shown
in Table 2-8 on page 3:24, and Branch Cache Deall ocation hints are shown in Table 2-9 on

page 3:24. See Section 4.5.2, “Branch Prediction Hints’ on page 1:72.

Thisinstruction is not implemented on the Itanium processor, which takes an I11egal Operation fault
whenever along branch instruction is encountered, regardless of whether the branch istaken or not.
To support the Itanium processor, the operating system is required to provide an Illegal Operation
fault handler which emulates taken and not-taken long branches. Presence of thisinstruction is
indicated by a1 in the Ib bit of CPUID register 4. See Section 3.1.11, “Processor | dentification
Registers’ on page 1:31.

Volume 3: Instruction Reference 3:29

ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf

brl

Operation: tmp_IP=IP+ (immgy << 4); /I determine branch target
if (Ifollowed_by_stop())
undefined_behavior();
if (lingtruction_implemented(BRL)))
illegd_operation_fault();

switch (btype) {
case‘cond': /I smple conditiond branch
tmp_taken = PR[qp];
break;
cae‘call’: /I call savesareturn link

tmp_taken = PR[qp];
if (tmp_taken) {
BR[b;] =P+ 16;

AR[PFS].pfm = CFM; /... and saves the stack frame
AR[PFS].pec = AR[EC];
AR[PFS].ppl = PSR.cpl;

aat_frame_update(CFM.sal, 0);
rse_preserve frame(CFM.sol);

CFM.sof -= CFM.sl; /I new frame sizeissize of outs
CFM.sol =0;
CFM.sor =0;
CFM.rrb.gr=0;
CFM.rrb.fr=0;
CFM.rrb.pr=0;
}
break;
}
if (tmp_taken) {
taken_branch=1;
IP=tmp_IP, /I set the new valuefor IP

if (Yimpl_uia fault_supported() & &
((PSR.it && unimplemented virtual_address(tmp_IP, PSR.vm))
[("PSR.it && unimplemented_physical_address(tmp_IP))))
unimplemented_instruction_address_trap(0,tmp_IP);
if (PSR.th)
taken_branch_trap();
}

Interruptions: |llegal Operation fault Taken Branch trap
Unimplemented Instruction Address trap

3:30 Volume 3: Instruction Reference

brp

brp — Branch Predict

Format: brp.ipwh.ih target,s, tag;3 ip_relative_form B6
brp.indwh.ih by, tag;3 indirect_form B7
brp.ret.indwh.ih by, tag;3 return_form, indirect_form B7

Description: Thisinstruction can be used to provide to hardware early information about a future branch. It has
no effect on architectural machine state, and operates as a nop instruction except for its performance
effects.

The tag,3 operand, in assembly, specifies the address of the branch instruction to which this
prediction information applies. Thisis encoded in the branch predict instruction as a signed
immediate displacement (timmg) between the bundle containing the presaged branch and the
bundle containing thisinstruction (timmg = tag,3 - |P >> 4).

The target,s operand, in assembly, specifies the label that the presaged branch will have asits
target. Thisisencoded in the branch predict instruction exactly asin branch instructions, with a
signed immediate displacement (immy4) between the target bundle and the bundle containing this
instruction (immy, = target,s - |P >> 4). Theindirect_form can be used to presage an indirect
branch. In theindirect_form, the target of the presaged branch is given by BR bs.

Thereturn_formis used to indicate that the presaged branch will be areturn.

Other hints can be given about the presaged branch. Values for various hint completers are shown
in the following tables. For more details, refer to Section 4.5.2, “Branch Prediction Hints” on
page 1:72.

Theipwh and indwh compl eters provide information about how best the branch condition should be
predicted, when the branch is reached.

Table 2-11. IP-relative Branch Predict Whether Hint

ipwh Completer IP-relative Branch Predict Whether Hint
sptk Presaged branch should be predicted Static Taken
loop Presaged branch will be br.cloop, br.ctop, or brwtop
exit Presaged branch will be br.cexit or br.wexit
dptk Presaged branch should be predicted Dynamically

Table 2-12. Indirect Branch Predict Whether Hint

indwh Completer Indirect Branch Predict Whether Hint
sptk Presaged branch should be predicted Static Taken
dptk Presaged branch should be predicted Dynamically

The ih completer can be used to mark a small number of very important branches (e.g., an inner
loop branch). This can signal to hardware to use faster, smaller prediction structures for this
information.

Table 2-13. Importance Hint

ih Completer Branch Predict Importance Hint

none Less important

imp More important

Volume 3: Instruction Reference 3:31

ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf

brp

Operation: tmp_tag = IP + sign_ext((timmg << 4), 13);
if (ip_relative_form) {
tmp_target = IP + sign_ext((immy, << 4), 25);
tmp_wh =ipwh;
} ese{ //indirect_form
tmp_target = BR[b,];
tmp_wh = indwh;

}
branch_predict(tmp_wh, ih, return_form, tmp_target, tmp_tag);

Interruptions: None

3:32 Volume 3: Instruction Reference

bsw

bsw — Bank Switch

Format:

Description:

Operation:

Interruptions:

Serialization:

bsw.0 zero_form B8
bsw.1 one_form B8

This instruction switches to the specified register bank. The zero_form specifies Bank 0 for GR16
to GR31. The one_form specifies Bank 1 for GR16 to GR31. After the bank switch the previous
register bank is no longer accessible but does retain its current state. If the new and old register
banks are the same, bsw is effectively anop, athough there may be a performance degradation.

A bsw instruction must be the last instruction in an instruction group; otherwise, operation is
undefined. Instructions in the same instruction group that access GR16 to GR3L1 reference the
previous register bank. Subsequent instruction groups reference the new register bank.

Thisinstruction can only be executed at the most privileged level, and when PSR.vm is 0.

Thisinstruction cannot be predicated.

if ((followed by_stop())
undefined_behavior();

if (PSR.cpl!=0)
privileged_operation_fault(0);

if (PSRvm==1)
virtudization_fault();

if (zero_form)
PSR.bn=0;

ese// one form
PSRbn=1;

Privileged Operation fault Virtualization fault

Thisinstruction does not require any additional instruction or data serialization operation. The bank
switch occurs synchronously with its execution.

Volume 3: Instruction Reference 3:33

chk

chk — Speculation Check

Format:

Description:

(gp) chk.s r,, targetos pseudo-op

(gp) chk.si ry, targetys control_form, i_unit_form, gr_form 120
(gp) chk.sm ry, targetss control_form, m_unit_form, gr_form M20
(gp) chk.s f,, targetyg control_form, fr_form M21
(gp) chk.aaclr rq, targetys data form, gr_form M22
(gp) chk.a.aclr fq, targetys data form, fr_form M23

Theresult of acontrol- or data-speculative calculation is checked for success or failure. If the check
fails, abranch to target,s is taken.

In the control_form, successis determined by a NaT indication for the source register. If the NaT
bit corresponding to GR r, is 1 (in the gr_form), or FR f, contains aNaTVal (in the fr_form), the
check fails.

In the data form, success is determined by the ALAT. The ALAT is queried using the genera
register specifier r1 (inthe gr_form), or the floating-point register specifier f; (inthefr_form). If no
ALAT entry matches, the check fails. An implementation may optionally cause the check to fail
independent of whether an ALAT entry matches. A chk.awith general register specifier rO or
floating-point register specifiers fO or f1 alwaysfails.

The target,s operand, in assembly, specifiesalabel to branch to. Thisis encoded in the instruction
as asigned immediate displacement (imm,;) between the target bundle and the bundle containing
thisinstruction (immy, = target,s - [P >> 4).

The branching behavior of this instruction can be optionally unimplemented. If the instruction
would have branched, and the branching behavior is not implemented, then a Speculative
Operation fault is taken and the value specified by immy,, is zero-extended and placed in the
Interruption Immediate control register (11IM). The fault handler emulates the branch by
sign-extending the 1M value, adding it to I1P and returning.

The control_form of thisinstruction for checking general registers can be encoded on either an
I-unit or an M-unit. The pseudo-op can be used if the unit type to execute on is unimportant.

For the data_form, if an ALAT entry matches, the matching ALAT entry can be optionally
invalidated, based on the value of the aclr completer (See Table 2-14).

Table 2-14. ALAT Clear Completer

3:34

aclr Completer Effect on ALAT
clr Invalidate matching ALAT entry
nc Don't invalidate

Note that if the clr value of the aclr completer is used and the check succeeds, the matching ALAT
entry isinvalidated. However, if the check fails (which may happen even if thereis a matching
ALAT entry), any matching ALAT entry may optionally be invalidated, but thisis not required.
Recovery code for data speculation, therefore, cannot rely on the absence of a matching ALAT
entry.

Volume 3: Instruction Reference

Operation:

Interruptions:

chk

if (PR[gp]) {
if (control_form) {
if (fr_form && (tmp_isrcode = fp_reg_disabled(f,, 0, 0, 0)))
disabled fp_register_fault(tmp_isrcode, 0);
check_type=gr_form? CHKS _GENERAL: CHKS FLOAT;
fail = (gr_form && GR([ro].nat) || (fr_form && FR[f;] == NATVAL);
} dse{ // data_ form
if (gr_form) {
reg_type = GENERAL,;
check_type= CHKA_GENERAL,;

aat_index =rq;
aways fail = (dat_index == 0);
} dse{ I/l fr_form

reg_type =FLOAT,

check_type= CHKA_FLOAT;

dat_index =fy;

aways fail = ((dat_index == Q) || (da_index == 1));

}
fail = (Aways fal || (‘da_cmp(reg_type, aat_index)));

if (fail) {
if (check_branch_implemented(check_type)) {
taken_branch=1;
IP=1P+ sign_ext((immy, << 4), 25);
if (limpl_uia fault_supported() & &
((PSR.it && unimplemented_virtual_address(IP, PSR.vm))
|| *PSR.it && unimplemented physical_address(IP))))
unimplemented_instruction_address trap(0, IP);
if (PSR.th)
taken_branch_trap();
} dse
speculation_fault(check_type, zero_ext(immyy, 21));
} dseif (data_form && (aclr =="clIr’))
aat_inva_single entry(reg type, dat_index);

}
Disabled Floating-point Register fault Unimplemented Instruction Address trap
Specul ative Operation fault Taken Branch trap

Volume 3: Instruction Reference 3:35

clrrrb

clrrrb — Clear RRB

Format: clrrrb al_form B8
clrrrb.pr pred_form B8

Description: Intheall_form, the register rename base registers (CFM.rrb.gr, CFM.rrb.fr, and CFM.rrb.pr) are
cleared. Inthe pred_form, the single register rename base register for the predicates (CFM.rrb.pr) is
cleared.

Thisinstruction must be the last instruction in an instruction group; otherwise, operation is
undefined.

This instruction cannot be predicated.

Operation: if (Ifollowed_by_stop())

undefined_behavior();

if (al_form) {
CFM.rrb.gr=0;
CFM.rrb.fr=0;
CFM.rrb.pr=0;

} else{ // pred_form
CFM.rrb.pr =0;

}

Interruptions: None

3:36 Volume 3: Instruction Reference

cmp

cmp — Compare

Format:

Description:

(gp) cmp.crel.ctype py, p2=ro I3 register_form A6
(gp) cmp.crel.ctype py, pp =immg, r3 imm8_form A8
(gp) cmp.crel.ctype py, p, =10, r3 parale_inequality _form A7
(gp) cmp.crel.ctype py, p,=r3, 10 pseudo-op

The two source operands are compared for one of ten relations specified by crel. This produces a
boolean result which is 1 if the comparison conditionistrue, and O otherwise. Thisresult iswritten
to the two predicate register destinations, p; and p,. Theway the result iswritten to the destinations
is determined by the compare type specified by ctype.

The compare types describe how the predicate targets are updated based on the result of the
comparison. The normal type simply writes the compare result to one target, and the complement to
the other. The parallel types update the targets only for a particular comparison result. This allows
multiple simultaneous OR-type or multiple simultaneous AND-type compares to target the same
predicate register.

The unc typeis special in that it first initializes both predicate targets to 0, independent of the
qualifying predicate. It then operates the same as the normal type. The behavior of the compare
typesis described in Table 2-15. A blank entry indicates the predicate target is left unchanged.

Table 2-15. Comparison Types

PRIqP]==1
ctype Pseudo-op PR[QpP]==0 Result==0, Result==1, One or More
of No Source NaTs | No Source NaTs Source NaTs
PR[P3] | PRIP2l | PRIPg]l | PRIP2] | PRIP1] | PRIPo] | PRIP1] | PR[P2]
none 0 1 1 0 0 0
unc 0 0 0 1 1 0 0 0
or 1 1
and 0 0 0 0
or.andcm 1 0
orcm or 1 1
andcm and 0 0 0 0
and.orcm or.andcm 0 1

Intheregister_form thefirst operand isGR r,; in theimm8_form the first operand is taken from the
sign-extended immg encoding field; and in the parallel_inequality_form the first operand must be
GR 0. The parallel_inequality_formisonly used when the compare type is one of the parallel types,
and therelation is an inequality (>, >=, <, <=). See below.

If the two predicate register destinations are the same (p; and p, specify the same predicate
register), the instruction will take an Illegal Operation fault, if the qualifying predicateis 1, or if the
compare typeis unc.

Of the ten relations, not al are directly implemented in hardware. Some are actually pseudo-ops.
For these, the assembler simply switches the source operand specifiers and/or switches the
predicate target specifiers and uses an implemented relation. For some of the pseudo-op compares
in theimm8_form, the assembler subtracts 1 from the immediate value, making the allowed
immediate range slightly different. Of the six parallel compare types, three of the types are actually
pseudo-ops. The assembler simply uses the negative relation with an implemented type. The
implemented relations and how the pseudo-ops map onto them are shown in Table 2-16 (for normal
and unc type compares), and Table 2-17 (for parallel type compares).

Volume 3: Instruction Reference 3:37

cmp

3:38

Table 2-16. 64-bit Comparison Relations for Normal and unc Compares

Compare Relation Register Form is a Immediate Form is a .
crel Immediate Range
(arel by pseudo-op of pseudo-op of

eq a== -128.. 127

ne al=b eq p1 P2 eq p1 P2 -128.. 127

It a<b signed -128.. 127

le a<=b It p1 P2 It a-1 -127.. 128

gt a>b It It a-l p' po -127..128

ge a>=b It Py’ P2 It Py’ P2 -128.. 127

Itu a<b unsigned 0..127,
264.128.. 2641

leu a<=b tu a’b Py’ P Itu a1 1..128,
264.127., 284

gtu a>b ftu a’b Itu a1 p; p 1..128,
284.127., 284

geu a>=b Itu p1 P2 Itu p1 P2 0..127,
254.128.. 2841

The parallel compare types can be used only with arestricted set of relations and operands. They
can be used with equal and not-equal comparisons between two registers or between aregister and
an immediate, or they can be used with inequality comparisons between aregister and GR 0.
Unsigned relations are not provided, since they are not of much use when one of the operandsis
zero. For the parallel inegquality comparisons, hardware only directly implements the ones where
thefirst operand (GRr5) is GR 0. Comparisons where the second operand is GR 0 are pseudo-ops
for which the assembler switches the register specifiers and uses the opposite relation.

Table 2-17. 64-bit Comparison Relations for Parallel Compares

crel Compare Relation Register Form is a Immediate Range
(arel b) pseudo-op of
eq a== -128.. 127
ne al=b -128.. 127
It 0<b signed no immediate forms
It a<o0 gt a'b
le 0<=hb
le a<=0 ge a’'b
gt 0>b
gt a>0 It a'b
ge 0>=b
ge a>=0 le a’'b

Volume 3: Instruction Reference

Operation: if (PR[qp]){

if (0p==p))
illega_operation fault();

cmp

tmp_nat = (register_form? GR[r,].nat: 0) || GR[r].nat;

if (register_form)
tmp_src = GR[r];
dseif (imm8_form)

tmp_src = sign_ext(immy, 8);

else// pardle_inequdity_form

tmp_sc=0;
if (cr D) tmp_rel =tmp_src == GR{[r3];
deeif (crel =='ne) tmp_rel =tmp_srcl= GR[r3];
dseif (crd == It tmp_rel =lesser_signed(tmp_src, GR{r3]);
deeif (crd =="I¢€) tmp_rel =lesser_equal_signed(tmp_src, GR[r3]);
dseif (crd =="‘gt’) tmp_rel = greater_signed(tmp_src, GR[r3])
deeif (crd =="'g¢€’) tmp_rel = grester_equal_signed(tmp_src, GR[r3]);
dseif (crd =="Itu’) tmp_rel =lesser(tmp_src, GR{r3]);
deeif (crd =="leu’) tmp_rel =lesser_equal (tmp_src, GR[r3]);
dseif (crd =="‘gtu’) tmp_rel = greater(tmp_src, GR[r3])
dse tmp_rel = greater_equal (tmp_src, GR(r3]);/* geu’
switch (Ctype){
case‘and / and-type compare
if (tmp nat |||tmp rel) {
PRIpy] =
PRIp,| = 0
break;
case'‘or’: /I or-type compare
if ("tmp_nat && tmp_rel) {
PRpy] = 1;
PRp,| = 1;
break;
case ‘or.anden’: /I or.andcm-type compare
if ("tmp_nat && tmp_rel) {
PRpy] =1,
PR[p,| = 0;
break;
case‘unc'’: /I unc-type compare
default: // norma compare
if (tmp_nat) {
PR[p] =0;
PR[po] =0;
} dsef
PR[py] =tmp_rel;
PR[p,] =!tmp_rd;
break;
}
} dsef
if (ctype==" ‘unC’) {
if (py
|Ileg operatlon fault();
PR[py] =
PR[p,| =
}

Interruptions: 1llegal Operation fault

Volume 3: Instruction Reference

3:39

cmp4

cmp4 — Compare 4 Bytes

Format:

Description:

(gp) cmpd4.crel.ctype py, p2=ro I3 register_form A6
(gp) cmpd4.crel.ctype py, pp =immg, r3 imm8_form A8
(gp) cmpd4.crel.ctype py, po =10, r3 parallel_inequality_form A7
(gp) cmp4.crel.ctype py, po=r3, 10 pseudo-op

Theleast significant 32 bitsfrom each of two source operands are compared for one of ten relations
specified by crel. This produces aboolean result which is 1 if the comparison condition istrue, and
0 otherwise. Thisresult iswritten to the two predicate register destinations, p; and p,. The way the
result is written to the destinations is determined by the compare type specified by ctype. See the
Compareinstruction and Table 2-15 on page 3:37.

Intheregister_formthefirst operand isGRr,; intheimm8_form thefirst operand istaken from the
sign-extended immg encoding field; and in the parallel_inequality_form the first operand must be
GRO. Theparald_inequality_formisonly used when the compare typeisone of the parallel types,
and the relation is an inequality (>, >=, <, <=). See the Compare instruction and Table 2-17 on
page 3:38.

If the two predicate register destinations are the same (p; and p, specify the same predicate
register), theinstruction will take an I1legal Operation fault, if the qualifying predicateis 1, or if the
compare typeis unc.

Of the ten relations, not all are directly implemented in hardware. Some are actually pseudo-ops.
See the Compare instruction and Table 2-16 and Table 2-17 on page 3:38. The range for
immediatesis given below.

Table 2-18. Immediate Range for 32-bit Compares

3:40

crel Comrzgrree:?g)latlon Immediate Range

eq a== -128.. 127

ne al=b -128.. 127

It a<b signed -128.. 127

le a<=b -127..128

gt a>b -127..128

ge a>=b -128.. 127

Itu a<b unsigned 0..127, 232.128.. 2321
leu a<=b 1..128, 2%2.127.. 2%
gtu a>b 1..128, 232.127.. 232
geu a>=b 0..127, 282.128..2%21

Volume 3: Instruction Reference

Operation: if (PRap]) {
if (P, ==pp)
illegal_operation fault();

tmp_nat = (register_form? GR[r,].nat: 0) || GR[r4].nat;

if (register_form)

tmp_src = GR[r];
dseif (imm8_form)

tmp_src = sign_ext(immy, 8);
else// pardld_inequality_form

cmp4

tmp_sc=0;
if (crd =='eq) tmp_rel =tmp_sr¢{ 31:0} == GR{r3]{ 31:0};
dseif (crd ==‘ne’) tmp_rel =tmp_sr¢{ 31:0} = GR[r3]{ 31:0};
dseif (crd =="It")

tmp_rel = lesser_signed(sign_ext(tmp_src, 32),
sign_ext(GRr3], 32));
dseif (crd =="l¢€)
tmp_rel = lesser_equa_signed(sign_ext(tmp_src, 32),
sign_ext(GR[r3], 32));
dseif (crd =="‘gt’)
tmp_rel = greater_signed(sign_ext(tmp_src, 32),
sign_ext(GR[r3], 32));
dseif (crd =="‘g¢)
tmp_rel = greater_equal_signed(sign_ext(tmp_src, 32),
sign_ext(GR[r3], 32));
dseif (crd =="Itu’)
tmp_rel = lesser(zero_ext(tmp_src, 32),
zero_ext(GR[r4], 32));
dseif (crd =="leu’)
tmp_rel = lesser_equal (zero_ext(tmp_src, 32),
zero_ext(GR[r4], 32));
dseif (crd =="‘gtu’)
tmp_rel = greater(zero_ext(tmp_src, 32),
zero_ext(GR[r4], 32));
dse //'geu
tmp_rel = greater_equal (zero_ext(tmp_src, 32),
zero_ext(GR[r4], 32));

switch (ctype) {
case'‘and':
if (tmp_nat ||'tmp_rel) {
PR[py] =0;
PR[p,] =0;

}
break;
case‘or’:
if ('tmp_nat && tmp _rel) {
PR[p] = 1;
PRIpl = 1;

}
break;
case ‘or.andcm’:
if ('tmp_nat && tmp _rel) {
PR[p] = 1;
PR[p,] =0;

}

break;
case‘unc':
default:

if (tmp_nat) {

Volume 3: Instruction Reference

// and-type compare

/1 or-type compare

/I or.andcm-type compare

/I unc-type compare
// normal compare

3:41

cmp4

PR[p;] =tmp_rd;
PR[p,] =!tmp_rd;
}
break;
}
} elsef
if (ctype=="unc’) {
if (py == po)
illegal_operation fault();
PR[pq] =0;
PRIp] =0;

}

Interruptions: Illegal Operation fault

3:42

Volume 3: Instruction Reference

cmpxchg

cmpxchg — Compare and Exchange

Format:

Description:

(gp) cmpxchgszsem.ldhint rq = [rg], ry, ar.ccv M16
(gp) cmp8xchgl6.sem.Idhint rqy = [r3], ry, ar.csd, ar.ccv sixteen_byte form M16

A value consisting of sz bytes (8 bytes for cmp8xchg16) is read from memory starting at the address
specified by thevaluein GR r3. The valueis zero extended and compared with the contents of the
cmpxchg Compare Value application register (AR[CCV]). If the two are equal, then the least
significant sz bytes of the valuein GR r, are written to memory starting at the address specified by
the value in GR r5. For cmp8xchg16, if the two are equal, then 8-bytes from GR r,, are stored at the
specified address ignoring bit 3 (GR r3 & ~0x8), and 8 bytes from the Compare and Store Data
application register (AR[CSD]) are stored at that address + 8 ((GR r3 & ~0x8) + 8). The
zero-extended value read from memory is placed in GR r; and the NaT bit corresponding to GR r4
is cleared.

The values of the sz completer are given in Table 2-19. The sem completer specifies the type of
semaphore operation. These operations are described in Table 2-20. See Section 4.4.7,
“Sequentiality Attribute and Ordering” on page 2:75 for details on memory ordering.

Table 2-19. Memory Compare and Exchange Size

Table 2-20. Compare and Exchange Semaphore Types

sz Completer Bytes Accessed
1 1
2 2
4 4
8 8

sem Ordering .
. maphor ration
Completer Semantics Semaphore Operatio
acq Acquire The memory read/write is made visible prior to all subsequent data memory
accesses.
rel Release The memory read/write is made visible after all previous data memory
accesses.

If the address specified by the value in GR r3 is not naturally aligned to the size of the value being
accessed in memory, an Unaligned Data Reference fault is taken independent of the state of the
User Mask alignment checking bit, UM.ac (PSR.ac in the Processor Status Register). For the
cmp8xchgl6 instruction, the address specified must be 8-byte aligned.

The memory read and write are guaranteed to be atomic. For the cmp8xchg16 instruction, the 8-byte
memory read and the 16-byte memory write are guaranteed to be atomic.

Both read and write access privileges for the referenced page are required. The write access
privilege check is performed whether or not the memory write is performed.

Thisinstruction is only supported to cacheabl e pages with write-back write policy. Accesses to
NaT Pages cause a Data NaT Page Consumption fault. Accesses to pages with other memory
attributes cause an Unsupported Data Reference fault.

The value of the Idhint completer specifies the locality of the memory access. The values of the
Idhint completer are given in Table 2-34 on page 3:139. Locality hints do not affect program
functionality and may be ignored by the implementation. See Section 4.4.6, “Memory Hierarchy
Control and Consistency” on page 1:64 for details.

Volume 3: Instruction Reference 3:43

ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf

cmpxchg

For cmp8xchg16, Illegal Operation fault is raised on processor models that do not support the
instruction. CPUID register 4 indicates the presence of the feature on the processor model. See
Section 3.1.11, “Processor Identification Registers’ on page 1:31 for details.

Operation: if (PR[gp]) {
Size=gxteen byte form? 16: sz,

if (Sxteen_byte form & &!lingtruction_implemented(CMP8XCHG16))
illegal_operation fault();

check_target_register(rq);

if (GR[rg].net || GR[r,].nat)
register_nat_consumption_fault(SEMAPHORE);

paddr = tlb_trandate(GR(r3], size, SEMAPHORE, PSR.cpl, & mattr,
&tmp_unused);

if (!ma_supports_semaphores(mattr))
unsupported_data reference_fault(SEMAPHORE, GR{r]);

if (sixteen_byte form) {
if (sem=="acq’)
val = mem_xchgl6_cond(AR[CCV], GRJr,], AR[CSD], paddr, UM.be,
mattr, ACQUIRE, Idhint);
dse// ‘re’
val = mem_xchgl6_cond(AR[CCV], GR]r,], AR[CSD], paddr, UM.be,
mattr, RELEASE, |dhint);

}ese{
if (sem=="acq)
val = mem_xchg_cond(AR[CCV], GR{r,], paddr, size, UM.be, mattr,
ACQUIRE, Idhint);
dse //'re’

val = mem_xchg_cond(AR[CCV], GR{r,], paddr, size, UM.be, mattr,
RELEASE, Idhint);
va = zero_ext(va, size* 8);

}

if AR[CCV] ==vad)
aa_inval_multiple_entries(paddr, size);

GRIrq] = va;
GR[rq].nat =0;
}
Interruptions: lllegal Operation fault DataKey Miss fault
Register NaT Consumption fault Data Key Permission fault
Unimplemented Data Address fault Data Access Rights fault
Data Nested TLB fault Data Dirty Bit fault
Alternate Data TLB fault Data Access Bit fault
VHPT Data fault Data Debug fault
Data TLB fault Unaligned Data Reference fault
Data Page Not Present fault Unsupported Data Reference fault

Data NaT Page Consumption fault

3:44 Volume 3: Instruction Reference

ftp://download.intel.com/design/Itanium/manuals/245317.pdf

cover

cover — Cover Stack Frame
Format: cover B8

Description: A new stack frame of zero size is alocated which does not include any registers from the previous
frame (as though al output registers in the previous frame had been locals). The register rename
base registers are reset. If interruption collection is disabled (PSR.ic is zero), then the old value of
the Current Frame Marker (CFM) is copied to the Interruption Function State register (IFS), and
IFS.v is set to one.

A cover instruction must be the last instruction in an instruction group; otherwise, operation is
undefined.

Thisinstruction cannot be predicated.

Operation: if ('followed_by_stop())
undefined_behavior();

if (PSR.cpl == 0&& PSRvm==1)
virtuaization fault();

aat_frame_update(CFM.sof, 0);
rse_preserve frame(CFM.sof);
if (PSRic==0){
CR[IFS].ifm = CFM;
CRIIFS].v =1,
}

CFM.sof =0;
CFM.sol =0;
CFM.sor =0;
CFM.rrb.gr=0;
CFM.rrb.fr=0;
CFM.rrb.pr =0;

Interruptions: Virtualization fault

Volume 3: Instruction Reference 3:45

CzX

czx — Compute Zero Index

Format:

Description:

(gp) czx1l ry=r3 one_byte form, left_form 129
(gp) czxlr ry=r3 one_byte form, right_form 129
(gp) czx2l ry=r3 two_byte form, left_form 129
(gp) czx2r ry=r3 two_byte form, right_form 129

GR r3isscanned for azero element. The element is either an 8-bit aligned byte (one_byte form) or
a 16-bit aligned pair of bytes (two_byte form). Theindex of the first zero element is placed in GR
r,. If there are no zero elementsin GR r3, adefault value is placed in GR r4. Table 2-21 gives the
possible result values. In theleft_form, the source is scanned from most significant element to least
significant element, and in the right_form it is scanned from least significant element to most
significant element.

Table 2-21. Result Ranges for czx

Operation:

3:46

Size Element Width Range of Result if Zero Element | Default Result if No Zero Element
Found Found
1 8 bit 0-7 8
2 16 bit 0-3 4
it (PRap]) { ,
check_target_register(rq);
if (one_byte form) {
if (left_form) { // scan from most significant down

if ((GR[r3] & 0xff0OOO0000000000) == 0) GR[r4] =0;
dseif ((GR[r3] & 0x00ff000000000000) == 0) GR[r{] = 1;
eseif ((GR[rs] & 0x0000ff0000000000) == 0) GR[r¢] = 2;
dseif ((GR[r3] & 0x000000ff00000000) == 0) GR[r4] = 3;
dseif (GR[r3] & 0x00000000ff000000) == 0) GR([r4] = 4;
eseif ((GR[rs] & 0x0000000000ffO000) == 0) GR[r¢] = 5;
eseif ((GR[r3] & 0x000000000000ff00) == 0) GR([r4] = 6;
dseif ((GR[r3] & 0x00000000000000ff) == 0) GR[r{] = 7;
dseGR[r] =8;

} ese{ //right form scan from least significant up

if ((GR[r3] & 0x00000000000000ff) == 0) GR[r4] = 0;
dseif ((GR[r] & 0x000000000000ffO0) == 0) GR[r4] = 1;
eseif ((GR[rs] & 0x0000000000ff0000) == 0) GR[r4] =2
dseif ((GR[rs] & 0x00000000ff000000) == 0) GR[r,] = 3;
dseif ((GR[r5] & 0x000000ffO0000000) == 0) GR[r4] = 4;
eseif ((GR[rs] & 0x0000ff0000000000) == 0) GR[r4] =5;
dseif ((GR[rs] & 0x00ff000000000000) == 0) GR[r,] = 6;
dseif ((GR[r5] & Oxff00000000000000) == 0) GR[r] = 7;
eseGRIr{ =8;

}
} dse{ // two_byte form
if (left_form) { I/ scan from most significant down

if ((GR[r3] & Oxffff0OO000000000) == 0) GR[r4] =0;
eseif ((GR[rs] & 0x0000ffff00000000) == 0) GR[r{] =1,
dseif ((GR[r3] & 0x00000000ffff0O000) == 0) GR[r{] = 2;
dseif ((GR[r3] & 0x000000000000ffff) == 0) GR[r4] = 3;
dseGR[rq =4

} ese{ //right form scan from least significant up

if ((GR[r3] & 0x000000000000ffff) == 0) GR[r4] =0;
eseif ((GR[rs] & 0x00000000ffff0000) == 0) GR[r4] =1,
dseif ((GR[r3] & 0x0000ffff00000000) == 0) GR[r{] = 2;
dseif (GR[r3] & Oxffff000000000000) == 0) GR[r4] = 3;
dseGR[rq =4

Volume 3: Instruction Reference

CzX

}
}
GR[rq].nat = GR[r].nat;

Interruptions: 1llegal Operation fault

Volume 3: Instruction Reference 3:47

dep

dep — Deposit

Format: (gp) dep rq=ry, r3, posg, leny merge_form, register_form 115
(ap) dep rqy=immy, rg, posg, leng merge_form, imm_form 114
(ap) dep.z ry =ry, posg, leng zero_form, register_form 112
(ap) dep.z rq =immg, posg, leng zero_form, imm_form 113

Description: Inthemerge form, aright justified bit field taken from thefirst source operand is deposited into the

valuein GRr3 at an arbitrary bit position and the result is placed in GR r4. In theregister_form the
first source operand is GR ro; and in theimm_form it is the sign-extended val ue specified by imm,
(either all onesor all zeroes). The deposited bit field begins at the bit position specified by the posg
immediate and extends to the left (towards the most significant bit) a number of bits specified by
thelenimmediate. Note that len has arange of 1-16 in theregister_form and 1-64 in the imm_form.
The posg immediate has a range of 0 to 63.

Inthe zero_form, aright justified bit field taken from either the valuein GR r, (in the
register_form) or the sign-extended value in immyg (in the imm_form) is deposited into GR r; and
all other bitsin GRr4 are cleared to zero. The deposited bit field begins at the bit position specified
by the posg immediate and extends to the |eft (towards the most significant bit) a number of bits
specified by the len immediate. The len immediate has arange of 1-64 and the posg immediate has
arange of 0 to 63.

In the event that the deposited bit field extends beyond bit 63 of the target, i.e., len + posg > 64, the
most significant len + posg - 64 bits of the deposited bit field are truncated. The len immediateis
encoded as len minus 1 in the instruction.

The operation of depry =r,, 13, 36, 16 isillustrated in Figure 2-5.

Figure 2-5. Deposit Example (merge_form)

52 36 0 16 15 0
GRra: GRry:

GRrq:

52 36 0

The operation of dep.zry =r,, 36, 16isillustrated in Figure 2-6.

Figure 2-6. Deposit Example (zero_form)

3:48

16 15 0

GRry:

GRry:| O 0
52 36 0

Volume 3: Instruction Reference

Operation: if (PRap]) {

dep

check_target_register(rq);

if (imm_form) {

tmp_src=
tmp_nat =
tmp_len=

} else{

tmp_src=
tmp_nat =
tmp_len=

(merge_form?sign_ext(immy,1): sign_ext(imm, 8));
merge_form? GR{rs].nat: O;
|m6;
Il register_form
GRIral;
(merge_form? GR[r3].nat: 0) || GR[r].nat;
merge_form?len,: leng,

}
if (posg +tmp_len u> 64)

tmp_len=

64 - posg;

if (merge_form)
GR[r{] = GR[r3];

ese// zero form
GR[r{] =0;

GR[rqJ{ (posg + tmp_len - 1):posg} = tmp_src{ (tmp_len - 1):0};
GR[r].nat = tmp_nat;

}

Interruptions: 1llegal Operation fault

Volume 3: Instruction Reference

3:49

epc

epc — Enter Privileged Code

Format:

Description:

Operation:

Interruptions:

3:50

epc B8

Thisinstruction increases the privilege level. The new privilegelevel isgiven by the TLB entry for
the page containing this instruction. Thisinstruction can be used to implement calls to
higher-privileged routines without the overhead of an interruption.

Before increasing the privilege level, a check is performed. The PFS.ppl (previous privilege level)
ischecked to ensure that it is not more privileged than the current privilege level. If this check fails,
theinstruction takes an Illegal Operation fault.

If the check succeeds, then the privilege isincreased as follows:

« If instruction address tranglation is enabled and the page containing the epc instruction has
execute-only page access rights and the privilege level assigned to the page is higher than
(numerically less than) the current privilege level, then the current privilege level is set to the
privilege level field in the translation for the page containing the epc instruction. This
instruction can promote but cannot demote, and the new privilege comes from the TLB entry.
If instruction address translation is disabled, then the current privilege level is set to O (most
privileged).

Instructions after the epc in the same instruction group may be executed at the old privilege
level or the new, higher privilege level. Instructions in subsequent instruction groups will be
executed at the new, higher privilege level.

« If the page containing the epc instruction has any other access rights besides execute-only, or if
the privilege level assigned to the pageis lower or equal to (humerically greater than or equal
to) the current privilege level, then no action is taken (the current privilege level isunchanged).

Notethat the ITLB is actualy only read once, at instruction fetch. Information from the access
rights and privilege level fields from the translation is then used in executing this instruction.

This instruction cannot be predicated.

if (AR[PFS].ppl u< PSR.cpl)
illegal_operation_fault();
if (PSR.it)
PSR.cpl =tlb_enter_privileged code();
dse
PSR.cpl =0;

Illegal Operation fault

Volume 3: Instruction Reference

extr

extr — Extract

Format:

Description:

(gp) extr rq =rz, posg, leng signed_form 111
(gp) extr.u rq =rz, posg, leng unsigned_form 111

A field isextracted from GR r, either zero extended or sign extended, and placed right-justified in
GR 4. Thefield begins at the bit position given by the second operand and extends leng bits to the
left. The bit position where the field beginsis specified by the posg immediate. The extracted field
issign extended in the signed_form or zero extended in the unsigned_form. The sign is taken from
the most significant bit of the extracted field. If the specified field extends beyond the most
significant bit of GR r3, the sign is taken from the most significant bit of GR r3. The immediate
value leng can be any number in the range 1 to 64, and is encoded as leng-1 in the instruction. The
immediate val ue posg can be any valuein the range 0 to 63.

The operation of extrr; =rg, 7,50is illustrated in Figure 2-7.

Figure 2-7. Extract Example

Operation:

Interruptions:

63 56 7 0
GR r3
GR r: Slgn
63 49 0
if (PRgp]) {

check_target_register(rq);
tmp_len = leng;

if (posg + tmp_len u> 64)
tmp_len =64 - posg;

if (unsigned_form)

GR[rq] = zero_ext(shift_right_unsigned(GR[r3], posG), tmp_len);
ese// signed form

GR[rq] = sign_ext(shift_right_unsigned(GR{[r3], pos6), tmp_len);

GR[r4].nat = GR[r3].nat;
}

Illegal Operation fault

Volume 3: Instruction Reference 3:51

fabs

fabs — Floating-point Absolute Value
Format: (gp) fabs f; =f3 pseudo-op of: (gp) fmerge.s f; =10, f3

Description: ~ The absolute value of the value in FR f5 is computed and placed in FR f;.
If FRfyisaNaTVal, FR f; is set to NaTVal instead of the computed result.

Operation: See “fmerge — Floating-point Merge” on page 3.75.

3:52 Volume 3: Instruction Reference

fadd

fadd — Floating-point Add
Format: (gp) fadd.pc.sf f; =f3, fo pseudo-op of: (gp) fmapc.sf f; =fs, 1, f,

Description: FRfyand FR f, are added (computed to infinite precision), rounded to the precision indicated by pc
(and possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding mode specified by FPSR.sf.rc, and
placed in FR 1. If either FR fz or FRf, isaNaTVal, FRf; is set to NaTVal instead of the computed
result.

The mnemonic values for the opcode’s pc are given in Table 2-22. The mnemonic vaues for sf are
given in Table 2-23. For the encodings and interpretation of the status field’s pc, wre, and rc, refer
to Table 5-5 and Table 5-6 on page 1:86.

Table 2-22. Specified pc Mnemonic Values

pc Mnemonic Precision Specified
.S single
.d double
none dynamic

(i.e. use pc value in status field)

Table 2-23. sf Mnemonic Values

sf Mnemonic Status Field Accessed
.s0 or none sfo
sl sfl
.s2 sf2
.s3 sf3

Operation: See “fma— Floating-point Multiply Add” on page 3:73.

Volume 3: Instruction Reference 3:53

ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf

famax

famax — Floating-point Absolute Maximum

Format: (gp) famax.sf fi =Ty, f3 F8

Description: The operand with the larger absolute value is placed in FR f;. If the magnitude of FR f, equals the
magnitude of FR f3, FR f; gets FR f5.

If either FR f, or FR fzisaNaN, FR f; gets FR fs.
If either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other arithmetic floating-point
instructions. The Invalid Operation is signaled in the same manner as the fcmp.It operation.

The mnemonic values for sf are given in Table 2-23 on page 3:53.

Operation: if (PR[gp]) {
fp_check_target_register(fy);
if (tmp_isrcode = fp_reg_disabled(fy, f,, f3, 0))
disabled fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval (FR[f,]) || fp_is_natval (FR[f3])) {
FR[f;] = NATVAL;
}ese{
fminmax_exception_fault_check(fy, f3, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))
fp_exception_fault(fp_decode_fault(tmp_fp_env));

tmp_right = fp_reg_read(FR[f,]);

tmp_left = fp_reg_read(FR[f3]);

tmp_right.sign =FP_SIGN_POSITIVE;
tmp_left.sgn=FP_SIGN_POSITIVE;
tmp_bool_res=fp_less than(tmp_left, tmp_right);
FR[f;] =tmp_bool_res? FR[f,]: FR[f3];

fp_update fpsr(sf, tmp_fp_env);
}

fp_update_psr(fy);
}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: llegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault

3:54 Volume 3: Instruction Reference

famin

famin — Floating-point Absolute Minimum
Format: (gp) famin.sf f; =f,, f3 F8

Description: The operand with the smaller absolute value is placed in FR f;. If the magnitude of FR f, equalsthe
magnitude of FR f3, FR f; gets FR f5.

If either FR f, or FR fzisaNaN, FR f; gets FR f5.
If either FR f, or FRfzisaNaTVal, FR 1 isset to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other arithmetic floating-point
instructions. The Invalid Operation is signaled in the same manner as the fcmp.It operation.

The mnemonic values for sf are given in Table 2-23 on page 3:53.

Operation: if (PR[qp]) {
fp_check_target_register(fy);
if (tmp_isrcode = fp_reg_disabled(fy, f,, f3, 0))
disabled fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval (FR[f,]) || fp_is_natval (FR[f3])) {
FR[fi] = NATVAL;
}dse{
fminmax_exception_fault_check(fy, f3, sf, &tmp_fp_env);
if (fp_raise fault(tmp_fp_env))
fp_exception_fault(fp_decode fault(tmp_fp_env));

tmp_left = fp_reg_read(FR[f,]);

tmp_right = fp_reg_read(FR[f3]);
tmp_left.sign=FP_SIGN_POSITIVE;
tmp_right.sign =FP_SIGN_POSITIVE;
tmp_bool_res=fp_less than(tmp_left, tmp_right);
FR[f;] = tmp_bool_res? FR[f,]: FR[f3];

fp_update fpsr(sf, tmp_fp_env);
}

fp_update_psr(fy);
}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: lllegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:55

fand

fand — Floating-point Logical And
Format: (gqp) fand fl:fZ! f3 F9

Description: The bit-wise logical AND of the significand fields of FR f, and FR f5 is computed. The resulting
valueis stored in the significand field of FR f;. The exponent field of FR f; is set to the biased
exponent for 2.0 (0x1003E) and the sign field of FR f; is set to positive (0).

If either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

Operation: if (PR[gp]) {

fp_check_target_register(fy);

if (tmp_isrcode = fp_reg_disabled(fy, f,, f3, 0))
disabled fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval (FR[f,]) || fp_is_natval (FR[f3])) {
FR[f;] = NATVAL;

}ese{
FR[f;].significand = FR[f,].significand & FR[fs].significand;
FR[f;].exponent = FP_INTEGER_EXP;
FR[f;].sign=FP_SIGN_POSITIVE;

}
fp_update psr(fy);

FP Exceptions: None

Interruptions: Illegal Operation fault Disabled Floating-point Register fault

3:56 Volume 3: Instruction Reference

fandcm

fandcm — Floating-point And Complement
Format: (gp) fandem fy ="y, f3 F9

Description: The bit-wise logical AND of the significand field of FR f, with the bit-wise complemented
significand field of FR f3is computed. The resulting valueis stored in the significand field of FR f;.
The exponent field of FR f; is set to the biased exponent for 2.0%3 (0x1003E) and the sign field of
FR f; is set to positive (0).

If either FRf, or FRfyisaNaTVal, FR f; isset to NaTVal instead of the computed result.

Operation: if (PR[qp]) {

fp_check_target_register(fy);

if (tmp_isrcode = fp_reg_disabled(fy, f,, f3, 0))
disabled fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval (FR[f,]) || fp_is_natval (FR[f3])) {
FR[fi] = NATVAL;

}ese{
FR[f4].significand = FR[f,].significand & ~FR[f].significand,
FR[f,].exponent = FP_INTEGER_EXP;
FR[f,].sign=FP_SIGN_POSITIVE;

}
fp_update_psr(fy);

FP Exceptions: None

Interruptions: 1llegal Operation fault Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:57

fc

fc — Flush Cache

Format:

Description:

Operation:

Interruptions:

3:58

(ap) fc ra invalidate line form M28
(gp) fci ra instruction_cache_coherent_form M28

Intheinvalidate line form, the cache line associated with the address specified by the value of GR
ryisinvalidated from all levels of the processor cache hierarchy. The invalidation is broadcast
throughout the coherence domain. If, at any level of the cache hierarchy, the line is inconsistent
with memory it is written to memory before invalidation. The line size affected is at least 32-bytes
(aligned on a 32-byte boundary). An implementation may flush alarger region.

In theinstruction_cache_coherent form, the cache line specified by GR r5isflushed in an
implementati on-specific manner that ensures that the instruction caches are coherent with the data
caches. Thefci instruction is not required to invalidate the targeted cache line nor write the targeted
cache line back to memory if it isinconsistent with memory, but may do so if thisisrequired to
make the instruction caches coherent with the data caches. The fc.i instruction is broadcast
throughout the coherence domain if necessary to make all instruction caches coherent. Theline size
affected is at least 32-bytes (aligned on a 32-byte boundary). An implementation may flush alarger
region.

When executed at privilege level 0, fc and fc.i perform no access rights or protection key checks. At
other privilege levels, fc and fc.i perform access rights checks as if they were 1-byte reads, but do
not perform any protection key checks (regardless of PSR.pk).

The memory attribute of the page containing the affected line has no effect on the behavior of these
instructions. The fc instruction can be used to remove a range of addresses from the cache by first
changing the memory attribute to non-cacheable and then flushing the range.

These instructions follow data dependency ordering rules; they are ordered only with respect to
previous load, store or semaphore instructionsto the sameline. fc and fc.i have data dependenciesin
the sense that any prior stores by this processor will be included in the flush operation. Subsequent
memory operations to the same line need not wait for prior fc or fc.i completion before being
globally visible. fc and fc.i are unordered operations, and are not affected by a memory fence (mf)
instruction. These instructions are ordered with respect to the sync.i instruction.

if (PRapl) {
itype = NON_ACCESSFC|READ;
if (GR[r4].nat)
register_nat_consumption_fault(itype);
tmp_paddr = tlb_trandate_nonaccess(GR[r4], itype);

if (invadidate line_form)
mem_flush(tmp_paddr);

ese// ingruction_cache coherent form
make_icache _coherent(tmp_paddr);

}

Register NaT Consumption fault Data TLB fault

Unimplemented Data Address fault Data Page Not Present fault

Data Nested TLB fault Data NaT Page Consumption fault
Alternate Data TLB fault Data Access Rights fault

VHPT Datafault

Volume 3: Instruction Reference

fchkf

fchkf — Floating-point Check Flags
Format: (gp) fchkf.sf targetys F14

Description: Theflagsin FPSR.sf.flags are compared with FPSR.s0.flags and FPSR.traps. If any flags set in
FPSR.sf.flags correspond to FPSR.traps which are enabled, or if any flags set in FPSR.sf.flags are
not set in FPSR.<0.flags, then a branch to target,g is taken.

The target,5 operand, specifies alabel to branch to. Thisis encoded in the instruction as a signed
immediate displacement (immy4) between the target bundle and the bundle containing this
instruction (immy = target,s - [P >> 4).

The branching behavior of thisinstruction can be optionally unimplemented. If the instruction
would have branched, and the branching behavior is not implemented, then a Speculative
Operation fault is taken and the value specified by immy,, is zero-extended and placed in the
Interruption Immediate control register (11M). The fault handler emulates the branch by
sign-extending the IIM value, adding it to I1P and returning.

The mnemonic values for sf are given in Table 2-23 on page 3:53.

Operation: if (PRIap]) {
switch (sf) {

cae'd)":
break;

case'sl’:
break;

cae's?':
break;

cae's3’:
break;

}
if ((tmp_flags & ~AR[FPSR].traps) || (tmp_flags & ~AR[FPSR].sf0.flags)) {
if (check_branch_implemented(FCHKF)) {
taken_branch=1;
IP=1P+ sign_ext((immy; << 4), 25);
if (limpl_uia fault_supported() & &
((PSR.it && unimplemented_virtual_address(IP, PSR.vm))
|| *PSR.it && unimplemented physical_address(IP)))
unimplemented_instruction_address trap(0, IP);
if (PSR.th)
taken_branch_trap();
} dse
speculaion_fault(FCHKF, zero_ext(immy,, 21));

}

FP Exceptions: None

Interruptions: Speculative Operation fault Taken Branch trap
Unimplemented Instruction Address trap

Volume 3: Instruction Reference 3:59

fclass

fclass — Floating-point Class

Format: (gp) fclass.ferel.fetype pq, po = fo, felassy

Description:

3:60

F5

The contents of FR f, are classified according to the fclassg completer as shown in Table 2-25. This

produces a boolean result based on whether the contents of FR f, agrees with the floating-point
number format specified by fclassy, as specified by the fcrel completer. Thisresult is written to the
two predicate register destinations, p; and p,. Theresult written to the destinationsis determined by

the compare type specified by fctype.

The alowed types are Normal (or none) and unc. See Table 2-26 on page 3:63. The assembly
syntax allows the specification of membership or non-membership and the assembler swaps the
target predicates to achieve the desired effect.

Table 2-24. Floating-point Class Relations

fcrel Test Relation
m FR f, agrees with the pattern specified by fclassg (is a member)
nm FR f, does not agree with the pattern specified by fclassg (is not a member)

A number agrees with the pattern specified by fclassg if:

* the number is NaTVal and fclassg {8} is 1, or
* the number isaquiet NaN and fclassg { 7} is 1, or
* the number isasignaling NaN and fclassy { 6} is 1, or

» the sign of the number agrees with the sign specified by one of the two low-order bits of
fclassy, and the type of the number (disregarding the sign) agrees with the number-type
specified by the next four bits of fclassg, as shown in Table 2-25.

Note: Anfclassy of Ox1FF is equivalent to testing for any supported operand.
The class names used in Table 2-25 are defined in Table 5-2, “Floating-point Register Encodings”

on page 1:83.

Table 2-25. Floating-point Classes

fclassg Class Mnemonic
Either these cases can be tested for
0x0100 NaTVal @nat
0x080 Quiet NaN @gnan
0x040 Signaling NaN @snan
or the OR of the following two cases
0x001 Positive @pos
0x002 Negative @neg
AND’ed with OR of the following four cases
0x004 Zero @zero
0x008 Unnormalized @unorm
0x010 Normalized @norm
0x020 Infinity @inf

Volume 3: Instruction Reference

ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf

fclass

Operation: if (PRap]) {
if (P, ==pp)
illegal_operation fault();

if (tmp_isrcode = fp_reg disabled(f,, 0, 0, 0))
disabled fp_register_fault(tmp_isrcode, 0);

tmp_rel = ((fclasso{ 0} & & IFR[f,].sign || fclasse{ 1} & & FRf,].sign)
&& ((fclasso{ 2} & & fp_is zero(FR[f)))||
(fclasso{ 3} && fp_is unorm(FR[f])) ||
(fclassof 4} & & fp_is normal (FR[f,])) ||
(fdlasse{ 5} && fp_is inf(FRIf,]))
)

)
|| (fdlasse{ 6} & & fp_is snan(FR[f]))
|| (fdlassef 7} & & fp_is gnan(FR[f,]))
|| (fdlasso{ 8} & & fp_is_natva (FR[f,]));

tmp_nat = fp_is_natval (FR[f,]) && (!fclassy{8});

if (tmp_nat) {
PR[p] =0;
PRIp,] =0;
}else{
PR[py] =tmp_rel;
PR[py] =!tmp_rd;

} elsé1f {
if (fctype=="unc’) {
if (P, ==pp)
illega_operation fault();
PR[py] =0;
PRIp,] =0;
}

FP Exceptions: None

Interruptions: 1llegal Operation fault Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:61

fclrf

fclrf — Floating-point Clear Flags
Format: (qp) fclrf.sf F13

Description: The status field's 6-bit flags field is reset to zero.
The mnemonic values for sf are given in Table 2-23 on page 3:53.

Operation: if (PR[gp]) {
fp st & flags(, O);

FP Exceptions: None

Interruptions: None

3:62 Volume 3: Instruction Reference

fcmp

fcmp — Floating-point Compare
Format: (gp) fecmp.frel.fctypest py, po =1, f3 Fa

Description: The two source operands are compared for one of twelve relations specified by frel. This produces
aboolean result which is 1 if the comparison condition istrue, and O otherwise. Thisresult is
written to the two predicate register destinations, p; and p,. The way the result is written to the
destinations is determined by the compare type specified by fctype. The allowed types are Normal
(or none) and unc.

Table 2-26. Floating-point Comparison Types

PR[QP]==1
fetvoe PR[(P]==0 Result==0, Result==1, One or More
yp No Source NaTVals No Source NaTVals Source NaTVals
PR[pP1] PRIP2I PR[P4] PRIP2I PRIP;] PRIP2] PRIP;l PRIP2]
none
unc 0 0 0 1 1 0 0 0

The mnemonic values for sf are given in Table 2-23 on page 3:53.

The relations are defined for each of the comparison typesin Table 2-27. Of the twelve relations,
not all are directly implemented in hardware. Some are actually pseudo-ops. For these, the
assembler simply switches the source operand specifiers and/or switches the predicate target
specifiers and uses an implemented relation.

Table 2-27. Floating-point Comparison Relations

Quiet NaN
frel frel Comp'leter Relation Pseudo-op of as Operand
Unabbreviated Signals Invalid
eq equal f,==13 No
It less than fo<fs Yes
le less than or equal fo<=f; Yes
gt greater than f,>f3 It f, " f3 Yes
ge greater than or equal fo>=1f3 le f, " f3 Yes
unord | unordered f,? f3 No
neq not equal I(fy ==13) eq p1 P2 No
nlt not less than I(f, < f3) It p1’ P2 Yes
nle not less than or equal I(f, <=13) le p1 P Yes
ngt not greater than I(f, > f3) It f, " f3 p1 P2 Yes
nge not greater than or equal I(fy >=13) le f, " f3 p1 P2 Yes
ord ordered 1(f? fa) unord p1 P2 No

Volume 3: Instruction Reference 3:63

fcmp

Operation:

if (PRIgp) {
if (0 ==p»)

illegal_operation fault();

if (tmp_isrcode = fp_reg_disabled(f,, f3, 0, 0))
disabled fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval (FR[f,]) || fp_is_natval (FR[f3])) {

PR[p] =0
PR[po] =0;

} dlsef
femp_exception_fault_check(f,, f3, frel, sf, &tmp_fp_env);

}
}else{

if (fp_raise_fault(tmp_f

fp_exception fault(fp_decode fault(tmp_fp_env));

tmp_fr2 =fp_reg_read(FR[f,]);
tmp_fr3="fp_reg_read(FR[f3]);

it (el =="eq)
dseif (frel =="It)
dseif (frel ==l¢)
dseif (frel =="gt)

dseif (fre =="'ge)
eseif (frel == ‘unord’)
deeif (fre == ‘neq’)
dseif (frel =="nlit’)
dseif (fre =="'nle’)
dseif (frel =="ngt’)
dseif (frel =="'nge’)
dse

PR[p,] =tmp_rd;
PR[p,] =!tmp_rd;

fp_update fpsr(sf, tmp_fp_env);

if (fctype=="unc’) {

}

if (P ==p))

illegd_operation fault();

PR[p] =0;
PR[p,] =0;

FP Exceptions: Invalid Operation (V)

3.64

Denormal/Unnormal Operand (D)

Software Assist (SWA) fault

tmp_rd =fp_equal (tmp_fr2,
tmp_fr3);
tmp_rd =fp_less than(tmp_fr2,
tmp_fr3);
tmp_rel =fp_lesser_or_equal (tmp_fr2,
tmp_fr3);
tmp_rel =fp_less than(tmp _fr3,
tmp_fr2);
tmp_rel =fp_lesser_or_equal (tmp_fr3,
tmp_fr2);
tmp_re = fp_unordered(tmp_fr2,
tmp_fr3);
tmp_rel =!Ifp_equal (tmp_fr2,
tmp_fr3);
tmp_re =!fp_less than(tmp_fr2,
tmp_fr3);
tmp_rd =Ifp_lesser_or_equal (tmp_fr2,
tmp_fr3);
tmp_rd =Ifp_less than(tmp_fr3,
tmp_fr2);
tmp_rel =!Ifp_lesser_or_equal (tmp_fr3,
tmp_fr2);
tmp_rel =!fp_unordered(tmp_fr2,
tmp_fr3); //'ord’

Volume 3: Instruction Reference

fcmp

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:65

fevt.fx

fcvt.fx — Convert Floating-point to Integer

Format: (gp) fevt.fx.sf f; =",
(gp) fevt.fx.trunc.sf f; =1,
(gp) fevt.fxu.sf f; =1,
(gp) fevt.fxu.trunc.sf =",

signed_form F10
signed_form, trunc_form F10
unsigned_form F10

unsigned_form, trunc_form F10

Description: FRf, istreated asaregister format floating-point value and converted to asigned (signed_form) or
unsigned integer (unsigned _form) using either the rounding mode specified in the FPSR.sf.rc, or
using Round-to-Zero if the trunc_form of the instruction is used. The result is placed in the 64-bit
significand field of FR f,. The exponent field of FR f; is set to the biased exponent for 2.0%3
(Ox1003E) and the sign field of FR f; is set to positive (0). If the result of the conversion cannot be
represented as a 64-bit integer, the 64-bit integer indefinite value 0x8000000000000000 is used as
theresult, if the IEEE Invalid Operation Floating-point Exception fault is disabled.

If FRf,isaNaTVal, FRf; isset to NaTVal instead of the computed result.

The mnemonic values for sf are given in Table 2-23 on page 3:53.

Operation: if (PR[ap]) {
fp_check_target_register(fy);
if (tmp_isrcode = fp_reg_disabled(fy, f,, O, 0))
disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is naval (FRIf,)) {
FRIf,] = NATVAL;
fp_update_psr(fy);
}ese{

tmp_default_result = fevt_exception_fault_check(f,, signed_form,

trunc_form, f, &tmp_fp_env);

if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

if (fp_is_nan(tmp_default_result)) {
FR[f;].significand = INTEGER_INDEFINITE;
FR[f,].exponent = FP_INTEGER_EXP,
FRI[f,].sign = FP_SIGN_POSITIVE;

} elsef

tmp_res="fp_ieee rnd_to_int(fp_reg_read(FR([f,]), &tmp_fp_env);

if (tmp_res.exponent)
tmp_res.significand = fp_U64_rsh(

tmp_res.sgnificand, (FP_INTEGER_EXP - tmp_res.exponent));

if (Sgned_form && tmp_res.sign)

tmp_res.significand = (~tmp_res.significand) + 1;

FR[f;].significand = tmp_res.significand;
FR{f,].exponent = FP_INTEGER_EXP,
FR[f,].sign=FP_SIGN_POSITIVE;

}

fp_update fpsr(sf, tmp_fp_env);

fp_update_psr(fy);

if (fp_raise_traps(tmp_fp_env))
fp_exception_trap(fp_decode_trap(tmp_fp_env));

3:66

Volume 3: Instruction Reference

fovt.fx

FP Exceptions: Invalid Operation (V) Inexact (1)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: 1llegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault Floating-point Exception trap

Volume 3: Instruction Reference 3:67

fovt.xf

fcvt.xf — Convert Signed Integer to Floating-point
Format: (gp) fevtxf f; =", F11

Description: The 64-bit significand of FR f, is treated as a signed integer and its register file precision
floating-point representation is placed in FR f;.

If FRf,isaNaTVal, FR f; isset to NaTVal instead of the computed result.

This operation is aways exact and is unaffected by the rounding mode.

Operation: if (PR[gp]) {
fp_check_target_register(fy);
if (tmp_isrcode = fp_reg_disabled(fy, 5, 0, 0))
disabled fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval (FR[f5])) {
FR[f;] = NATVAL;
}ese{
tmp_res=FR[f,];
if (tmp_res.significand{ 63}) {
tmp_res.significand = (~tmp_res.significand) + 1;
tmp_ressign=1;
} dse
tmp_ressign=0;

tmp_res.exponent = FP_INTEGER_EXP;
tmp_res = fp_normalize(tmp_res);

FR[f].significand = tmp_res.significand;
FR[f;].exponent = tmp_res.exponent;
FR[f;].sign = tmp_res.sign;

}
fp_update_psr(fy);

FP Exceptions: None

Interruptions: |llegal Operation fault Disabled Floating-point Register fault

3:68 Volume 3: Instruction Reference

fevt.xuf

fcvt.xuf — Convert Unsigned Integer to Floating-point

Format:

Description:

Operation:

(gp) fevt.xuf.pe.sf f; =f3 pseudo-op of: (qp) fmapc.sf f; =fs, f1, fO
FR f3 ismultiplied with FR 1, rounded to the precision indicated by pc (and possibly FPSR.sf.pc
and FPSR.sf.wre) using the rounding mode specified by FPSR.sf.rc, and placed in FR f;.

Note: Multiplying FR f3 with FR 1 (a 1.0) normalizes the canonical representation of an integer
in the floating-point register file producing a normal floating-point value.

If FRfyisaNaTVal, FR f; is set to NaTVal instead of the computed result.

The mnemonic values for the opcode's pc are given in Table 2-22 on page 3:53. The mnemonic
valuesfor sf are givenin Table 2-23 on page 3:53. For the encodings and interpretation of the status
field's pc, wre, and rc, refer to Table 5-5 and Table 5-6 on page 1:86.

See “fma— Foating-point Multiply Add” on page 3:73.

Volume 3: Instruction Reference 3:69

ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf

fetchadd

fetchadd — Fetch and Add Immediate

Format: (gp) fetchadd4.sem.ldhint rq =[r3], inc3 four_byte form M17
(gp) fetchadd8.sem.ldhint rq =[r3], inc3 eight_byte form M17

Description: A value consisting of four or eight bytesisread from memory starting at the address specified by
thevaluein GR ra. The valueis zero extended and added to the sign-extended immediate value
specified by inc3. The values that may be specified by incs are: -16, -8, -4, -1, 1, 4, 8, 16. The least
significant four or eight bytes of the sum are then written to memory starting at the address
specified by the valuein GR r3. The zero-extended value read from memory is placed in GR r4 and
the NaT bit corresponding to GR r is cleared.

The sem compl eter specifies the type of semaphore operation. These operations are described in
Table 2-28. See Section 4.4.7, “ Sequentiality Attribute and Ordering” on page 2:75 for details on
memory ordering.

Table 2-28. Fetch and Add Semaphore Types

sem Ordering

Completer Semantics Semaphore Operation

acq Acquire The memory read/write is made visible prior to all subsequent data memory
accesses.

rel Release The memory read/write is made visible after all previous data memory
accesses.

The memory read and write are guaranteed to be atomic for accesses to pages with cacheable,
writeback memory attribute. For accesses to other memory types, atomicity is platform dependent.
Details on memory attributes are described in Section 4.4, “Memory Attributes’ on page 2:609.

If the address specified by the value in GR r5 is not naturally aligned to the size of the value being
accessed in memory, an Unaligned Data Reference fault is taken independent of the state of the
User Mask alignment checking bit, UM.ac (PSR.ac in the Processor Status Register).

Both read and write access privileges for the referenced page are required. The write access
privilege check is performed whether or not the memory writeis performed.

Only accesses to UCE pages or cacheable pages with write-back write policy are permitted.
Accesses to NaTPages result in a Data NaT Page Consumption fault. Accesses to pages with other
memory attributes cause an Unsupported Data Reference fault.

On aprocessor model that supports exported fetchadd, a fetchadd to a UCE page causes the
fetch-and-add operation to be exported outside of the processor; if the platform does not support
exported fetchadd, the operation is undefined. On a processor model that does not support exported
fetchadd, a fetchadd to a UCE page causes an Unsupported Data Reference fault. See Section 4.4.9,
“Effects of Memory Attributes on Memory Reference Instructions’ on page 2:79.

The value of the Idhint completer specifies the locality of the memory access. The values of the
Idhint completer are given in Table 2-34 on page 3:139. Locality hints do not affect program
functionality and may be ignored by the implementation. See Section 4.4.6, “Memory Hierarchy
Control and Consistency” on page 1:64 for details.

3:70 Volume 3: Instruction Reference

ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf

fetchadd

Operation: if (PRIgp]) {
check_target_register(ry);

if (GR[r3].nat)
register_nat_consumption_fault(SEMAPHORE);

size=four_byte form?4: §;

paddr = tlb_trandate(GR{[r3], size, SEMAPHORE, PSR.cpl, & maitr,
&tmp_unused);
if (!ma_supports_fetchadd(mattr))
unsupported data reference fault(SEMAPHORE, GR(r4]);

if (sem=="acq’)
val = mem_xchg_add(incs, paddr, size, UM.be, mattr, ACQUIRE, |dhint);
dse// ‘rd’

val = mem_xchg_add(incs, paddr, size, UM .be, mattr, RELEASE, Idhint);
dat_inva_multiple_entries(paddr, size);

GR[r4] = zero_ext(va, size* 8);

GR[rq].nat =0;
}
Interruptions: |llegal Operation fault Data Key Miss fault
Register NaT Consumption fault Data Key Permission fault
Unimplemented Data Address fault Data Access Rights fault
Data Nested TLB fault Data Dirty Bit fault
Alternate Data TLB fault Data Access Bit fault
VHPT Datafault Data Debug fault
Data TLB fault Unaligned Data Reference fault
Data Page Not Present fault Unsupported Data Reference fault

Data NaT Page Consumption fault

Volume 3: Instruction Reference 3:71

flushrs

flushrs — Flush Register Stack

Format:

Description:

Operation:

Interruptions:

3:72

flushrs M25

All stacked general registersin the dirty partition of the register stack are written to the backing
store before execution continues. The dirty partition contains registers from previous procedure
frames that have not yet been saved to the backing store. For a description of the register stack
partitions, refer to Chapter 6, “ Register Stack Engine” in Volume 2. A pending external interrupt
can interrupt the RSE store loop when enabled.

After thisinstruction completes execution BSPSTORE is equal to BSP.

Thisinstruction must be the first instruction in an instruction group and must either bein
instruction slot 0 or in instruction slot 1 of atemplate having a stop after slot 0; otherwise, the
results are undefined. This instruction cannot be predicated.

while (AR[BSPSTORE]!= AR[BSF]) {
rse_store(MANDATORY); /I increments AR[BSPSTORE]
deliver_unmasked_pending_externa _interrupt();

}

Unimplemented Data Address fault DataKey Miss fault
VHPT Datafault Data Key Permission fault
Data Nested TLB fault Data Access Rights fault
Data TLB fault Data Dirty Bit fault
Alternate Data TLB fault Data Access Bit fault
Data Page Not Present fault Data Debug fault

Data NaT Page Consumption fault

Volume 3: Instruction Reference

ftp://download.intel.com/design/Itanium/manuals/245318.pdf

fma

fma — Floating-point Multiply Add
Format: (gp) fmapc.sf fy =1z, fa, f F1

Description: The product of FR f3 and FR f, is computed to infinite precision and then FR f, is added to this
product, again in infinite precision. The resulting value is then rounded to the precision indicated
by pc (and possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding mode specified by FPSR.sf.rc.
The rounded result is placed in FR f;.

If any of FR f3, FR f, or FR f, isaNaTVal, FR f; is set to NaTVal instead of the computed result.

If f, isf0, an IEEE multiply operation is performed instead of a multiply and add. See “fmpy —
Floating-point Multiply” on page 3:80.

The mnemonic values for the opcode’s pc are given in Table 2-22 on page 3:53. The mnemonic
valuesfor sf are givenin Table 2-23 on page 3:53. For the encodings and interpretation of the status
field's pc, wre, and rc, refer to Table 5-5 and Table 5-6 on page 1:86.

Operation: if (PR[qp]) {
fp_check_target_register(fy);
if (tmp_isrcode = fp_reg_disabled(fy, f,, f3, f4))
disabled fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval (FR[f,]) || fp_is_natval (FR[f3]) ||
fp_is_natva (FR[f4])) {
FR[f;] = NATVAL;
fp_update_psr(fy);
}else{
tmp_default_result = fma_exception_fault_check(f,, f3, f4,
pc, sf, &tmp_fp_env);
if (fp_raise fault(tmp_fp_env))
fp_exception_fault(fp_decode fault(tmp_fp_env));

if (fp_is_nan_or_inf(tmp_default_result)) {
FR[f,] =tmp_default_result;
}ese{
tmp_res=fp_mul(fp_reg_read(FR[f3]), fp_reg _read(FR[f4]));
if (f,!=0)
tmp_res=fp_add(tmp_res, fp_reg_read(FR[f,]), tmp_fp_env);
FR[f;] = fp_ieee round(tmp_res, &tmp_fp_env);

fp_update fpsr(sf, tmp_fp_env);

fp_update_psr(fy);

if (fp_raise_traps(tmp_fp_env))
fp_exception_trap(fp_decode trap(tmp_fp_env));

}

}
FP Exceptions: Invalid Operation (V) Underflow (U)

Denormal/Unnormal Operand (D) Overflow (O)

Software Assist (SWA) fault Inexact (1)

Software Assist (SWA) trap

Interruptions: lllegal Operation fault Floating-point Exception fault

Disabled Floating-point Register fault Floating-point Exception trap

Volume 3: Instruction Reference 3:73

ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf

fmax

fmax — Floating-point Maximum

Format: (gp) fmax.sf fy =1y, f3

F8

Description: ~ The operand with the larger valueis placed in FR f;. If FR f, equals FR f3, FR f; gets FR fa.

If either FR f, or FR fzisaNaN, FR f; gets FR fs.

If either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other arithmetic floating-point
instructions. The Invalid Operation is signaled in the same manner as the fcmp.It operation.

The mnemonic values for sf are given in Table 2-23 on page 3:53.

Operation: if (PR[ap]) {
fp_check_target_register(f,);

if (tmp_isrcode = fp_reg_disabled(fy, f,, f3, 0))
disabled fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval (FR[f,]) || fp_is_natval (FR[f3])) {

FRIfy] = NATVAL;
}elsef

fminmax_exception_fault_check(fy, f5, sf, &tmp_fp_env);

if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

tmp_bool_res=fp_less than(fp_reg_read(FR[f3]),

FR[f1] = (tmp_bool_res? FR[f,]: FR[f3]);
fp_update fpsr(sf, tmp_fp_env);

}
fp_update psr(fy);
}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: lllegal Operation fault
Disabled Floating-point Register fault

374

fp_reg_reed(FR[f,]));

Floating-point Exception fault

Volume 3: Instruction Reference

fmerge

fmerge — Floating-point Merge

Format:

Description:

(gp) fmerge.ns f; =1, f3 neg_sign_form F9
(gp) fmerges f1 =1, f3 sign_form F9
(gp) fmerge.se f; =1y, f3 sign_exp_form F9

Sign, exponent and significand fields are extracted from FR f, and FR f3, combined, and the result
isplaced in FR f;.

For the neg_sign_form, the sign of FR f, is negated and concatenated with the exponent and the
significand of FR f3. This form can be used to negate a floating-point number by using the same
register for FR f, and FR f5.

For the sign_form, the sign of FR f, is concatenated with the exponent and the significand of FR fa.

For the sign_exp_form, the sign and exponent of FR f, is concatenated with the significand of FR
fa.
For dl forms, if either FR f, or FR fzisaNaTVal, FR f; isset to NaTVal instead of the computed

result.

Figure 2-8. Floating-point Merge Negative Sign Operation

81 80 64 63 81 80 6463
FR f, FRf3
Negated 81 80 6463 0
Sign Bit FRf;
Figure 2-9. Floating-point Merge Sign Operation
81 80 64 63 8180 6463
FR f, FRf3

\1 80 6463

FR f;

4

Figure 2-10. Floating-point Merge Sign and Exponent Operation

81 80

64 63

FRf,

1

80

64 63

81 80

64 63

FR f3

FRf;

L

Volume 3: Instruction Reference

3.75

fmerge

Operation: if (PR[gp]) {
fp_check_target_register(fy);
if (tmp_isrcode = fp_reg_disabled(fy, f,, f3, 0))
disabled fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval (FR[f,]) || fp_is_natval (FR[f3])) {
FR[f;] = NATVAL;
}ese{
FR[f,].significand = FR[f3].significand;
if (neg_sign_form) {
FR[f;].exponent = FR[f3].exponent;
FRI[f1].sgn =!FR[f,].sign;
} dseif (sign_form) {
FR[f;].exponent = FR[f3].exponent;
FRI[f,].sign = FR[f].sign;
}ese{ // Sgn_exp_form
FR[f;].exponent = FR[f,].exponent;
FRI[f,].sign = FR[f].sign;

}
fp_update_psr(fy);

FP Exceptions: None

Interruptions: Illegal Operation fault Disabled Floating-point Register fault

3:76 Volume 3: Instruction Reference

fmin

fmin — Floating-point Minimum
Format: (gp) fmin.sf f; =1y, f3 F8

Description: The operand with the smaller valueis placed in FR 1. If FR f, equals FR f3, FR f; gets FR f5.
If either FR f, or FR fzisaNaN, FR f; gets FR f3.
If either FR f, or FRfzisaNaTVal, FR 1 isset to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other arithmetic floating-point
instructions. The Invalid Operation is signaled in the same manner as the fcmp.It operation.

The mnemonic values for sf are given in Table 2-23 on page 3:53.

Operation: if (PR[qp]) {
fp_check_target_register(fy);
if (tmp_isrcode = fp_reg_disabled(fy, f,, f3, 0))
disabled fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval (FR[f,]) || fp_is_natval (FR[f3])) {
FR[fi] = NATVAL;
}dse{
fminmax_exception_fault_check(fy, f3, sf, &tmp_fp_env);
if (fp_raise fault(tmp_fp_env))
fp_exception_fault(fp_decode fault(tmp_fp_env));

tmp_bool_res=1fp_less than(fp_reg_read(FR[f5]),
fp_reg_reed(FR[f3]));
FR[f] =tmp_bool_res? FR[f,]: FR[f3];
fp_update fpsr(sf, tmp_fp_env);
}
fp_update_psr(fy);
FP Exceptions: Invalid Operation (V)

Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: 1llegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:.77

fmix

fmix — Floating-point Mix

Format:

Description:

(gp) fmix.| f; =1, f3 mix_|_form F9
(gp) fmix.r f;y =f,, f3 mix_r_form F9
(gp) fmix.Ir f; =1, f3 mix_Ir_form F9

For the mix_|_form (mix_r_form), the left (right) single precision value in FR f, is concatenated
with the left (right) single precision valuein FR f3. For the mix_Ir_form, the left single precision
valuein FR f, is concatenated with the right single precision value in FR f3.

For all forms, the exponent field of FR f; is set to the biased exponent for 2.088 (0x1003E) and the
sign field of FR f is set to positive (0).

For all forms, if either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed
result.

Figure 2-11. Floating-point Mix Left

81 80 6463 32 31 0 81 80 6463 32 31 0
FR f, FRf3
slm 32 31 0
FRf|o 1003E
Figure 2-12. Floating-point Mix Right
81 80 64 63 32 31 0 81 80 64 63 32 31 0
FR f, FRf3
81 80 %& 32 31 0
FR f1 |9 1003E
Figure 2-13. Floating-point Mix Left-Right
81 80 6463 32 31 0 81 80 6463 32 31 0
FRf, FRf3
81 80 6463 32 31 0
FR f1|q 1003E

3.78

Volume 3: Instruction Reference

Operation: if (PR[qp]) {
fp_check_target_register(fy);
if (tmp_isrcode = fp_reg_disabled(fy, f,, f3, 0))
disabled fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval (FR[f]) || fp_is_natval (FR[f3])) {
FR[fi] = NATVAL,;
}else]
if (mix_|_form) {
tmp_res_hi = FR[f,].significand{ 63:32};
tmp_res lo = FR[f3].significand{ 63:32};
} dseif (mix_r_form) {
tmp_res_hi = FR[f,].significand{ 31:0};
tmp_res lo = FR[f3].significand{ 31:0};
}else{
tmp_res_hi = FR[f,].significand{ 63:32};
tmp_res lo = FR[f3].significand{ 31:0};
}
FR[f4].significand = fp_concatenate(tmp_res_hi, tmp_res o);
FR[f;].exponent = FP_INTEGER_EXP;
FR[f,].sign=FP_SIGN_POSITIVE;
}

fp_update_psr(fy);

FP Exceptions: None

Interruptions: Illegal Operation fault

Volume 3: Instruction Reference

/I mix_Ir_form

Disabled Floating-point Register fault

fmix

3:79

fmpy

fmpy — Floating-point Multiply
Format: (gp) fmpy.pc.sf fy =13, fy pseudo-op of: (qp) fmapc.sf f; =fg, fy, fO

Description: The product FR f3 and FR f4 is computed to infinite precision. The resulting value is then rounded
to the precision indicated by pc (and possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding
mode specified by FPSR.sf.rc. The rounded result is placed in FR f;.

If either FR fy or FR fyisaNaTVal, FR f; is set to NaTVal instead of the computed result.

The mnemonic values for the opcode’s pc are given in Table 2-22 on page 3:53. The mnemonic
valuesfor sf are givenin Table 2-23 on page 3:53. For the encodings and interpretation of the status
field’s pc, wre, and rc, refer to Table 5-5 and Table 5-6 on page 1:86.

Operation: See “fma— Floating-point Multiply Add” on page 3:73.

3:80 Volume 3: Instruction Reference

ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf

fms

fms — Floating-point Multiply Subtract

Format: (gp) fms.pc.sf 1 =f3, Ty, fo F1
Description: The product of FR f3 and FR f, is computed to infinite precision and then FR f is subtracted from
this product, again in infinite precision. The resulting value is then rounded to the precision
indicated by pc (and possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding mode specified by
FPSR.sf.rc. The rounded result is placed in FR f;.
If any of FR f3, FR f, or FRf, isaNaTVal, aNaTVal is placed in FR f; instead of the computed
result.
If f5isfO, an |EEE multiply operation is performed instead of amultiply and subtract. See“fmpy —
Floating-point Multiply” on page 3:80.
The mnemonic values for the opcode’s pc are given in Table 2-22 on page 3:53. The mnemonic
valuesfor sf are givenin Table 2-23 on page 3:53. For the encodings and interpretation of the status
field’s pc, wre, and rc, refer to Table 5-5 and Table 5-6 on page 1:86.
Operation: if (PR[qp]) {
fp_check_target_register(fy);
if (tmp_isrcode = fp_reg_disabled(fy, f, f3, 1))
disabled fp_register_fault(tmp_isrcode, 0);
if (fp_is_natval (FR[f,]) || fp_is_natval (FR[f3]) |
fp_is_natval (FR[f4])) {
FR[f;] = NATVAL,;
fp_update_psr(fy);
} dsef
tmp_default_result = fms_fnma_exception_fault_check(fy, f3, f4,
pe, f, &tmp_fp_env);
if (fp_raise fault(tmp_fp_env))
fp_exception_fault(fp_decode fault(tmp_fp_env));
if (fp_is_nan_or_inf(tmp_default_result)) {
FR[f,] =tmp_default_result;
} dsef
tmp_res=fp_mul(fp_reg_read(FR[f3]), fp_reg _read(FR[f4]));
tmp_fr2 =fp_reg_read(FR[f,]);
tmp_fr2.9gn =Itmp_fr2.5gn;
if (f,1= 0)
tmp_res=fp_add(tmp_res, tmp_fr2, tmp_fp_env);
FR[f,] =fp_ieee round(tmp_res, &tmp_fp_env);
}
fp_update fpsr(sf, tmp_fp_env);
fp_update_psr(fy);
if (fp_raise_traps(tmp_fp_env))
fp_exception_trap(fp_decode_trap(tmp_fp_env));
}
}
FP Exceptions: Invalid Operation (V) Underflow (U)
Denormal/Unnormal Operand (D) Overflow (O)
Software Assist (SWA) fault Inexact (1)
Software Assist (SWA) trap
Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault Floating-point Exception trap

Volume 3: Instruction Reference 3:81

ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf

fneg

fneg — Floating-point Negate
Format: (gp) fneg fy =13 pseudo-op of: (gp) fmerge.ns f; =f3, f3

Description: ~ Thevaluein FR f3 is negated and placed in FR f;.
If FRfyisaNaTVal, FR f; is set to NaTVal instead of the computed result.

Operation: See “fmerge — Floating-point Merge” on page 3.75.

3:82 Volume 3: Instruction Reference

fnegabs

fnegabs — Floating-point Negate Absolute Value
Format: (gp) fnegabs fi =f3 pseudo-op of: (qp) fmerge.ns f; =0, f3

Description: ~ The absolute value of the value in FR f5 is computed, negated, and placed in FR f;.
If FRfyisaNaTVal, FRf; is set to NaTVal instead of the computed result.

Operation: See “fmerge — Floating-point Merge” on page 3:75.

Volume 3: Instruction Reference 3:83

fnma

fnma — Floating-point Negative Multiply Add
Format: (gp) fnmapc.sf fy =13, fy, fo F1

Description: The product of FR f3 and FR f4 is computed to infinite precision, negated, and then FR f, is added
to this product, again in infinite precision. The resulting value is then rounded to the precision
indicated by pc (and possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding mode specified by
FPSR.sf.rc. The rounded result is placed in FR f;.

If any of FR f3, FR f,, or FRf, isaNaTVal, FR f; is set to NaTVal instead of the computed result.

If f, isf0, an IEEE multiply operation is performed, followed by negation of the product. See
“fnmpy — Floating-point Negative Multiply” on page 3:85.

The mnemonic values for the opcode’s pc are given in Table 2-22 on page 3:53. The mnemonic
valuesfor sf are givenin Table 2-23 on page 3:53. For the encodings and interpretation of the status
field’s pc, wre, and rc, refer to Table 5-5 and Table 5-6 on page 1:86.

Operation: if (PR[ap]) {
fp_check_target_register(fy);
if (tmp_isrcode = fp_reg_disabled(fy, f,, f3, f4))
disabled fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval (FR[f,]) || fp_is_natval (FR[f3]) ||
fp_is_natval (FR[f4])) {
FR[f;] = NATVAL;
fp_update_psr(fy);
}ese{
tmp_default_result = fms_fnma_exception_fault_check(f,, f3, f4,
pc, f, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))
fp_exception_fault(fp_decode_fault(tmp_fp_env));

if (fp_is_nan_or_inf(tmp_default_result)) {
FR[f;] =tmp_default_result;
}ese{
tmp_res=fp_mul(fp_reg _read(FR[f3]), fp_reg_read(FR[f4]));
tmp_res.sign =ltmp_res.sign;
if (f1=0)
tmp_res=fp_add(tmp_res, fp_reg_read(FR[f,]), tmp_fp_env);
FR[f;] =fp_ieee round(tmp_res, &tmp_fp_env);

fp_update fpsr(sf, tmp_fp_env);

fp_update psr(fy);

if (fp_raise_traps(tmp_fp_env))
fp_exception_trap(fp_decode_trap(tmp_fp_env));

}

}
FP Exceptions: Invalid Operation (V) Underflow (U)

Denormal/Unnormal Operand (D) Overflow (O)

Software Assist (SWA) fault Inexact (1)

Software Assist (SWA) trap

Interruptions: lllegal Operation fault Floating-point Exception fault

Disabled Floating-point Register fault Floating-point Exception trap

3:84 Volume 3: Instruction Reference

ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf

fnmpy

fnmpy — Floating-point Negative Multiply
Format: (gp) fnmpy.pc.sf fy =fa, fy pseudo-op of: (gp) fnmapc.sf fy =fa, f4,f0

Description: The product FR f3 and FR f, is computed to infinite precision and then negated. The resulting value
is then rounded to the precision indicated by pc (and possibly FPSR.sf.pc and FPSR.sf.wre) using
the rounding mode specified by FPSR.sf.rc. The rounded result is placed in FR f;.

If either FR f3 or FRf,isaNaTVal, FR f; isset to NaTVal instead of the computed result.

The mnemonic values for the opcode’s pc are given in Table 2-22 on page 3:53. The mnemonic
valuesfor sf are givenin Table 2-23 on page 3:53. For the encodings and interpretation of the status
field's pc, wre, and rc, refer to Table 5-5 and Table 5-6 on page 1:86.

Operation: See “fnma— Floating-point Negative Multiply Add” on page 3:84.

Volume 3: Instruction Reference 3:85

ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf

fnorm

fnorm — Floating-point Normalize
Format: (gp) fnorm.pc.sf f; =f3 pseudo-op of: (gp) fmapc.sf f; =fs, f1, fO

Description: FR fzisnormalized and rounded to the precision indicated by pc (and possibly FPSR.sf.pc and
FPSR.sf.wre) using the rounding mode specified by FPSR.sf.rc, and placed in FR f;.

If FRfyisaNaTVal, FR f; is set to NaTVal instead of the computed result.

The mnemonic values for the opcode’s pc are given in Table 2-22 on page 3:53. The mnemonic
valuesfor sf are givenin Table 2-23 on page 3:53. For the encodings and interpretation of the status
field’s pc, wre, and rc, refer to Table 5-5 and Table 5-6 on page 1:86.

Operation: See “fma— Floating-point Multiply Add” on page 3:73.

3:86 Volume 3: Instruction Reference

ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf

for

for — Floating-point Logical Or
Format: (gp) for fy =1y, f3 F9

Description: The bit-wiselogical OR of the significand fields of FR f, and FR f3 is computed. The resulting
valueis stored in the significand field of FR f;. The exponent field of FR f; is set to the biased
exponent for 2.0%3 (0x1003E) and the sign field of FR f; is set to positive (0).

If either FR f, or FR fzisaNaTVal, FR f; isset to NaTVal instead of the computed result.

Operation: if (PR[qp]) {
fp_check_target_register(fy);
if (tmp_isrcode = fp_reg_disabled(fy, f,, f3, 0))
disabled fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval (FR[f,]) || fp_is_natval (FR[f3])) {
FR[fi] = NATVAL;

}ese{
FR[f4].significand = FR[f,].significand | FR[f] .significand;
FR[f,].exponent = FP_INTEGER_EXP;
FR[f,].sign=FP_SIGN_POSITIVE;

}

fp_update_psr(fy);

FP Exceptions: None

Interruptions: lllegal Operation fault Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:87

fpabs

fpabs — Floating-point Parallel Absolute Value
Format: (gp) fpabs f; =13 pseudo-op of: (gp) fpmerge.s f; =10, f3

Description: ~ The absolute values of the pair of single precision valuesin the significand field of FR f3 are
computed and stored in the significand field of FR f;. The exponent field of FR f; is set to the
biased exponent for 2.0%8 (Ox1003E) and the sign field of FR f; is set to positive (0).

If FRfyisaNaTVal, FR f; is set to NaTVal instead of the computed result.

Operation: See “fpmerge — Floating-point Parallel Merge” on page 3:101.

3:88 Volume 3: Instruction Reference

fpack

fpack — Floating-point Pack
Format: (gp) fpack f; =1y, f3 pack_form F9

Description: Theregister format numbersin FR f, and FR f3 are converted to single precision memory format.
These two single precision numbers are concatenated and stored in the significand field of FR f;.
The exponent field of FR f; is set to the biased exponent for 2.0%3 (0x1003E) and the sign field of
FR f; is set to positive (0).

If either FR f, or FR fzisaNaTVal, FR f; isset to NaTVal instead of the computed result.
Figure 2-14. Floating-point Pack

81 80 64 63 0 81 80 64 63 0

FR f,

81 80 64 63

Operation: if (PR[qp]) {

fp_check_target_register(fy);

if (tmp_isrcode = fp_reg_disabled(fy, f,, f3, 0))
disabled fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval (FR[f,]) || fp_is_natval (FR[f3])) {
FR[f,] = NATVAL,;

} dsef
tmp_res hi =fp_single(FR[f,]);
tmp_res lo=fp_single(FR[f3]);
FR([f,].sgnificand = fp_concatenate(tmp_res_hi, tmp_res [0);
FR[f,].exponent = FP_INTEGER_EXP;
FR[f;].sign=FP_SIGN_POSITIVE;

}
fp_update_psr(fy);

FP Exceptions: None

Interruptions: 1llegal Operation fault Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:89

fpamax

fpamax — Floating-point Parallel Absolute Maximum

Format:

Description:

Operation:

(gp) fpamax.sf f; =fy, f3 F8

The paired single precision values in the significands of FR f, and FR f3 are compared. The
operands with the larger absolute value are returned in the significand field of FR f;.

If the magnitude of high (low) FR f3 isless than the magnitude of high (low) FR f,, high (low) FR
f1 gets high (low) FR f,. Otherwise high (low) FR f; gets high (low) FR f3.

If high (low) FR f, or high (low) FR fyisaNaN, and neither FR f, or FR fzisaNaTVal, high (low)
FR f; gets high (low) FR f3.

The exponent field of FR f; is set to the biased exponent for 2.0%8 (0x1003E) and the sign field of
FR f, is set to positive (0).

If either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other arithmetic floating-point
instructions. The Invalid Operation is signaled in the same manner as for the fpcmp.It operation.

The mnemonic values for sf are given in Table 2-23 on page 3:53.

it (PRgp]) {
fp_check_target_register(fy);
if (tmp_isrcode = fp_reg_disabled(fy, f,, f3, 0))
disabled fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval (FR[f,]) || fp_is_natval (FR[f3])) {
FR[f;] = NATVAL;
}ese{
fpminmax_exception_fault_check(f,, f5, s, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))
fp_exception_fault(fp_decode_fault(tmp_fp_env));

tmp_fr2 =tmp_right = fp_reg_read_hi(f,);

tmp_fr3 =tmp_left = fp_reg_read_hi(fy);

tmp_right.sign =FP_SIGN_POSITIVE;
tmp_left.sgn=FP_SIGN_POSITIVE;
tmp_bool_res=fp_less than(tmp_left, tmp_right);
tmp_res _hi =fp_single(tmp_bool_res?tmp_fr2: tmp_fr3);

tmp_fr2 =tmp_right = fp_reg_read lo(f,);
tmp_fr3=tmp_left = fp_reg_read_lo(fy);

tmp_right.sign = FP_SIGN_POSITIVE;

tmp_left.sign = FP_SIGN_POSITIVE;
tmp_bool_res=fp_less than(tmp_left, tmp_right);
tmp_res lo="fp_single(tmp_bool_res?tmp_fr2: tmp_fr3);

FR[f;].significand = fp_concatenate(tmp_res _hi, tmp_res 0);
FR[f;].exponent = FP_INTEGER_EXP;
FR[f;].sign=FP_SIGN_POSITIVE;

fp_update fpsr(sf, tmp_fp_env);

}
fp_update_psr(fy);

FP Exceptions: Invalid Operation (V)

3:90

Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Volume 3: Instruction Reference

fpamax

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:91

fpamin

fpamin — Floating-point Parallel Absolute Minimum

Format:

Description:

Operation:

(gp) fpamin.sf f; =f,, f3 F8

The paired single precision valuesin the significands of FR f, or FR f3 are compared. The operands
with the smaller absolute valueis returned in the significand of FR f;.

If the magnitude of high (low) FR f, is less than the magnitude of high (low) FR f3, high (low) FR
f1 gets high (low) FR f,. Otherwise high (low) FR f; gets high (low) FR f3.

If high (low) FR f, or high (low) FR fyisaNaN, and neither FR f, or FR fzisaNaTVal, high (low)
FR f; gets high (low) FR f3.

The exponent field of FR f; is set to the biased exponent for 2.0%8 (0x1003E) and the sign field of
FR f, is set to positive (0).

If either FR f, or FR fz3isNaTVal, FR f; is set to NaT Val instead of the computed result.

This operation does not propagate NaNs the same way as other arithmetic floating-point
instructions. The Invalid Operation is signaled in the same manner as for the fpcmp.It operation.

The mnemonic values for sf are given in Table 2-23 on page 3:53.

it (PRgp]) {
fp_check_target_register(fy);
if (tmp_isrcode = fp_reg_disabled(fy, f,, f3, 0))
disabled fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval (FR[f,]) || fp_is_natval (FR[f3])) {
FR[f;] = NATVAL;
}ese{
fpminmax_exception_fault_check(f,, f5, s, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))
fp_exception_fault(fp_decode_fault(tmp_fp_env));

tmp_fr2 =tmp_left =fp_reg_read_hi(f,);
tmp_fr3=tmp_right = fp_reg_read hi(fy);
tmp_left.agn=FP_SIGN_POSITIVE;

tmp_right.sign = FP_SIGN_POSITIVE;
tmp_bool_res=fp_less than(tmp_left, tmp_right);
tmp_res _hi =fp_single(tmp_bool_res?tmp_fr2: tmp_fr3);

tmp_fr2 =tmp_left = fp_reg_read_lo(fy);
tmp_fr3=tmp_right = fp_reg_read lo(f5);
tmp_left.sgn=FP_SIGN_POSITIVE;

tmp_right.sign = FP_SIGN_POSITIVE;
tmp_bool_res=fp_less than(tmp_left, tmp_right);
tmp_res lo="fp_single(tmp_bool_res?tmp_fr2: tmp_fr3);

FR[f;].significand = fp_concatenate(tmp_res _hi, tmp_res |0);
FR[f;].exponent = FP_INTEGER_EXP;
FR[f;].sign=FP_SIGN_POSITIVE;

fp_update fpsr(sf, tmp_fp_env);

}
fp_update_psr(fy);

FP Exceptions: Invalid Operation (V)

3:92

Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Volume 3: Instruction Reference

fpamin

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:93

fpcmp

fpcmp — Floating-point Parallel Compare

Format:

Description:

(gp) fpcmp.frel.sf f=1,, f3

F8

The two pairs of single precision source operands in the significand fields of FR f, and FR 5 are

compared for one of twelve relations specified by frel. This produces a boolean result whichisa
mask of 32 1'sif the comparison condition istrue, and amask of 32 0’s otherwise. Thisresult is
written to apair of 32-bit integersin the significand field of FR f;. The exponent field of FR f; isset
to the biased exponent for 2.0%3 (0x1003E) and the sign field of FR f; is set to positive (0).

Table 2-29. Floating-point Parallel Comparison Results

PRIQP]==1
PR[OP]== Result==false, Result==true, One or More
No Source NaTVals No Source NaTVals Source NaTVals
unchanged 0...0 1.1 NaTVal

The mnemonic values for sf are given in Table 2-23 on page 3:53.

The relations are defined for each of the comparison typesin Table 2-29. Of the twelve relations,
not all are directly implemented in hardware. Some are actually pseudo-ops. For these, the
assembler simply switches the source operand specifiers and/or switches the predicate type
specifiers and uses an implemented relation.

If either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

Table 2-30. Floating-point Parallel Comparison Relations

frel Completer Quiet NaN
frel P Relation Pseudo-op of as Operand
Unabbreviated . }
Signals Invalid
eq equal fo==1f3 No
It less than f,<fs Yes
le less than or equal f<=1fy Yes
gt greater than f,>f3 It f, " f3 Yes
ge greater than or equal fy>=1fy le f, " f3 Yes
unord unordered f? f3 No
neq not equal I(f, ==f3) No
nlt not less than I(fy < f3) Yes
nle not less than or equal I(f, <=13) Yes
ngt not greater than I(f, > f3) nlt f, " f3 Yes
nge not greater than or equal I(f, >=13) nle f, " f3 Yes
ord ordered 1(fo? f3) No
Operation: if (PR[ap]) {
fp_check_target_register(fy);
if (tmp_isrcode = fp_reg_disabled(f, f,, f, 0))
disabled fp_register_fault(tmp_isrcode, 0);
if (fp_is_natval(FR[f,]) || fp_is_natval (FR[f3])) {
FR[f;] = NATVAL;
}ese{
fpemp_exception_fault_check(f,, f5, frel, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))
fp_exception_fault(fp_decode_fault(tmp_fp_env));
tmp_fr2="fp_reg_read hi(f,);
3:94 Volume 3: Instruction Reference

tmp_fr3="fp_reg_read hi(fy);

if (frd =="eq)
dseif (frel =="It’)
dseif (frel =="l€)
eseif (frel =="gt’)
deeif (frd =="ge)
deeif (fre == unord’)
dseif (frel == ‘neq’
dseif (frel ==‘nlt’)
dseif (frel =="nl€’)
dseif (frel == ‘ngt’)
dseif (frd =="'nge’)
dse

tmp_res hi

tmp_fr2 =fp_reg read lo(f,);
tmp_fr3="1p_reg_read lo(fs);

if (frd =="'eq)
dseif (fre =="It’)
dseif (frel =="I€)
dseif (frel ==‘gt’)
dseif (frel =="‘ge’)
dseif (frel == ‘unord’)
deeif (frd == "neq’
dseif (frel =="nlt’)
deeif (frd =="nle’)
dseif (frd =="ngt’)
dseif (frel == ‘nge’)
ese

fpcmp

tmp_rel =fp_equal(tmp_fr2, tmp_fr3);
tmp_rel =fp_less_than(tmp_fr2, tmp_fr3);
tmp_rel =fp_lesser_or equd(tmp fr2,
tmp_fr3);
tmp_rel =fp_less than(tmp_fr3, tmp fr2);
tmp_rel =fp_lesser_or_equal (tmp_fr3,
tmp fr2)
tmp_rel =fp_unordered(tmp_fr2, tmp fr3);
tmp_rel =!fp_equal (tmp_fr2, tmp_fr3);
tmp_re =!Ifp_less than(tmp_fr2, tmp_fr3);
tmp_rel =!fp lesser_or equd(tmp fr2,
tmp_fr3);
tmp_rel =!fp_less than(tmp_fr3, tmp fr2);
tmp_rel =!fp_lesser_or_equal (tmp_fr3,
tmp | fr2)
tmp_rel =Ifp_unordered(tmp_fr2,
tmp_fr3); II'ord’

= (tmp_rel? OXFFFFFFFF; 0x00000000);

tmp_rd =fp_equal(tmp_fr2, tmp_fr3);
tmp_rel =fp_less_than(tmp_fr2, tmp_fr3);
tmp_rel =fp_lesser_or_equal (tmp_fr2,
tmp fr3)
tmp_rel =fp_less than(tmp_fr3, tmp fr2);
tmp_rel =fp_lesser_or equd(tmp fr3,
tmp_fr2);
tmp_rel =fp_unordered(tmp_fr2, tmp fr3);
tmp_re =!fp_equa (tmp_fr2, tmp_fr3);
tmp_rel =!Ifp_less than(tmp_fr2, tmp_fr3);
tmp_rel =Ifp_lesser_or_equd(tmp_fr2,
tmp fr3)
tmp_rel =!fp_less than(tmp_fr3, tmp fr2);
tmp_rel =!fp_lesser_or equei(tmp fr3,
tmp_fr2);
tmp_rel =!Ifp_unordered(tmp_fr2,
tmp_fr3); //*ord’

tmp_res o= (tmp_rel? OxFFFFFFFF: 0x00000000);

FRIf

.sgnificand = fp_concatenate(tmp_res_hi, tmp_res 10);

FR[f].exponent = FP_ INTEGER_EXP,

FR[f;].sign=FP_SIGN_POSITIVE;
fp_update fpsr(sf, tmp_fp_env);
}
fp_update_psr(fy);
FP Exceptions: Invalid Operation (V)

Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Illegal Operation fault

Disabled Floating-point Register fault

Volume 3: Instruction Reference

Floating-point Exception fault

3:95

fpcvt.fx

fpcvt.fx — Convert Parallel Floating-point to Integer

Format: (gp) fpevt.fx.sf f; =1, signed_form F10
(gp) fpevt.fx.trunc.sf f; =1, signed_form, trunc_form F10
(gp) fpevt.fxusf f; =1, unsigned_form F10
(gp) fpevt.fxu.trunc.sf fy =f, unsigned_form, trunc_form F10

Description: The pair of single precision valuesin the significand field of FR f, is converted to a pair of 32-bit
signed integers (signed_form) or unsigned integers (unsigned form) using either the rounding
mode specified in the FPSR.sf.rc, or using Round-to-Zero if the trunc_form of the instruction is
used. Theresult iswritten as a pair of 32-bit integersinto the significand field of FR f;. The
exponent field of FR f, is set to the biased exponent for 2.05% (0x1003E) and the sign field of FR f;
is set to positive (0). If the result of the conversion cannot be represented as a 32-bit integer, the
32-hit integer indefinite value 0x80000000 is used as the result, if the IEEE Invalid Operation
Floating-point Exception fault is disabled.

If FRf,isaNaTVal, FRf; isset to NaTVal instead of the computed result.

The mnemonic values for sf are given in Table 2-23 on page 3:53.

3:96 Volume 3: Instruction Reference

Operation: if (PR[qp]) {
fp_check_target_register(fy);
if (tmp_isrcode =fp_reg_disabled(fy, f5, O, 0))
disabled fp_register_fault(tmp_isrcode, 0);
if (fp_is_natval (FR[f5])) {
FR[fi] = NATVAL,;
fp_update_psr(fy);
} dsef
tmp_default_result_pair = fpcvt_exception_fault_check(f,,
signed_form, trunc_form, <, &tmp_fp_env);
if (fp_raise fault(tmp_fp_env))
fp_exception_fault(fp_decode fault(tmp_fp_env));
if (fp_is_nan(tmp_default_result_pair.hi)) {
tmp_res hi = INTEGER_INDEFINITE_32_BIT;
} dsef
tmp_res=1fp_ieee rnd_to_int_sp(fp_reg read hi(f,), HIGH,
&tmp_fp_env);
if (tmp_res.exponent)
tmp_res.significand = fp_U64 _rsh(
tmp_res.significand, (FP_INTEGER_EXP - tmp_res.exponent));
if (Sgned_form & & tmp_res.sign)
tmp_res.sgnificand = (~tmp_res.significand) + 1;
tmp_res hi =tmp_res.significand{ 31:0};
}
if (fp_is_nan(tmp_default_result_pair.lo)) {
tmp_res |o=INTEGER_INDEFINITE_32 BIT;
} dsef
tmp_res="fp_ieee rnd_to_int_sp(fp_reg_read lo(f,), LOW,
&tmp_fp_env);
if (tmp_res.exponent)
tmp_res.significand = fp_U64_rsh(
tmp_res.significand, (FP_INTEGER_EXP - tmp_res.exponent));
if (sSgned_form & & tmp_res.sign)
tmp_res.significand = (~tmp_res.significand) + 1;
tmp_res lo=tmp_res.significand{ 31.0};
}
FR[f,].significand = fp_concatenate(tmp_res_hi, tmp_res o);
FR[f;].exponent = FP_INTEGER_EXP;
FR[f,].sign=FP_SIGN_POSITIVE;
fp_update_fpsr(sf, tmp_fp_env);
fp_update_psi(fy);
if (fp_raise_traps(tmp_fp_env))
fp_exception_trap(fp_decode_trap(tmp_fp_env));
}
FP Exceptions: Invalid Operation (V) Inexact (1)

Interruptions:

Denormal/Unnormal Operand (D)
Software Assist (SWA) Fault

Illegal Operation fault
Disabled Floating-point Register fault

Volume 3: Instruction Reference

Floating-point Exception fault
Floating-point Exception trap

fpcvt.fx

3:97

fpma

fpma — Floating-point Parallel Multiply Add

Format:

Description:

3:98

(qp) fpma.sf fl = f3, f4, f2 F1

The pair of products of the pairs of single precision valuesin the significand fields of FR f; and FR
f4 are computed to infinite precision and then the pair of single precision values in the significand
field of FR f, is added to these products, again in infinite precision. The resulting values are then
rounded to single precision using the rounding mode specified by FPSR.sf.rc. The pair of rounded
results are stored in the significand field of FR f;. The exponent field of FR f; is set to the biased
exponent for 2.0 (0x1003E) and the sign field of FR f; is set to positive (0).

If any of FR f3, FR fy, or FRf, isaNaTVal, FR f; is set to NaT Val instead of the computed results.

Note: If f,isfOinthe fpmainstruction, just the IEEE multiply operation is performed. (See
“fpmpy — Floating-point Parallel Multiply” on page 3:104.) FR f1, asan operand, isnot a
packed pair of 1.0 values, it isjust the register file format’'s 1.0 value.

The mnemonic values for sf are given in Table 2-23 on page 3:53.
The encodings and interpretation for the status field’'s rc are given in Table 5-6 on page 1:86.

Volume 3: Instruction Reference

ftp://download.intel.com/design/Itanium/manuals/245317.pdf

Operation: if (PR[qp]) {
fp_check_target_register(fy);
if (tmp_isrcode = fp_reg_disabled(fy, f,, f3, T4))
disabled fp_register_fault(tmp_isrcode, 0);
if (fp_is_natval (FR[f,]) || fp_is_natval (FR[f3]) ||
fp_is_natval (FR[f4])) {
FR[f;] = NATVAL;
fp_update_psi(fy);
} dsef
tmp_default_result_pair = fpma_exception fault_check(f,,
f3, T4, S, &tmp_fp_env);
if (fp_raise fault(tmp_fp_env))
fp_exception_fault(fp_decode fault(tmp_fp_env));
if (fp_is_nan_or_inf(tmp_default_result_pair.hi)) {
tmp_res_hi =fp_single(tmp_default_result_pair.hi);
} dsef
tmp_res="fp_mul(fp_reg_read_hi(f3), fp_reg read hi(fy));
if (f!=0)
tmp_res=fp_add(tmp_res, fp_reg_read_hi(f,), tmp_fp_env);
tmp_res _hi =fp_ieee round_sp(tmp_res, HIGH, &tmp_fp_env);
}
if (fp_is_nan_or_inf(tmp_default_result_pair.lo)) {
tmp_res lo=fp_single(tmp_default_result_pair.l0);
} dsef
tmp_res="fp_mul(fp_reg_read_lo(f3), fp_reg read lo(fy));
if (f!=0)
tmp_res=fp_add(tmp_res, fp_reg_read_lo(f,), tmp_fp_env);
tmp_res lo=fp_ieee round_sp(tmp_res, LOW, &tmp_fp_env);
}
FR[f,].significand = fp_concatenate(tmp_res_hi, tmp_res o);
FR[f;].exponent = FP_INTEGER_EXP;
FR[f,].sign=FP_SIGN_POSITIVE;
fp_update fpsr(sf, tmp_fp_env);
fp_update_psi(fy);
if (fp_raise_traps(tmp_fp_env))
fp_exception_trap(fp_decode_trap(tmp_fp_env));
}
FP Exceptions: Invalid Operation (V) Underflow (U)
Denormal/Unnormal Operand (D) Overflow (O)
Software Assist (SWA) Fault Inexact (1)

Interruptions:

Illegal Operation fault
Disabled Floating-point Register fault

Software Assist (SWA) trap

Volume 3: Instruction Reference

Floating-point Exception fault
Floating-point Exception trap

fpma

3:99

fpmax

fpmax — Floating-point Parallel Maximum

Format:

Description:

Operation:

(gp) fpmax.sf fy =f,, f3 F8

The paired single precision valuesin the significands of FR f, or FR f3 are compared. The operands
with the larger value isreturned in the significand of FR f;.

If the value of high (low) FR f3 islessthan the value of high (low) FR f,, high (low) FR f; getshigh
(low) FR f,. Otherwise high (low) FR f; gets high (low) FR f5.

If high (low) FR f, or high (low) FR fzisaNaN, high (low) FR f; gets high (low) FR f.

The exponent field of FR f; is set to the biased exponent for 2.0%8 (0x1003E) and the sign field of
FR f, is set to positive (0).

If either FR f, or FR fz3isNaTVal, FR f; is set to NaT Val instead of the computed result.

This operation does not propagate NaNs the same way as other arithmetic floating-point
instructions. The Invalid Operation is signaled in the same manner as for the fpcmp.It operation.

The mnemonic values for sf are given in Table 2-23 on page 3:53.

it (PRgp]) {
fp_check_target_register(fy);
if (tmp_isrcode = fp_reg_disabled(fy, f,, f3, 0))
disabled fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval (FR[f,]) || fp_is_natval (FR[f3])) {
FR[f;] = NATVAL;
}ese{
fpminmax_exception_fault_check(f,, f5, s, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))
fp_exception_fault(fp_decode_fault(tmp_fp_env));

tmp_fr2 =tmp_right = fp_reg_read_hi(f,);

tmp_fr3 =tmp_left = fp_reg_read_hi(fy);
tmp_bool_res=fp_less than(tmp_left, tmp_right);
tmp_res hi =fp_single(tmp_bool_res?tmp_fr2: tmp_fr3);

tmp_fr2 =tmp_right = fp_reg_read lo(f,);

tmp_fr3 =tmp_left =fp_reg_read lo(fy);
tmp_bool_res=fp_less than(tmp_left, tmp_right);
tmp_res lo=fp_single(tmp_bool_res?tmp_fr2: tmp_fr3);

FR[f;].significand = fp_concatenate(tmp_res _hi, tmp_res |0);
FR[f,].exponent = FP_INTEGER_EXP,

FR[f;].sign = FP_SIGN_POSITIVE;

fp_update fpsr(sf, tmp_fp_env);

}
fp_update_psr(fy);
}

FP Exceptions: Invalid Operation (V)

Interruptions:

3:100

Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault

Volume 3: Instruction Reference

fpmerge

fpmerge — Floating-point Parallel Merge

Format: (gp) fpmerge.ns f; =1, f3 neg_sign_form F9
(gp) fpmerges f; =1, f3 sign_form F9
(gp) fpmerge.se fi =1y, f3 sign_exp_form F9

Description: For theneg_sign_form, the signs of the pair of single precision valuesin the significand field of FR
f, are negated and concatenated with the exponents and the significands of the pair of single
precision valuesin the significand field of FR f3 and stored in the significand field of FR f;. This
form can be used to negate a pair of single precision floating-point numbers by using the same
register for f, and f5.

For the sign_form, the signs of the pair of single precision valuesin the significand field of FR f,
are concatenated with the exponents and the significands of the pair of single precision valuesin
the significand field of FR f3 and stored in FR f;.

For the sign_exp_form, the signs and exponents of the pair of single precision valuesin the
significand field of FR f, are concatenated with the pair of single precision significandsin the
significand field of FR f3 and stored in the significand field of FR f;.

For al forms, the exponent field of FR f; is set to the biased exponent for 2.0% (Ox1003E) and the
sign field of FR f; is set to positive (0).

For dl forms, if either FR f, or FR fzisaNaTVal, FR f; isset to NaTVal instead of the computed
result.

Figure 2-15. Floating-point Parallel Merge Negative Sign Operation

81 80 64 63 62 32 3130 0 81 80 64 63 62 32 3130 0
FRT, FR f3

Negated
Sign Bits

8180 64 63 62
FR f; |0 1003E

Figure 2-16. Floating-point Parallel Merge Sign Operation

81 80 6463 62 32 31 30 0 81 80 64 63 62 32 3130 0
FR f3

FR f,

81 80 646362
FR f1|0 1003E

Volume 3: Instruction Reference 3:101

fpmerge

Figure 2-17. Floating-point Parallel Merge Sign and Exponent Operation

81 80 64 63 55 54 32312322 0 81 80 64 63 55 54 32312322 0
FR f, FR f3

81 80 64 63 55 54 3231 23 22
FR f,|o 1003E

Operation: if (PR[ap]) {
fp_check_target_register(fy);
if (tmp_isrcode = fp_reg_disabled(fy, f,, f3, 0))
disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval (FR[f,]) || fp_is_natval (FR[f3])) {
FR[f{] = NATVAL;
}else{
if (neg_sign_form) {
tmp_res_hi = ('FR[f,].significand{ 63} << 31)
| (FR[f3].significand{ 62:32});
tmp_res lo= ('FR[f,].significand{ 31} << 31)
| (FRIf5].significand{ 30:0});
} dseif (dgn_form) {
tmp_res_hi = (FR{[f,].significand{63} << 31)
| (FR[f3].sgnificand{ 62:32});
tmp_res o= (FR[f,].significand{ 31} << 31)
| (FR[f3].significand{ 30:0});
} elsef I/ sign_exp_form
tmp_res _hi = (FR[f,].significand{ 63:55} << 23)
| (FR[f3].significand{ 54:32});
tmp_res lo = (FR[f,].significand{ 31:23} << 23)
| (FR[f].significand{ 22:0});
}

FR[f].significand = fp_concatenate(tmp_res_hi, tmp_res |o);
FR[f;].exponent = FP_INTEGER_EXP;
FR[f;].sign=FP_SIGN_POSITIVE;

}

fp_update_psr(f);

FP Exceptions: None

Interruptions: lllegal Operation fault Disabled Floating-point Register fault

3:102 Volume 3: Instruction Reference

fpmin

fpmin — Floating-point Parallel Minimum

Format:

Description:

Operation:

(gp) fpmin.sf f; =15, f3 F8

The paired single precision valuesin the significands of FR f, or FR f3 are compared. The operands
with the smaller valueisreturned in significand of FR f;.

If thevalue of high (low) FR f, isless than the value of high (low) FR f3, high (low) FR f; gets high
(low) FR f,. Otherwise high (low) FR f; gets high (low) FR f5.

If high (low) FR f, or high (low) FR fisaNaN, high (low) FR f; gets high (low) FR fa.

The exponent field of FR f; is set to the biased exponent for 2.0%3 (0x1003E) and the sign field of
FR f; is set to positive (0).

If either FR f, or FR fzisaNaTVal, FR 1 isset to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other arithmetic floating-point
instructions. The Invalid Operation is signaled in the same manner as for the fpcmp.It operation.

The mnemonic values for sf are given in Table 2-23 on page 3:53.

if (PRqp]) {
fp_check_target_register(fy);
if (tmp_isrcode = fp_reg_disabled(fy, f,, f3, 0))
disabled fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval (FR[f,]) || fp_is_natval (FR[f3])) {
FR[fi] = NATVAL;
}dse{
fpminmax_exception_fault_check(f,, f3, s, &tmp_fp_env);
if (fp_raise fault(tmp_fp_env))
fp_exception_fault(fp_decode fault(tmp_fp_env));

tmp_fr2 = tmp_left = fp_reg_read_hi(fy);

tmp_fr3 =tmp_right = fp_reg_read_hi(fy);
tmp_bool_res=fp_less than(tmp_left, tmp_right);
tmp_res_hi =fp_single(tmp_bool_res?tmp_fr2: tmp_fr3);

tmp_fr2 =tmp_left =fp_reg read_lo(f,);

tmp_fr3 =tmp_right = fp_reg_read lo(f3);
tmp_bool_res=fp_less than(tmp_left, tmp_right);
tmp_res lo=fp_single(tmp_bool_res?tmp_fr2: tmp_fr3);

FR[f,].significand = fp_concatenate(tmp_res_hi, tmp_res o);
FR[f].exponent = FP_INTEGER_EXP;
FR[f,].sign=FP_SIGN_POSITIVE;

fp_update fpsr(sf, tmp_fp_env);

}
fp_update_psr(fy);
}

FP Exceptions: Invaid Operation (V)

Interruptions:

Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:103

fompy

fpmpy — Floating-point Parallel Multiply

Format:

Description:

Operation:

3:104

(gp) fpmpy.sf f; =13, fy pseudo-op of: (qp) fpmasf fy =f3, fy, fO

The pair of products of the pairs of single precision valuesin the significand fields of FR f; and FR
f4 are computed to infinite precision. The resulting values are then rounded to single precision
using the rounding mode specified by FPSR.sf.rc. The pair of rounded results are stored in the
significand field of FR f,. The exponent field of FR f, is set to the biased exponent for 2.0%
(Ox1003E) and the sign field of FR f; is set to positive (0).

If either FR f3, or FRf4isaNaTVal, FR f; is set to NaTVal instead of the computed results.

The mnemonic values for sf are given in Table 2-23 on page 3:53.
The encodings and interpretation for the status field's rc are given in Table 5-6 on page 1:86.

See “fpma— Floating-point Parallel Multiply Add” on page 3:98.

Volume 3: Instruction Reference

ftp://download.intel.com/design/Itanium/manuals/245317.pdf

fpms

fpms — Floating-point Parallel Multiply Subtract

Format:

Description:

Mapping:

Operation:

(qp) fpmssf fl = f3, f4, f2 F1

The pair of products of the pairs of single precision values in the significand fields of FR f3 and FR
f4 are computed to infinite precision and then the pair of single precision values in the significand
field of FR f, is subtracted from these products, again in infinite precision. The resulting values are
then rounded to single precision using the rounding mode specified by FPSR.sf.rc. The pair of
rounded results are stored in the significand field of FR f;. The exponent field of FR f; is set to the
biased exponent for 2.0%3 (0x1003E) and the sign field of FR f; is set to positive (0).

Note: If any of FR f3, FRf,, or FRfyisaNaTVal, FR f; isset to NaT Val instead of the computed
results.

If f,isf0 in the fpms instruction, just the IEEE multiply operation is performed.

The mnemonic values for sf are given in Table 2-23 on page 3:53.
The encodings and interpretation for the status field’s rc are given in Table 5-6 on page 1:86.

if (PRgp]) {
fp_check_target_register(fy);
if (tmp_isrcode = fp_reg_disabled(fy, f,, f3, f4))
disabled fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval (FR[f,]) || fp_is_natval (FR[f3]) ||
fp_is_natva (FR[f,])) {
FR[fi] = NATVAL;
fp_update_psr(fy);
}ese{
tmp_default_result_pair = fpms_fpnma_exception_fault_check(fy, f5,
fy, S, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))
fp_exception_fault(fp_decode fault(tmp_fp_env));

if (fp_is_nan_or_inf(tmp_default_result_pair.hi)) {
tmp_res _hi =fp_single(tmp_default_result_pair.hi);
}dse{
tmp_res="fp_mul(fp_reg_read hi(fs), fp_reg read hi(f,));
if (fo!=0) {
tmp_sub =fp_reg read_hi(f,);
tmp_sub.dgn =!tmp_sub.sign;
tmp_res=fp_add(tmp_res, tmp_sub, tmp_fp_env);

tmp_res _hi =fp_ieee round_sp(tmp_res, HIGH, &tmp_fp_env);
}

if (fp_is_nan_or_inf(tmp_default_result_pair.lo)) {
tmp_res lo="fp_single(tmp_default_result_pair.lo);
}dse{
tmp_res="fp_mul(fp_reg_read lo(fs), fp_reg read lo(fy));
if (fo!=0) {
tmp_sub =fp_reg read_lo(f,);
tmp_sub.sgn =!tmp_sub.sign;
tmp_res=fp_add(tmp_res, tmp_sub, tmp_fp_env);
}
tmp_res lo="fp_ieee round_sp(tmp_res, LOW, &tmp_fp_env);
}

FR[f,].significand = fp_concatenate(tmp_res_hi, tmp_res |o);
FR[f,].exponent = FP_INTEGER_EXP;

Volume 3: Instruction Reference 3:105

ftp://download.intel.com/design/Itanium/manuals/245317.pdf

fpms

FR[f;].sign = FP_SIGN_POSITIVE;

fp_update fpsr(sf, tmp_fp_env);

fp_update_psr(fy);

if (fp_raise_traps(tmp_fp_env))
fp_exception_trap(fp_decode_trap(tmp_fp_env));

}

}
FP Exceptions: Invalid Operation (V) Underflow (U)

Denormal/Unnormal Operand (D) Overflow (O)

Software Assist (SWA) fault Inexact (1)

Software Assist (SWA) trap

Interruptions: lllegal Operation fault Floating-point Exception fault

Disabled Floating-point Register fault Floating-point Exception trap

3:106 Volume 3: Instruction Reference

fpneg

fpneg — Floating-point Parallel Negate
Format: (gp) fpneg fy="f3 pseudo-op of: (qp) fpmerge.ns f; =f3, f3

Description: The pair of single precision valuesin the significand field of FR f3 are negated and stored in the
significand field of FR f;. The exponent field of FR f, is set to the biased exponent for 2.0%
(Ox1003E) and the sign field of FR f; is set to positive (0).

If FRfyisaNaTVal, FRf; is set to NaTVal instead of the computed result.

Operation: See “fpmerge — Floating-point Parallel Merge” on page 3:101.

Volume 3: Instruction Reference 3:107

fpnegabs

fpnegabs — Floating-point Parallel Negate Absolute Value

Format:

Description:

Operation:

3:108

(gp) fpnegabs f; =f3 pseudo-op of: (gp) fpmerge.ns f; =10, f3

The absolute values of the pair of single precision values in the significand field of FR f5 are
computed, negated and stored in the significand field of FR f;. The exponent field of FR f; isset to
the biased exponent for 2.08% (0x1003E) and the sign field of FR f; is set to positive (0).

If FRfyisaNaTVal, FR f; is set to NaTVal instead of the computed result.

See “fpmerge — Floating-point Parallel Merge” on page 3:101.

Volume 3: Instruction Reference

fpnma

fpnma — Floating-point Parallel Negative Multiply Add
Format: (gp) fpnmasf fq =13, fy, f F1

Description: ~ Thepair of products of the pairs of single precision values in the significand fields of FR f3 and FR
f, are computed to infinite precision, negated, and then the pair of single precision values in the
significand field of FR f, are added to these (negated) products, again in infinite precision. The
resulting values are then rounded to single precision using the rounding mode specified by
FPSR.sf.rc. The pair of rounded results are stored in the significand field of FR f;. The exponent
field of FR f; is set to the biased exponent for 2.0%% (0x1003E) and the sign field of FR f, is set to
positive (0).

If any of FR f3, FR f, or FR f, isaNaTVal, FR f; is set to NaTVal instead of the computed result.

Note: If f,isf0in the fpnmainstruction, just the IEEE multiply operation (with the product
being negated before rounding) is performed.

The mnemonic values for sf are given in Table 2-23 on page 3:53.
The encodings and interpretation for the status field’s rc are given in Table 5-6 on page 1:86.

Volume 3: Instruction Reference 3:109

ftp://download.intel.com/design/Itanium/manuals/245317.pdf

fpnma

Operation: if (PR[gp]) {
fp_check_target_register(fy);
if (tmp_isrcode = fp_reg_disabled(fy, f,, f3, f4))
disabled fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval (FR[f,]) || fp_is_natval (FR[f3]) ||
fp_is_natval (FR[f4])) {
FR[f;] = NATVAL;
fp_update_psi(fy);
} elsef
tmp_default_result_pair = fpms_fpnma_exception fault_check(f,, f3,
T4, S, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))
fp_exception_fault(fp_decode fault(tmp_fp_env));

if (fp_is_nan_or_inf(tmp_default_result_pair.hi)) {
tmp_res hi = fp_single(tmp_default_result_pair.hi);
} dlsef
tmp_res="fp_mul(fp_reg_read_hi(f3), fp_reg read_hi(f,));
tmp_res.sign =ltmp_res.sign;
if (fo!=0)
tmp_res="fp_add(tmp_res, fp_reg read hi(f,), tmp_fp_env);
tmp_res hi =fp_ieee round_sp(tmp_res, HIGH, &tmp_fp_env);
}

if (fp_is_nan_or_inf(tmp_default_result_pair.l0)) {
tmp_res lo=fp_single(tmp_default_result_pair.lo);
}ese{
tmp_res="fp_mul(fp_reg_read lo(f3), fp_reg read_lo(f,));
tmp_res.sgn =Itmp_res.sign;
if (fo!=0)
tmp_res="fp_add(tmp_res, fp_reg read lo(f,), tmp_fp_env);
tmp_res lo=fp_ieee round_sp(tmp_res, LOW, &tmp_fp_env);
}

FR[f,].significand = fp_concatenate(tmp_res _hi, tmp_res |o);
FR[f;].exponent = FP_INTEGER_EXP,;
FR[f;].sign=FP_SIGN_POSITIVE;

fp_update fpsr(sf, tmp_fp_env);

fp_update_psr(fy);

if (fp_raise_traps(tmp_fp_env))
fp_exception_trap(fp_decode_trap(tmp_fp_env));

}

}
FP Exceptions: Invalid Operation (V) Underflow (U)

Denormal/Unnormal Operand (D) Overflow (O)

Software Assist (SWA) fault Inexact (1)

Software Assist (SWA) trap

Interruptions: |llegal Operation fault Floating-point Exception fault

Disabled Floating-point Register fault Floating-point Exception trap

3:110 Volume 3: Instruction Reference

fpnmpy

fpnmpy — Floating-point Parallel Negative Multiply

Format:

Description:

Operation:

(ap) fpnmpy.sf f1 =13, f4 pseudo-op of: (gp) fpnmasf f; = f3, 4,f0

The pair of products of the pairs of single precision values in the significand fields of FR f3 and FR
f4 are computed to infinite precision and then negated. The resulting values are then rounded to
single precision using the rounding mode specified by FPSR.sf.rc. The pair of rounded results are
stored in the significand field of FR f;. The exponent field of FR f; is set to the biased exponent for
2.0%3 (0x1003E) and the sign field of FR f; is set to positive (0).

If either FR f3 or FRf,isaNaTVal, FR f; isset to NaTVal instead of the computed results.

The mnemonic values for sf are given in Table 2-23 on page 3:53.
The encodings and interpretation for the status field's rc are given in Table 5-6 on page 1:86.

See “fpnma— Floating-point Parallel Negative Multiply Add” on page 3:109.

Volume 3: Instruction Reference 3:111

ftp://download.intel.com/design/Itanium/manuals/245317.pdf

fprcpa

fprcpa — Floating-point Parallel Reciprocal Approximation
Format: (gp) fprepasf fq, py="fy, f3 F6

Description: If PRgpisO0, PR p,iscleared and FR f; remains unchanged.
If PR gpis1, thefollowing will occur:

* Each half of the significand of FR f; is either set to an approximation (with arelative error <
2°8886) of the reciprocal of the corresponding half of FR f5, or set to the |EEE-754 mandated
response for the quotient FR f,/FR f3 of the corresponding half — if that half of FR f, or of FR
fzisinthe set {-Infinity, -0, +0, +Infinity, NaN} .

* If either half of FR f; is set to the IEEE-754 mandated quotient, or is set to an approximation of
the reciprocal which may cause the Newton-Raphson iterations to fail to produce the correct
|EEE-754 divide result, then PR p, is set to O, otherwiseit is set to 1.

For correct |EEE divide results, when PR p, is cleared, user software is expected to compute
the quotient (FR f,/FR f3) for each half (using the non-parallel frepainstruction), and merge the
resultsinto FR f;, keeping PR p, cleared.

« The exponent field of FR f; is set to the biased exponent for 2.05% (0x1003E) and the sign field
of FR f; is set to positive (0).

* If either FRf, or FRfyisaNaTVal, FR f; is set to NaT Val instead of the computed result, and
PR p, iscleared.

The mnemonic values for sf are given in Table 2-23 on page 3:53.

Operation: if (PR[ap]) {
fp_check_target_register(fy);
if (tmp_isrcode = fp_reg_disabled(fy, f,, f3, 0))
disabled fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval (FR[f,]) || fp_is_natval (FR[f3])) {
FR[f;] = NATVAL;
PRp,] = 0;
}ese{
tmp_default_result_pair = fprepa_exception_fault_check(fy, f3, S,
&tmp_fp_env, &limits_check);
if (fp_raise_fault(tmp_fp_env))
fp_exception_fault(fp_decode fault(tmp_fp_env));

if (fp_is_nan_or_inf(tmp_default_result_pair.hi) ||
limits_check.hi_fr3) {
tmp_res hi = fp_single(tmp_default_result_pair.hi);
tmp_pred_hi =0;
}ese{
num = fp_normalize(fp_reg_read hi(f,));
den =fp_normalize(fp_reg_read_hi(fy));
if (fp_is_inf(num) && fp_is finite(den)) {
tmp_res=FP_INFINITY;
tmp_res.sign = num.sign " den.sign;
tmp_pred_hi =0;
} dseif (fp_is finite(num) && fp_is inf(den)) {
tmp_res=FP_ZEROQ,;
tmp_res.sign = num.sign " den.sign;
tmp_pred_hi =0;
} dseif (fp_is_zero(num) & & fp_is finite(den)) {
tmp_res=FP_ZERO,;
tmp_res.sign = num.sign ” den.sign;
tmp_pred_hi =0;

3:112 Volume 3: Instruction Reference

fprcpa

}else{
tmp_res="fp_ieee recip(den);
if (limits_check.hi_fr2_or_quot)
tmp_pred_hi =0;
dse
tmp_pred_hi =1,

tmp_res hi =fp_singletmp_res);

}
if (fp_is_nan_or_inf(tmp_default_result_pair.lo) ||
limits_check.lo_fr3) {
tmp_res lo="fp_single(tmp_default_result_pair.lo);
tmp_pred l0=0;
} dsef
num = fp_normalize(fp_reg_read lo(fy));
den = fp_normalize(fp_reg_read lo(f3));
if (fp_is_inf(num) && fp_is finite(den)) {
tmp_res=FP_INFINITY;
tmp_res.sign = num.sign ® den.sign;
tmp_pred lo=0;
} dseif (fp_is finite(num) && fp_is inf(den)) {
tmp_res=FP_ZERO,;
tmp_res.sign = num.sign * den.sign;
tmp_pred l0=0;
} dseif (fp_is_zero(num) & & fp_is finite(den)) {
tmp_res=FP_ZEROQ;
tmp_res.sign = num.sign ~ den.sign;
tmp_pred l0=0;
} dsef
tmp_res=1fp_ieee recip(den);
if (limits_check.lo_fr2_or_quot)
tmp_pred lo=0;
dse
tmp_pred lo=1;
}
tmp_res lo=fp_single(tmp_res);
}

FR([f,].sgnificand = fp_concatenate(tmp_res_hi, tmp_res [0);
FR[f,].exponent = FP_INTEGER_EXP;
FR[f,].sign=FP_SIGN_POSITIVE;

PR[p,] =tmp_pred hi && tmp_pred |o;

fp_update fpsr(sf, tmp_fp_env);

}

fp_update_psr(fy);
}else{

PRIp,] =0;

FP Exceptions: Invalid Operation (V)
Zero Divide (2)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:113

fprsqrta

fprsgrta — Floating-point Parallel Reciprocal Square Root Approximation
Format: (gp) fprsgrtast fi, po=f3 F7

Description: If PRgpisO0, PR p,iscleared and FR f; remains unchanged.
If PR gpis1, thefollowing will occur:

 Each half of the significand of FR f; is either set to an approximation (with arelative error <
28831 of the reciprocal square root of the corresponding half of FR fs, or set to the IEEE-754
compliant response for the reciprocal square root of the corresponding half of FR f3 — if that
half of FR f3 isin the set {-Infinity, -Finite, -0, +0, +Infinity, NaN}.

* If either half of FR f; is set to the IEEE-754 mandated reciprocal square root, or is set to an
approximation of the reciprocal square root which may cause the Newton-Raphson iterations
to fail to produce the correct |EEE-754 square root result, then PR p, isset to O, otherwiseit is
setto 1.

For correct |EEE square root results, when PR ps, is cleared, user software is expected to
compute the square root for each half (using the non-parallel frsgrtainstruction), and merge the
resultsin FR f, keeping PR p, cleared.

« The exponent field of FR f; is set to the biased exponent for 2.05% (0x1003E) and the sign field
of FR f; is set to positive (0).

* If FRfzisaNaTVal, FR f; is set to NaTVal instead of the computed result, and PR p, is
cleared.

The mnemonic values for sf are given in Table 2-23 on page 3:53.

Operation: if (PR[ap]) {
fp_check_target_register(fy);
if (tmp_isrcode = fp_reg_disabled(fy, fs, 0, 0))
disabled fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval (FR[f3])) {
FR[f;] = NATVAL;
PRp,] = 0;
}ese{
tmp_default_result_pair = fprsgrta_exception fault_check(fs, S,
&tmp_fp_env, &limits_check);
if (fp_raise_fault(tmp_fp_env))
fp_exception_fault(fp_decode fault(tmp_fp_env));

if (fp_is_nan(tmp_default_result_pair.hi)) {
tmp_res hi =fp_single(tmp_default_result_pair.hi);
tmp_pred_hi =0;
}ese{
tmp_fr3 =fp_normalize(fp_reg_read_hi(fy));
if (fp_is_zero(tmp_fr3)) {
tmp_res=FP_INFINITY;
tmp_ressign=tmp_fr3.sign;
tmp_pred_hi =0;
} dseif (fp_is_pos_inf(tmp_fr3)) {
tmp_res=FP_ZERO,;
tmp_pred_hi =0;
}ese{
tmp_res="fp_ieee recip_sgrt(tmp_fr3);
if (limits_check.hi)
tmp_pred_hi =0;
dse
tmp_pred_hi =1;

3:114 Volume 3: Instruction Reference

tmp_res _hi =fp_single(tmp_res);
}

if (fp_is_nan(tmp_default_result_pair.l0)) {
tmp_res lo="fp_single(tmp_default_result_pair.lo);
tmp_pred l0=0;
}dse{
tmp_fr3 =fp_normalize(fp_reg_read lo(f3));
if (fp_is_zero(tmp_fr3)) {
tmp_res= FP_INFINITY;
tmp_res.sign =tmp_fr3.sign;
tmp_pred [0=0;
} dseif (fp_is_pos inf(tmp_fr3)) {
tmp_res=FP_ZERO,;
tmp_pred l0=0;
}dse{
tmp_res=1fp_ieee recip_sgrt(tmp_fr3);
if (limits_check.lo)
tmp_pred lo=0;
dse
tmp_pred lo=1;

tmp_res lo=fp_single(tmp_res);
}

FR([f,].sgnificand = fp_concatenate(tmp_res_hi, tmp_res [0);
FR[f,].exponent = FP_INTEGER_EXP;
FR[f,].sign=FP_SIGN_POSITIVE;

PR[p,] =tmp_pred hi && tmp_pred |o;

fp_update fpsr(sf, tmp_fp_env);
}
fp_update_psr(fy);

} else{
PRIp| =0;

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault

Volume 3: Instruction Reference

fprsqrta

3:115

frcpa

frcpa — Floating-point Reciprocal Approximation
Format: (gp) frepasf fq, pp=fy, f3 F6

Description: If PRgpisO0, PR p,iscleared and FR f; remains unchanged.
If PR gpis1, thefollowing will occur:

« FRf, iseither set to an approximation (with arelative error < 2°888%) of the reciprocal of FR f3,
or to the |EEE-754 mandated quotient of FR f,/FR f; — if either FR f, or FR fzisin the set
{-Infinity, -0, Pseudo-zero, +0, +Infinity, NaN, Unsupported} .

* If FRf; is set to the approximation of the reciprocal of FR f3, then PR p, is set to 1; otherwise,
itissettoO.

* If FRf, and FR f3 are such that the approximation of FR f5's reciprocal may cause the
Newton-Raphson iterationsto fail to produce the correct |EEE-754 result of FR f,/FR f3, then a
Floating-point Exception fault for Software Assist occurs.

System software is expected to compute the IEEE-754 quotient (FR f,/FR f3), return the result
in FR fy, and set PR p, to 0.

* If either FRf, or FRfyisaNaTVal, FR f; is set to NaT Val instead of the computed result, and
PR p, iscleared.

The mnemonic values for sf are given in Table 2-23 on page 3:53.

Operation: if (PR[ap]) {
fp_check_target_register(fy);
if (tmp_isrcode = fp_reg_disabled(fy, f,, f3, 0))
disabled fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval (FR[f,]) || fp_is_natval (FR[f3])) {
FR[f;] = NATVAL;
PRp,] = 0;
}ese{
tmp_default_result = frcpa_exception_fault_check(f,, fa, S,
&tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))
fp_exception_fault(fp_decode fault(tmp_fp_env));

if (fp_is_nan_or_inf(tmp_default_result)) {
FR[f;] = tmp_default_result;
PRIp,] =0;
}ese{

num = fp_normaize(fp_reg_read(FR[f,]));

den = fp_normalize(fp_reg_read(FR[f3]));

if (fp_is_inf(num) && fp_is finite(den)) {
FR[f;] = FP_INFINITY;
FR[f;].sign = num.sign * den.sign;
PRIp,] =0,

} dseif (fp_is finite(num) && fp_is inf(den)) {
FR[f;] = FP_ZERO;
FR[f;].sign = num.sign * den.sign;
PR[p,] = 0;

} dseif (fp_is_zero(num) & & fp_is finite(den)) {
FR[f,] = FP_ZERO;
FR[f1].sign = num.sign * den.sign;
PR[po] =0;

}ese{
FRI[f{] = fp_ieee recip(den);
PRIpo] = 1;

3:116 Volume 3: Instruction Reference

frcpa

}
}
fp_update fpsr(sf, tmp_fp_env);

}

fp_update_psr(fy);
}else{

PRIp,] =0;

Il fp_ieee recip()
fp_ieee recip(den)

RECIP_TABLE[256] ={
0Ox3fc, 0x3f4, Ox3ec, 0x3e4, 0x3dd, 0x3d5, 0x3cd, 0x3c6,
0x3be, 0x3b7, Ox3af, 0x3a8, Ox3al, 0x399, 0x392, 0x38h,
0x384, 0x37d, 0x376, Ox36f, 0x368, 0x361, 0x35h, 0x354,
0x34d, 0x346, 0x340, 0x339, 0x333, 0x32c, 0x326, 0x320,
0x319, 0x313, 0x30d, 0x307, 0x300, Ox2fa, 0x2f4, Ox2ee,
0x26e8, 0x2e2, Ox2dc, 0x2d7, 0x2d1, Ox2ch, 0x2c5, 0x2bf,
0x2ba, 0x2b4, Ox2af, 0x2a9, 0x2a3, 0x29e, 0x299, 0x293,
0x28e, 0x288, 0x283, 0x27¢, 0x279, 0x273, 0x26€, 0269,
0x264, 0x25f, 0x25a, 0x255, 0x250, 0x24b, 0246, 0x241,
0x23c, 0x237, 0x232, 0x22e, 0x229, 0x224, 0x21f, 0x21D,
0x216, 0x211, 0x20d, 0x208, 0x204, Ox1ff, Ox1fb, OX1f6,
0x1f2, Ox1ed, Ox1€9, Ox1e5, Ox1e0, Ox1dc, Ox1d8, Ox1d4,
Ox1cf, Ox1ch, 0x1c7, Ox1c3, Ox1bf, Ox1bl, 0x 106, Ox1b2,
Ox1ae, Ox1aa, Ox1a6, 0x1a2, Ox19e, Ox19a, 0x197, 0x193,
0x18f, Ox18h, 0x187, 0x183, 0x17f, Ox17c, Ox178, Ox174,
0x171, 0x16d, 0x169, 0x166, 0x162, Ox15e, Ox15b, 0x157,
0x154, 0x150, Ox14d, 0x149, 0x146, 0x142, 0x13f, 0x13b,
0x138, 0x134, 0x131, Ox12e, 0x12a, 0127, 0x124, 0x120,
0x11d, Ox11a, 0x117, 0x113, 0x110, Ox10d, 0x10a, Ox107,
0x103, 0x100, OxOfd, OxOfa, OXOf7, OxOf 4, OxOf 1, OxOee,
0xOeh, Ox0e8, 0x0e5, 0x0e2, 0x0df, 0x0dc, 0x0d9, 0x0d6,
0x0d3, 0x0d0, 0xOcd, OxOca, 0x0c8, 0x0c5, 0x0c2, OXOkf,
0Ox0bc, 0x0h9, 0x0b7, 0x0b4, 0x0bZ, OxOae, OxOac, 0x0a9,
0x0a6, Ox0ad, 0x0al, 0x09, 0x09c, 0x099, 0x096, 0094,
0x091, 0x08e, 0x08c, 0x089, 0x087, 0x084, 0x082, OXOT7f,
0x07c, 0x07a, 0x077, 0x075, 0x073, 0x070, 0x06e, 006D,
0x069, 0x066, 0x064, X061, 0x05f, 0x05d, 0x05a, 0X058,
0x056, 0x053, 0X051, Ox04f, 0x04c, 0x04a, 0x048, 0x045,
0x043, 0x041, 0x03f, 0x03c, 0x03a, 0x038, 0036, 0033,
0x031, 0x02f, 0x02d, 0x02b, 0x029, 0x026, 0x024, 0022,
0x020, 0x0le, OxO1c, 0x01a, 0x018, 0x015, 0x013, 0011,
0x00f, 0x00d, 0x00b, 0x009, 0x007, X005, 0003, OX00L,
1

tmp_index = den.significand{ 62:55} ;

tmp_res.significand = (1 << 63) | (RECIP_TABLE[tmp_index] << 53);
tmp_res.exponent = FP_REG_EXP_ONES - 2 - den.exponent;
tmp_res.sign = den.sign;

return (tmp_res);

}

FP Exceptions: Invalid Operation (V)
Zero Divide (2)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Volume 3: Instruction Reference 3:117

frcpa

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault

3:118 Volume 3: Instruction Reference

frsqrta — Floating-point Reciprocal Square Root Approximation
Format: (gp) frsortasf fq, po=f3

Description: If PRgpisO0, PR p,is cleared and FR f; remains unchanged.

If PR gpis1, thefollowing will occur:

frsgrta

F7

« FRf, iseither set to an approximation (with arelative error < 2883%) of the reciprocal square
root of FR f3, or set to the |EEE-754 mandated square root of FR f; — if FR f3isin the set
{-Infinity, -Finite, -0, Pseudo-zero, +0, +Infinity, NaN, Unsupported} .

* If FRf; isset to an approximation of the reciprocal square root of FR f3, then PR p,isset to 1;
otherwise, it isset to 0.

* If FR f3is such the approximation of itsreciprocal square root may cause the Newton-Raphson
iterations to fail to produce the correct |EEE-754 square root result, then a Floating-point
Exception fault for Software Assist occurs.

System software is expected to compute the |EEE-754 square root, return the result in FR fy,
and set PR p, to O.

* If FRfgisaNaTVal, FRf; isset to NaT Val instead of the computed result, and PR p, is

cleared.

The mnemonic values for sf are given in Table 2-23 on page 3:53.

Operation: if (PR[qp]) {
fp_check_target_register(fy);
if (tmp_isrcode = fp_reg _disabled(fy, f3, 0, 0))
disabled fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval (FR[f3])) {
FR[fi] = NATVAL;
PRIp,] = 0;
}dse{
tmp_default_result = frsgrta_exception_fault_check(fs, S,
&tmp_fp_env);
if (fp_raise fault(tmp_fp_env))
fp_exception_fault(fp_decode fault(tmp_fp_env));

if (fp_is_nan(tmp_default_result)) {
FR[f;] = tmp_default_result;
PRIp,] = 0;
}dse{
tmp_fr3 =fp_normalize(fp_reg_read(FR[f3]));
if (fp_is_zero(tmp_fr3)) {
FRI[f,] =tmp_fr3;
PRIp,] =0;
} dseif (fp_is_pos inf(tmp_fr3)) {
FR[f,] =tmp_fr3;
PRIp,] =0;
}ese{
FRIf,] =fp_ieece recip_sort(tmp_fr3);
PRIpl = 1;

}

fp_update fpsr(sf, tmp_fp_env);
}
fp_update_psr(fy);

} dse{
PRIp,] =0;

Volume 3: Instruction Reference

3:119

frsqrta

}

Il fp_ieee recip_sort()

fp_ieee recip_sgrt(root)

RECIP_SQRT_TABLE[256] ={

b

0Ox18b, 0x1a0, 0x19a, 0x195, Ox18f, Ox18a, Ox185, 0x180,
0x17a, Ox175, 0x170, Ox16b, 0x166, 0x161, 0x15d, 0x158,
0x153, Ox14e, Ox14a, 0x145, 0x140, 0x13c, 0x138, 0x133,
0x12f, 0x12a, 0x126, Ox122, Ox11e, Ox11a, Ox115, Ox111,
0x10d, 0x109, 0x105, 0x101, Ox0fd, OxOfa, OxOf6, Ox0f2,
0xOee, 0xOea, Ox0e7, 0x0e3, OxOdf, Ox0dc, 0x0d8, 0x0d5,
0x0d1, OxOce, 0xOca, Ox0c7, 0x0c3, 0x0c0, OxObd, 0x0h9,
0x0b6, 0x0b3, 0x0bO, Ox0ad, 0x0a9, 0x0a86, 0x0a3, 0x0a0,
0x09d, 0x09a, 0x097, 0x094, 0x091, 0x08e, Ox08b, 0x088,
0x085, 0x082, 0x07f, 0x07d, 0x07a, 0x077, 0x074, 0x071,
0x06f, 0x06¢, 0x069, 0x067, 0x064, 0x061, 0x05f, 0x05C,
0x05a, 0x057, 0x054, 0x052, 0x04f, 0x04d, 0x04a, 0x048,
0x045, 0x043, 0x041, 0x03e, 0x03c, 0x03a, 0x037, 0x035,
0x033, 0x030, 0x02e, 0x02c, 0x029, 0x027, 0x025, 0x023,
0x020, Ox01e, Ox01c, 0x01a, 0x018, 0x016, 0x014, Ox011,
0x00f, 0x00d, 0x00b, 0x009, 0x007, 0x005, 0x003, 0x001,
0Ox3fc, Ox3f4, Ox3ec, 0x3e5, 0x3dd, 0x3d5, 0x3ce, Ox3c7,
0x3bf, 0x3b8, 0x3bl, Ox3aa, 0x3a3, 0x39c, 0x395, Ox38e,
0x388, 0x381, 0x37a, 0x374, 0x36d, 0x367, 0x361, 0x353,
0x354, 0x34e, 0x348, 0x342, 0x33c, 0x336, 0x330, 0x32Db,
0x325, 0x31f, 0x31a, 0x314, 0x30f, 0x309, 0x304, Ox2fe,
0x2f9, 0x2f4, Ox2ee, 0x2€9, 0x2e4, Ox2df, Ox2da, 0x2d5,
0x2d0, Ox2ch, 0x2c6, 0x2c1, Ox2bd, 0x2b8, 0x2b3, Ox2ae,
0x2aa, 0x2a5, Ox2al, 0x29c, 0x298, 0x293, 0x28f, 0x28a,
0x286, 0x282, 0x27d, 0x279, 0x275, 0x271, 0x26d, 0x268,
0x264, 0x260, 0x25¢, 0x258, 0x254, 0x250, 0x24c, 0x249,
0x245, 0x241, 0x23d, 0x239, 0x235, 0x232, 0x22e, 0x223,
0x227, 0x223, 0x220, 0x21c, 0x218, 0x215, 0x211, 0x20e,
0x20a, 0x207, 0x204, 0x200, Ox1fd, Ox1f9, Ox1f6, Ox1f3,
0x1f0, Ox1ec, Ox1€9, Ox1e6, Ox1e3, Ox1df, Ox1dc, 0x1d9,
0x1d6, Ox1d3, 0x1d0, Ox1cd, Ox1ca, Ox1c7, Ox1c4, Ox1cl,
Ox1be, Ox1bb, 0x1b8, Ox1b5, Ox1b2, Ox1af, Oxlac, Ox1aa,

tmp_index = (root.exponent{ 0} << 7) | root.significand{ 62:56} ;
tmp_res.significand = (1 << 63) | (RECIP_SQRT_TABLE[tmp_index] << 53);
tmp_res.exponent = FP_REG_EXP_HALF -

((root.exponent - FP_REG_BIAS) >> 1);

tmp_ressign=FP_SIGN_POSITIVE;
return (tmp_res);

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)

Interruptions:

3:120

Illegal Operation fault
Disabled Floating-point Register fault

Software Assist (SWA) fault

Floating-point Exception fault

Volume 3: Instruction Reference

fselect

fselect — Floating-point Select
Format: (qp) fselect f1:f3, f4, f2 F3

Description: Thesignificand field of FR f5 islogically AND-ed with the significand field of FR f, and the
significand field of FR f4 islogically AND-ed with the one’s complement of the significand field of
FR f,. The two results are logically OR-ed together. The result is placed in the significand field of
FRf;.

The exponent field of FR f; is set to the biased exponent for 2.0%3 (0x1003E). The sign bit field of
FR f; is set to positive (0).

If any of FR f3, FR f, or FR f, isaNaTVal, FR f; is set to NaT Val instead of the computed result.

Operation: if (PR[qp]) {
fp_check_target_register(fy);
if (tmp_isrcode = fp_reg_disabled(fy, f,, f3, f4))
disabled fp_register_fault(tmp_isrcode, 0);

if (fp_is natval (FRIf,]) || fp_is_natval (FRIf3]) ||
fp_is natval (FR[f])) {
FRIf,] = NATVAL;
} elsef
FRIf;].significand = (FR[f].significand & FR[f,].significand)
| (FRIf,] significand & ~FR[f,].significand);
FRIf;].exponent = FP_INTEGER_EXP;
FRIf,].sign = FP_SIGN_POSITIVE;

fp_update_psr(fy);

FP Exceptions: None

Interruptions: 1llegal Operation fault Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:121

fsetc

fsetc — Floating-point Set Controls
Format: (gp) fsetc.sf amask;, omasky F12

Description: The status field's control bits are initialized to the value obtained by logically AND-ing the
sf0.controls and amask; immediate field and logically OR-ing the omask; immediate field.

The mnemonic values for sf are given in Table 2-23 on page 3:53.

Operation: if (PR[gp]) {
tmp_controls = (AR[FPSR].sf0.controls & amasky) | omaskz;
if (is_reserved_field(FSETC, f, tmp_controls))
reserved _register_field_fault();
fp_set & controls(sf, tmp_controls);
}

FP Exceptions: None

Interruptions: Reserved Register/Field fault

3:122 Volume 3: Instruction Reference

fsub

fsub — Floating-point Subtract
Format: (gp) fsub.pc.sf f; =f3, 15 pseudo-op of: (qp) fms.pc.sf f; =f3, f1,f,

Description: FRf, is subtracted from FR f5 (computed to infinite precision), rounded to the precision indicated
by pc (and possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding mode specified by FPSR.sf.rc,
and placed in FR f;.

If either FR f3 or FRf, isaNaTVal, FR f; isset to NaTVal instead of the computed result.

The mnemonic values for the opcode’s pc are given in Table 2-22 on page 3:53. The mnemonic
valuesfor sf are givenin Table 2-23 on page 3:53. For the encodings and interpretation of the status
field's pc, wre, and rc, refer to Table 5-5 and Table 5-6 on page 1:86.

Operation: See “fms — Floating-point Multiply Subtract” on page 3:81.

Volume 3: Instruction Reference 3:123

ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf

fswap

fswap — Floating-point Swap

Format:

Description:

(gp) fswap fy ="y, f3 swap_form F9
(gp) fswap.nl f; ="y, f3 swap_nl_form F9
(gp) fswap.nr f; =f,, f3 swap_nr_form F9

For the swap_form, the left single precision value in FR f, is concatenated with the right single
precision valuein FR f3. The concatenated pair is then swapped.

For the swap_nl_form, the left single precision value in FR f, is concatenated with the right single
precision valuein FR f5. The concatenated pair is then swapped, and the |eft single precision value
is negated.

For the swap_nr_form, the |eft single precision valuein FR f, is concatenated with the right single
precision valuein FR f3. The concatenated pair isthen swapped, and the right single precision value
is negated.

For all forms, the exponent field of FR f; is set to the biased exponent for 2.088 (0x1003E) and the
sign field of FR f is set to positive (0).

For all forms, if either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed
result.

Figure 2-18. Floating-point Swap

Figure 2-19. Floating-point Swap Negate Left

3:124

81 80 64 63 32 31 0 81 80 64 63 32 31 0
FR fg

FR f,

81 80 64 63
FRf; |4 1003E

81 80 64 63 32 31 0 81 80 64 63 32 31 30 0
FR f, FRf3

Negated Sign Bit

81 80 64 63 62 2 31 0
FR f1|9 1003E

Volume 3: Instruction Reference

Figure 2-20. Floating-point Swap Negate Right

Operation:

fswap

81 80 64 63 62 32 31 0 81 80 64 63 32 31
FR f, FRf3
Negated Sign Bit
81 80 64 63 32 3130 0
FR f1 |0 1003E
if (PRgp]) {

fp_check_target_register(fy);
if (tmp_isrcode = fp_reg_disabled(fy, f,, f3, 0))
disabled fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval (FR[f,]) || fp_is_natval (FR[f3])) {
FR[f;] = NATVAL;
}else{
if (swap_form) {
tmp_res_hi = FR[f3].significand{ 31:0};
tmp_res |o = FR[f,].significand{ 63:32} ;
} dseif (swap_nl_form) {

tmp_res_hi = (IFR[f3].significand{ 31} << 31)
| (FRI[f3].significand{ 30:0});

tmp_res lo = FR[f,].sgnificand{ 63:32};
} dse{ // swap_nr_form
tmp_res_hi = FR[f3].significand{ 31:0};

tmp_res o= (IFR[f,].significand{ 63} << 31)
| (FRI[f,].significand{ 62:32});

}

FR[f,].significand = fp_concatenate(tmp_res_hi, tmp_res o);

FR[f,].exponent = FP_INTEGER_EXP;
FR[f,].sign = FP_SIGN_POSITIVE;
}

fp_update_psr(fy);

FP Exceptions: None

Interruptions:

Illegal Operation fault

Volume 3: Instruction Reference

Disabled Floating-point Register fault

3:125

fsxt

fsxt — Floating-point Sign Extend

Format:

Description:

(gp) fsxtl fy =1, f3 sxt_|_form Fo
(gp) fsxtr fy=f,, f3 sxt_r_form F9

For the sxt_|_form (sxt_r_form), the sign of the left (right) single precision valuein FR f, is
extended to 32-bits and is concatenated with the | eft (right) single precision valuein FR f3.

For all forms, the exponent field of FR f; is set to the biased exponent for 2.05% (0x1003E) and the
sign field of FR f; is set to positive (0).

For all forms, if either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed
result.

Figure 2-21. Floating-point Sign Extend Left

81 80 64 63 32 31 0
FR f |9 1003E
Figure 2-22. Floating-point Sign Extend Right
81 80 64 63 32 3130 0 81 80 64 63 32 31 0
FR f, FRf3
Extended
81 80 64 63 32 31 0

Operation:

3:126

81 80 64 63 62 32 31 0 81 80 64 63 32 31
FR f, FR f3

o

Extended

FR |0 1003E

if (PRIap]) {

fp_check_target_register(fy);
if (tmp_isrcode = fp_reg_disabled(f, f,, f3, 0))
disabled fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f,]) || fp_is_natval (FR[f3])) {
FR[f] = NATVAL;
}ese{
if (sxt_|_form) {
tmp_res_hi = (FR[f,].significand{ 63} ? OxFFFFFFFF. 0x00000000);
tmp_res o = FR[f3].significand{ 63:32};
} dse{ /I sxt_r_form
tmp_res hi = (FR[f,].significand{ 31} ? OxFFFFFFFF: 0x00000000);
tmp_res lo = FR[f,].significand{ 31:0} ;

FR[f;].significand = fp_concatenate(tmp_res _hi, tmp_res |0);
FRI[f;].exponent = FP_INTEGER_EXP,
FR[f;].sign=FP > SIGN_POSITIVE;

Volume 3: Instruction Reference

fsxt

fp_update_psr(fy);

FP Exceptions: None

Interruptions: 1llegal Operation fault Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:127

fwb

fwb — Flush Write Buffers

Format: (qp) fwb M24

Description: The processor isinstructed to expedite flushing of any pending stores held in write or coalescing
buffers. Since this operation is a hint, the processor may or may not take any action and actually
flush any outstanding stores. The processor gives no indication when flushing of any prior storesis
completed. An fwb instruction does not ensure ordering of stores, since later stores may be flushed

before prior stores.

To ensure prior coalesced stores are made visible before later stores, software must issue arelease
operation between stores (see Table 4-14 on page 2:76 for alist of release operations).

Thisinstruction can be used to help ensure stores held in write or coal escing buffers are not delayed
for long periods or to expedite high priority stores out of the processors.

Operation: if (PR[ap]) {
mem _flush_pending_stores();
}

Interruptions: None

3:128 Volume 3: Instruction Reference

ftp://download.intel.com/design/Itanium/manuals/245318.pdf

fxor

fxor — Floating-point Exclusive Or
Format: (gp) fxor fy=f,, f3 F9

Description: The bit-wise logical exclusive-OR of the significand fields of FR f, and FR f5 is computed. The
resulting value is stored in the significand field of FR f;. The exponent field of FR f; is set to the
biased exponent for 2.0%3 (0x1003E) and the sign field of FR f; is set to positive (0).

If either of FR f, or FR fzisaNaTVal, FR f; is set to NaT Val instead of the computed result.

Operation: if (PR[qp]) {
fp_check_target_register(fy);
if (tmp_isrcode = fp_reg_disabled(fy, f,, f3, 0))
disabled fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval (FR[f,]) || fp_is_natval (FR[f3])) {
FR[fi] = NATVAL;

}ese{
FR[f,].significand = FR[f,].significand * FR[f3].significand;
FR[f,].exponent = FP_INTEGER_EXP;
FR[f,].sign=FP_SIGN_POSITIVE;

}

fp_update_psr(fy);

FP Exceptions: None

Interruptions: lllegal Operation fault Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:129

getf

getf — Get Floating-point Value or Exponent or Significand

Format: (gp) getf.sry="f,
(ap) getf.d ry="f,
(ap) getf.exp ry =1,
(ap) getf.sig ry="f

single form M19
double_form M19
exponent_form M19
significand_form M19

Description: Inthe single and double forms, the valuein FR f, is converted into a single precision (single_form)
or double precision (double_form) memory representation and placed in GRr4, as shown in
Figure 5-7 and Figure 5-8 on page 1:91, respectively. In the single_form, the most-significant 32

bitsof GRr, areset to 0.

In the exponent_form, the exponent field of FR f, is copied to bits 16:0 of GR r4 and the sign bit of
thevaluein FR f, is copied to bit 17 of GR r4. The most-significant 46-bits of GR r are set to zero.

Figure 2-23. Function of getf.exp

FRf, [s|exponent significand

GRry

63 18 +16

'

46 1

17

In the significand_form, the significand field of the valuein FR f, is copied to GR r

Figure 2-24. Function of getf.sig

FRf, |[s|exponent significand

GR r

. "

64

For al forms, if FR f, contains a NaTVal, then the NaT bit corresponding to GR r4 is set to 1.

Operation: if (PR[qp]) {
check_target_register(rq);

if (tmp_isrcode = fp_reg_disabled(f,, 0, 0, 0))
disabled fp_register_fault(tmp_isrcode, 0);

if (gngle_form) {

GR[r4]{3L:0} =fp_fr_to_mem_format(FR[f,], 4, 0);

GRIr{]{63:32} =0;
} elseif (double_form) {

GR([r4] =fp_fr_to_mem_format(FR[f,], 8, 0);

} dseif (exponent_form) {
GRIr]{63:18} =0;

GR([r4]{16:0} = FR([f,].exponent;

GRIr{{ 17} = FR[f,].sgn;
} ese// dgnificand_form

GR([r4] = FR[f,].significand;
if (fp_is_natval (FR[f5]))

3:130

Volume 3: Instruction Reference

ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf

getf

GR[rq].nat =1,
dse
GR[r4].nat =0;

Interruptions: 1llegal Operation fault Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:131

hint

hint — Performance Hint

Format:

Description:

(gp) hint immyy
(gp) hint.i immyq
(gp) hint.b immy,

(gp) hint.m immy,

(gp) hint.f immy,
(gp) hint.x immg,

pseudo-op
i_unit_form
b_unit_form
m_unit_form
f_unit form
X_unit_form

118
B9
M48
F16
X5

Provides a performance hint to the processor about the program being executed. It has no effect on
architectural machine state, and operates as a nop instruction except for its performance effects.

The immediate, immy, or immg,, specifies the hint. For the x_unit_form, the L slot of the bundle
contains the upper 41 bits of immg.

This instruction has five forms, each of which can be executed only on a particular execution unit
type. The pseudo-op can be used if the unit type to execute on is unimportant.

Table 2-31. Hint Immediates

Operation:

Interruptions:

3:132

immy, or immg, | Mnemonic Hint

0x0 @pause | Indicates to the processor that the currently executing stream is waiting,
spinning, or doing low priority tasks. This hint can be used by the processor
to allocate more resources or time to another executing stream on the
same processor.

0x01-0x3f These values are available for future architected extensions and will

execute as a nop on all current processors. Use of these values may cause
unexpected performance issues on future processors and should not be
used.

other Implementation specific. Performs an implementation-specific hint action.
Consult processor model-specific documentation for details.

if (PRgp]) {

if (x_unit_form)

hint =i

)

else//i_unit_form || b_unit_form || m_unit_form || f_unit_form
hint = immy,;

if (is_supported_hint(hint))

execute_hint(hint);

None

Volume 3: Instruction Reference

invala

invala — Invalidate ALAT

Format: (gp) invala complete_form M24
(gp) invalae rq gr_form, entry_form M26
(gp) invalae f; fr_form, entry_form M27

Description: The selected entry or entriesin the ALAT are invalidated.

In the complete form, all ALAT entries are invalidated. In the entry_form, the ALAT is queried
using the general register specifier r1 (gr_form), or the floating-point register specifier f; (fr_form),
and if any ALAT entry matches, it isinvalidated.

Operation: if (PR[qp]) {
if (complete_form)
aat_inva();
ese{ // entry_form
if (gr_form)
dat_inval_single entry(GENERAL, ry);
ese// fr_form
aat_inval_single_entry(FLOAT, f);

Interruptions: None

Volume 3: Instruction Reference 3:133

itc

itc — Insert Translation Cache

Format:

Description:

3:134

(ap) itci rp instruction_form ~ M41
(gp) ited rp data form M41

An entry isinserted into the instruction or data translation cache. GR r,, specifies the physical
address portion of the trandation. ITIR specifies the protection key, page size and additional
information. The virtual addressis specified by the |FA register and the region register is selected
by IFA{63:61}. The processor determines which entry to replace based on an
implementation-specific replacement algorithm.

The visibility of theitc instruction to externally generated purges (ptc.g, ptc.ga) must occur before
subsequent memory operations. From a software perspective, thisis similar to acquire semantics.
Serialization is still required to observe the side-effects of atranslation being present.

itc must be the last instruction in an instruction group; otherwise, its behavior (including its
ordering semantics) is undefined.

The TLB isfirst purged of any overlapping entries as specified by Table 4-1 on page 2:47.

Thisinstruction can only be executed at the most privileged level, and when PSR.ic and PSR.vm
are both 0.

To ensure forward progress, software must ensure that PSR.ic remains 0 until rfi-ing to the
instruction that requires the trandation.

Volume 3: Instruction Reference

ftp://download.intel.com/design/Itanium/manuals/245318.pdf

Operation:

Interruptions:

Serialization:

itc

if (PRIgp) {

if ('followed_by_stop())
undefined_behavior();

if (PSR.ic)
illega_operation_fault();

if (PSR.cpl!=0)
privileged operation_fault(0);

if (GR[r].nat)
register_nat_consumption_fault(0);

tmp_size= CR[ITIR].ps,

tmp_va= CR[IFA]{ 60:0};

tmp_rid = RR[CR[IFA]{ 63:61}] .rid;

tmp_va=adlign to_size boundary(tmp_va, tmp_size);

if (is_reserved_fidd(TLB_TYPE, GR[r,], CR[ITIR]))
reserved register_fied_fault();
if (limpl_check_mov_ifa) &&
unimplemented_virtual_address(CR[IFA], PSR.vm))
unimplemented_data_address fault(0);
if (PSRvm==1)
virtudization_fault();

if (ingtruction_form) {
tlb_must_purge itc_entries(tmp_rid, tmp_va, tmp_size);
tib_may_purge dtc_entries(tmp_rid, tmp_va, tmp_size);
dot =tlb_replacement_algorithm(ITC_TY PE);
tlb_insert_inst(dot, GR[r,], CR[ITIR], CR[IFA], tmp_rid, TC);
} dse{ // data_form
tib_must_purge dtc_entries(tmp_rid, tmp_va, tmp_size);
tlb_may_purge itc_entries(tmp_rid, tmp_va, tmp_size);
dot = tlb_replacement_algorithm(DTC_TY PE);
tlb_insert_data(dot, GR[r,], CR[ITIR], CR[IFA], tmp_rid, TC);

}
Machine Check abort Reserved Register/Field fault
Illegal Operation fault Unimplemented Data Address fault
Privileged Operation fault Virtualization fault

Register NaT Consumption fault

For the instruction_form, software must issue an instruction serialization operation before a
dependent instruction fetch access. For the data_form, software must issue a data serialization
operation before issuing a data access or hon-access reference dependent on the new trandglation.

Volume 3: Instruction Reference 3:135

itr

itr — Insert Translation Register

Format:

Description:

Operation:

Interruptions:

3:136

(gp) itr.i itrfrg] =1, instruction_form M42
(gp) itr.d dtr[rg] =1, data_form M42

A trangdlation isinserted into the instruction or data transl ation register specified by the contents of
GRr3. GR r,, specifies the physical address portion of the translation. I TIR specifies the protection
key, page size and additional information. The virtual addressis specified by the IFA register and
the region register is selected by IFA{63:61}.

Asdescribed in Table 4-1, “Purge Behavior of TLB Inserts and Purges’ on page 2:47,the TLB is
first purged of any entries that overlap with the newly inserted translation. The translation
previously contained in the TR slot specified by GR r5 is not necessarily purged from the
processor's TLBs and may remain asa TC entry. To ensure that the previous TR tranglation is
purged, software must use explicit ptr instructions before inserting the new TR entry.

Thisinstruction can only be executed at the most privileged level, and when PSR.ic and PSR.vm
are both 0.

if (PRapl) {
if (PSR.ic)
illegal_operation fault();
if (PSR.cpl!=0)
privileged_operation_fault(0);
if (GR[rg].nat || GR[ro].nat)
register_nat_consumption_fault(0);

dot = GR[r3l{ 7:0};

tmp_size= CR[ITIR].ps;

tmp_va= CR[IFA]{60:0};

tmp_rid = RR[CR[IFA]{ 63:61}].rid;

tmp_va=align _to_size boundary(tmp_va, tmp_size);

tmp_tr_type=ingruction form?ITR_TYPE: DTR_TYPE;

if (is_reserved_reg(tmp_tr_type, dot))
reserved _register_field fault();
if (is_reserved fidld(TLB_TYPE, GR{r,], CR[ITIR]))
reserved _register_field_fault();
if (limpl_check_mov_ifa() &&
unimplemented virtual_address(CR[IFA], PSR.vm))
unimplemented _data_address fault(0);
if (PSRvm==1)
virtualization_fault();

if (instruction_form) {
tlb_must_purge itc_entries(tmp_rid, tmp_va, tmp_size);
tib_may_purge dtc_entries(tmp_rid, tmp_va, tmp_size);
tib_insert_inst(dot, GR[r,], CR[ITIR], CR[IFA], tmp_rid, TR);
} ese{ / data_form
tib_must_purge dtc_entries(tmp_rid, tmp_va, tmp_size);
tlb_may_purge itc_entries(tmp_rid, tmp_va, tmp_size);
tlb_insert_data(dot, GR[r,], CR[ITIR], CR[IFA], tmp_rid, TR);

}
}
Machine Check abort Reserved Register/Field fault
Ilegal Operation fault Unimplemented Data Address fault

Volume 3: Instruction Reference

ftp://download.intel.com/design/Itanium/manuals/245318.pdf

itr

Privileged Operation fault Virtualization fault
Register NaT Consumption fault

Serialization: For the instruction_form, software must issue an instruction serialization operation before a
dependent instruction fetch access. For the data_form, software must issue a data serialization
operation before issuing a data access or hon-access reference dependent on the new trandglation.

Notes: The processor may use invalid trandation registers for translation cache entries. Performance can
be improved on some processor models by ensuring translation registers are allocated beginning at
tranglation register zero and continuing contiguously upwards.

Volume 3: Instruction Reference 3:137

|d — Load

Format:

Description:

(gp) ldszldtype.ldhint rq =[r3] no_base update form M1
(gp) ldszldtypeldhint rqy={rg], ro reg_base update_form M2
(gp) ldszldtype.ldhint ry =[rg], immg imm_base_update form M3
(gp) ld16.Idhint rq, ar.csd =[rg] sixteen_byte form, no_base update form M1
(gp) ld16.acq.ldhint rq, ar.csd = [r4] sixteen_byte form, acquire_form, no_base update form M1
(gp) Id8.fill.ldhint rq =[r3] fill_form, no_base update form M1
(gp) ld8.fill.Idhint rq=[rg], r, fill_form, reg_base_update form M2
(gp) ld8.fill.ldhint rq =[rg], immg fill_form, imm_base_update_form M3

A value consisting of sz bytesisread from memory starting at the address specified by the value in
GR r3. The value is then zero extended and placed in GR r4. The values of the sz completer are
givenin Table 2-32. The NaT bit corresponding to GR r4 is cleared, except as described below for
speculative loads. The |dtype completer specifies special |oad operations, which are described in
Table 2-33.

For the sixteen_byte form, two 8-byte values are loaded as a single, 16-byte memory read. The
value at the lowest addressis placed in GR ry, and the value at the highest address is placed in the
Compare and Store Data application register (AR[CSD]). The only load types supported for this
sixteen_byte form are none and acq.

For thefill_form, an 8-byte value isloaded, and a bit in the UNAT application register is copied
into the target register NaT bit. Thisinstruction isused for reloading a spilled register/NaT pair. See
Section 4.4.4, “Control Speculation” on page 1:56 for details.

In the base update forms, the valuein GR r is added to either a signed immediate value (immg) or
avalue from GRr,, and the result is placed back in GR r3. This base register update is done after
the load, and does not affect the load address. In thereg_base update form, if the NaT bit
corresponding to GR r, is set, then the NaT bit corresponding to GR r3 is set and no fault is raised.
Base register update is not supported for the Id16 instruction.

Table 2-32. sz Completers

Table 2-33. Load Types

3:138

sz Completer Bytes Accessed
1 1 byte
2 2 bytes
4 4 bytes
8 8 bytes

Col(rjrzlpeeter Interpretation Special Load Operation
none Normal load

s Speculative load | Certain exceptions may be deferred rather than generating a fault.
Deferral causes the target register’s NaT bit to be set. The NaT bit is
later used to detect deferral.

a Advanced load An entry is added to the ALAT. This allows later instructions to check for
colliding stores. If the referenced data page has a non-speculative
attribute, the target register and NaT bit is cleared, and the processor
ensures that no ALAT entry exists for the target register. The absence of
an ALAT entry is later used to detect deferral or collision.

Volume 3: Instruction Reference

ftp://download.intel.com/design/Itanium/manuals/245317.pdf

Table 2-33. Load Types (Continued)

ldtype . . .
Completer Interpretation Special Load Operation
sa Speculative An entry is added to the ALAT, and certain exceptions may be deferred.
Advanced load Deferral causes the target register’s NaT bit to be set, and the
processor ensures that no ALAT entry exists for the target register. The
absence of an ALAT entry is later used to detect deferral or collision.
c.nc Check load The ALAT is searched for a matching entry. If found, no load is done
—no clear and the target register is unchanged. Regardless of ALAT hit or miss,
base register updates are performed, if specified. An implementation
may optionally cause the ALAT lookup to fail independent of whether an
ALAT entry matches. If not found, a load is performed, and an entry is
added to the ALAT (unless the referenced data page has a
non-speculative attribute, in which case no ALAT entry is allocated).
c.clr Check load The ALAT is searched for a matching entry. If found, the entry is
— clear removed, no load is done and the target register is unchanged.
Regardless of ALAT hit or miss, base register updates are performed, if
specified. An implementation may optionally cause the ALAT lookup to
fail independent of whether an ALAT entry matches. If not found, a clear
check load behaves like a normal load.
c.clr.acq Ordered check load | This type behaves the same as the unordered clear form, except that
— clear the ALAT lookup (and resulting load, if no ALAT entry is found) is
performed with acquire semantics.
acq Ordered load An ordered load is performed with acquire semantics.
bias Biased load A hint is provided to the implementation to acquire exclusive ownership
of the accessed cache line.

For more details on ordered, biased, speculative, advanced and check loads see Section 4.4.4,
“Control Speculation” on page 1:56 and Section 4.4.5, “ Data Speculation” on page 1:59. For more
details on ordered |oads see Section 4.4.7, “Memory Access Ordering” on page 1:68. See

Section 4.4.6, “Memory Hierarchy Control and Consistency” on page 1:64 for details on biased
loads. Details on memory attributes are described in Section 4.4, “Memory Attributes’ on

page 2:69.

For the non-speculative load types, if NaT bit associated with GR r3is 1, a Register NaT
Consumption fault is taken. For speculative and specul ative advanced loads, no fault is raised, and
the exception is deferred. For the base-update calculation, if the NaT bit associated with GRr,is 1,
the NaT bit associated with GR r3is set to 1 and no fault is raised.

The value of the Idhint completer specifiesthe locality of the memory access. The values of the
Idhint completer are given in Table 2-34. A prefetch hint isimplied in the base update forms. The
address specified by the value in GR r5 after the base update acts as a hint to prefetch the indicated
cacheline. This prefetch uses the locality hints specified by Idhint. Prefetch and locality hints do
not affect program functionality and may be ignored by the implementation. See Section 4.4.6,
“Memory Hierarchy Control and Consistency” on page 1:64 for details.

Table 2-34. Load Hints

Idhint Completer Interpretation
none Temporal locality, level 1
ntl No temporal locality, level 1
nta No temporal locality, all levels

Volume 3: Instruction Reference 3:139

ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf

Operation:

3:140

In the no_base update form, the valuein GR r5 is not modified and no prefetch hint isimplied.

For the base update forms, specifying the same register addressin r, and rz will cause an Illegal
Operation fault.

Hardware support for Id16 instructions that reference a page that is neither a cacheable page with
write-back policy nor a NaT Page is optional. On processor models that do not support such 1d16
accesses, an Unsupported Data Reference fault is raised when an unsupported referenceis
attempted.

For the sixteen_byte form, Illegal Operation fault israised on processor modelsthat do not support
the instruction. CPUID register 4 indicates the presence of the feature on the processor model. See
Section 3.1.11, “Processor |dentification Registers’ on page 1:31 for details.

it (PRap]) {
size=fill_form?8: (Sxteen_byte form? 16: s2);

speculative = (Idtype=="s || ldtype == ‘sa);

advanced = (Idtype == ‘& || ldtype =="sa');

check_clear = (Idtype=="c.clr’ || Idtype=="c.clr.acq’);
check_no_clear = (Idtype=="c.nc’);

check = check_clear || check_no_clesr;

acquire = (acquire_form|| | =="‘acq ||I ==‘c.cracq);
otype = acquire? ACQUIRE: UNORDERED;

bias = (Idtype=="bias’)? BIAS: 0,

trandate_address=1;

read_memory = 1;

itype= READ,;

if (speculative) itype |- SPEC;

if (advanced) itype |- ADVANCE;

if (§ze==16) itype |- UNCACHE_OFT;

if (Sxteen_byte form & &lingruction_implemented(L D16))
illegd_operation fault();

if ((reg_base_update form || imm_base update form) && (r{ ==rg))
illegal_operation fault();

check_target_register(rq);

if (reg_base_update form ||imm_base _update_form)
check_target_register(ry);

if (reg_base update form) {
tmp_r2 = GR[r,l;
tmp_r2nat = GR[r,].nat;

}

if ('speculative & & GR(r3].nat) // fault on NaT address
register_nat_consumption_fault(itype);

defer = speculative & & (GRJrs].nat || PSR.ed); /I defer exception if spec

if (check && aat_cmp(GENERAL, r4)) {
trandate address=aat_trandate address on_hit(ldtype, GENERAL, r4);
read_memory = aat_read memory_on_hit(Idtype, GENERAL, r{);

}
if (Itrandate_address) {
if (check_clear || advanced) // remove any old alat entry
aat_inva_single entry(GENERAL, ry);
}ese{
if (1defer) {
paddr = tlib_trandate(GR(r3], size, itype, PSR.cpl, & mattr,
& defer);

Volume 3: Instruction Reference

ftp://download.intel.com/design/Itanium/manuals/245317.pdf

spontaneous_deferral (paddr, size, UM .be, mattr, otype,
bias | Idhint, & defer);
if ('defer && read_memory) {

if (ze==16) {
mem_read pair(&val, &va_ar, paddr, size, UM.be, mattr,
otype, Idhint);
}
dse{
va = mem_read(paddr, size, UM .be, méttr, otype,
bias | Idhint);
}
}
if (check_clear || advanced) /I remove any old ALAT entry
dat_inval_single entry(GENERAL, ry);
if (defer) {
if (speculative) {
GR[r4] = natd_gr_read(paddr, size, UM .be, méttr, otype,
bias| Idhint);
GR[rq].nat =1,
} dsef
GR[r{] =0; //'1d.ato sequential memory
GR[rq].nat =0;
} dse{ /I execute load normally
if (fill_form) { /I fill NaT on Id8fill
bit_pos=GR[r3l{8:3};
GR[rq] =vd,
GR[r].nat = AR[UNAT]{ bit_pos};
} dse{ /I clear NaT on other types
if (ze==16) {
GR[rq] =vd,
AR[CSD] =vd_ar;
}
dse{
GR[r4] = zero_ext(va, size* 8);
GR[rq].nat =0;
if ((check_no_clesr || advanced) & & ma_is_speculative(mattr))
/I 'add entry to ALAT
aat_write(ldtype, GENERAL, r4, paddr, size);
}
}
if (imm_base _update form) { /I update base register

GR[r3] = GR[rg] + sign_ext(immy, 9);
GRr].nat = GR[r].nat;
} dseif (reg_base_update form) {
GR[r3] = GR[rg] + tmp_r2;
GRIrg].nat = GR[rg].nat || tmp_r2nét;
}

if ((reg_base_update form ||imm_base_update form) & &!GR[r3].néat)
mem_implicit_prefetch(GR[r3], Idhint | bias, itype);

}

Interruptions: |llegal Operation fault Data NaT Page Consumption fault
Register NaT Consumption fault Data Key Miss fault
Unimplemented Data Address fault Data Key Permission fault
Data Nested TLB fault Data Access Rights fault

Volume 3: Instruction Reference 3:141

Alternate Data TLB fault Data Access Bit fault

VHPT Data fault Data Debug fault

Data TLB fault Unaligned Data Reference fault
Data Page Not Present fault Unsupported Data Reference fault

3:142 Volume 3: Instruction Reference

|df — Floating-point Load

Format: (gp) ldffsz.fldtype.ldhint f; =[r3]

(gp) ldffszfldtypeldhint f; =[rg], o

(gp) |df8.fldtype.ldhint f; =[rs]

(gp) Idf8.fldtype.ldhint f; =[rg], r)
(qp) Idf8.fldtype.ldhint f; =[rg], immg

(gp) Idf fill.ldhint f; =[rg]
(gp) ldffill.ldhint f; =[rg], ry

Idf

no_base update form M6

reg_base update form M7

(gp) ldffsz.fldtype.ldhint f; =[r3], immg imm_base _update_form M8
integer_form, no_base update form M6

integer_form, reg_base update form M7

integer_form, imm_base_update form M8

fill_form, no_base update form M6

fill_form, reg_base update_form M7

fill_form, imm_base_update_form M8

(gp) Idf fill.ldnint f; = [rg), immg

Description: A vaue consisting of fsz bytesis read from memory starting at the address specified by the valuein
GR r3. Thevalue is then converted into the floating-point register format and placed in FR f;. See
Section 5.1, “Data Types and Formats” on page 1:81 for details on conversion to floating-point
register format. The values of the fsz completer are given in Table 2-35. The fldtype compl eter
specifies special |oad operations, which are described in Table 2-36.

For theinteger_form, an 8-byte value isloaded and placed in the significand field of FR f; without
conversion. The exponent field of FR f; is set to the biased exponent for 2.088 (Ox1003E) and the
sign field of FR f; is set to positive (0).

For thefill_form, a 16-byte value is loaded, and the appropriate fields are placed in FR f; without
conversion. Thisinstruction is used for reloading a spilled register. See Section 4.4.4, “ Control
Speculation” on page 1:56 for details.

In the base update forms, the valuein GR r5 is added to either a signed immediate value (immg) or
avalue from GR r,, and the result is placed back in GR r5. This base register update is done after
the load, and does not affect the load address. In thereg_base update form, if the NaT bit
corresponding to GR r,, is set, then the NaT bit corresponding to GR r3 is set and no fault is raised.

Table 2-35. fsz Completers

fsz Completer Bytes Accessed Memory Format
S 4 bytes Single precision
d 8 bytes Double precision
e 10 bytes Extended precision

Table 2-36. FP Load Types

fldtype
Completer

Interpretation

Special Load Operation

none

Normal load

S

Speculative load

Certain exceptions may be deferred rather than generating a fault.
Deferral causes NaTVal to be placed in the target register. The NaTVal
value is later used to detect deferral.

Advanced load

An entry is added to the ALAT. This allows later instructions to check for
colliding stores. If the referenced data page has a non-speculative
attribute, no ALAT entry is added to the ALAT and the target register is
set as follows: for the integer_form, the exponent is set to 0x1003E and
the sign and significand are set to zero; for all other forms, the sign,
exponent and significand are set to zero. The absence of an ALAT entry
is later used to detect deferral or collision.

Volume 3: Instruction Reference

3:143

ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf

Idf

Table 2-36. FP Load Types (Continued)

fldtype

Completer Interpretation Special Load Operation

sa Speculative An entry is added to the ALAT, and certain exceptions may be deferred.
Advanced load Deferral causes NaTVal to be placed in the target register, and the
processor ensures that no ALAT entry exists for the target register. The
absence of an ALAT entry is later used to detect deferral or collision.

c.nc Check load — The ALAT is searched for a matching entry. If found, no load is done
no clear and the target register is unchanged. Regardless of ALAT hit or miss,
base register updates are performed, if specified. An implementation
may optionally cause the ALAT lookup to fail independent of whether an
ALAT entry matches. If not found, a load is performed, and an entry is
added to the ALAT (unless the referenced data page has a
non-speculative attribute, in which case no ALAT entry is allocated).

c.clr Check load — clear | The ALAT is searched for a matching entry. If found, the entry is
removed, no load is done and the target register is unchanged.
Regardless of ALAT hit or miss, base register updates are performed, if
specified. An implementation may optionally cause the ALAT lookup to
fail independent of whether an ALAT entry matches. If not found, a clear
check load behaves like a normal load.

For more details on specul ative, advanced and check |oads see Section 4.4.4, “ Control Speculation”
on page 1:56 and Section 4.4.5, “Data Speculation” on page 1:59. Details on memory attributes are
described in Section 4.4, “Memory Attributes’ on page 2:609.

For the non-speculative load types, if NaT bit associated with GRr3is 1, a Register NaT
Consumption fault istaken. For speculative and specul ative advanced loads, no fault is raised, and
the exception is deferred. For the base-update calculation, if the NaT bit associated with GRr,is 1,
the NaT bit associated with GR r3 is set to 1 and no fault is raised.

The value of the Idhint modifier specifies the locality of the memory access. The mnemonic values
of Idhint are givenin Table 2-34 on page 3:139. A prefetch hint isimplied in the base update forms.
The address specified by the value in GR r5 after the base update acts as a hint to prefetch the
indicated cache line. This prefetch uses the locality hints specified by Idhint. Prefetch and locality
hints do not affect program functionality and may be ignored by the implementation. See

Section 4.4.6, “Memory Hierarchy Control and Consistency” on page 1:64 for details.

In the no_base update form, the valuein GR r5 is not modified and no prefetch hint isimplied.
The PSR.mfl and PSR.mfh bits are updated to reflect the modification of FR f;.

Hardware support for Idfe (10-byte) instructions that reference a page that is neither a cacheable
page with write-back policy nor a NaTPage is optional. On processor models that do not support
such Idfe accesses, an Unsupported Data Reference fault is raised when an unsupported referenceis
attempted. The fault is delivered only on the normal, advanced, and check load flavors.
Control-speculative flavors of Idfe always defer the Unsupported Data Reference fault.

3:144 Volume 3: Instruction Reference

ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf

Operation: if (PR[qp]) {
sze=(fill_form?16: (integer_form? 8: fs2));
speculative = (fldtype=="s || fldtype =="<a);
advanced = (fldtype ==& || fldtype == *sa);
check_clear = (fldtype=="c.clr’);
check_no_clear = (fldtype=="‘c.nc’);
check = check_clear || check_no_clear;
trandate address=1;
read_memory =1,

itype = READ;

if (speculative) itype |= SPEC;

if (advanced) itype |- ADVANCE;

if (S§ze==10) itype |- UNCACHE_OFT;

if (reg_base update form ||imm_base update form)
check_target_register(ra);
fp_check_target_register(fy);
if (tmp_isrcode =fp_reg_disabled(fy, 0, 0, 0))
disabled fp_register_fault(tmp_isrcode, itype);

if (!speculaive & & GR[r3].nat) // fault on NaT address
register_nat_consumption_fault(itype);

defer = speculative & & (GR[r3].nat || PSR.ed); /I defer exception if spec
if (check && alat_cmp(FLOAT, f1)) {

trandate address=adat_trandate address on_hit(fldtype, FLOAT, fy);
read_memory = aat_read memory_on_hit(fldtype, FLOAT, f,);

}
if (trandate_address) {
if (check_clear || advanced) /I remove any old ALAT entry
dat_inva_single_entry(FLOAT, fy);
}else{
if ('defer) {
paddr = tlb_trandate(GR{r3], size, itype, PSR.cpl, & méttr,
& defer);
spontaneous_deferra (paddr, size, UM.be, mattr, UNORDERED,
Idhint, & defer);
if ('defer && read_memory)
va = mem_read(paddr, size, UM .be, mattr, UNORDERED, Idhint);
}
if (check_clear || advanced) /I remove any old ALAT entry
dat_inva_single_entry(FLOAT, fy);
if (speculative & & defer) {
FR[f;] = NATVAL;
} dseif (advanced & & !'peculative & & defer) {
FR[f,] = (integer_form? FP_INT_ZERO: FP_ZERO);
} dse{ /I execute load normally
FR[f;] =fp_mem_to fr_format(val, size, integer_form);
if ((check_no_clear || advanced) & & ma is_speculative(mattr))
/l add entry to ALAT
aat_write(fldtype, FLOAT, f,, paddr, size);
}
}
if (imm_base _update form) { /I update base register

GR[r3] = GR[rg] + sign_ext(immy, 9);
GR[r3].nat = GR[r].n&t;

} dseif (reg_base update form) {
GR[r3] = GR[r3] + GR[r,];

Volume 3: Instruction Reference

Idf

3:145

Idf

GR{r3].nat = GR(rg].nat || GR[r,].nat;

if ((reg_base_update form || imm_base update_form) & & !GR][r3].nat)
mem_implicit_prefetch(GR(r4], Idhint, itype);

fp_update_psr(f);

}

Interruptions: Illegal Operation fault Data NaT Page Consumption fault
Disabled Floating-point Register fault Data Key Miss fault
Register NaT Consumption fault Data Key Permission fault
Unimplemented Data Address fault Data Access Rights fault
Data Nested TLB fault Data Access Bit fault
Alternate Data TLB fault Data Debug fault
VHPT Data fault Unaligned Data Reference fault
Data TLB fault Unsupported Data Reference fault

Data Page Not Present fault

3:146 Volume 3: Instruction Reference

ldfp

Idfp — Floating-point Load Pair

Format: (gp) |dfps.fldtype.ldhint fq, fo =[r3] single_form, no_base update form M11
(gp) |dfpsfldtypeldhint fy, f,=[rg], 8 single_form, base_update_form M12
(gp) Idfpd.fldtype.ldhint fq, f; =[rs] double_form, no_base_update_form M11
(gp) |dfpd.fldtype.ldhint f;, f, =[rs], 16 double_form, base_update form M12
(gp) Idfp8.fldtype.ldhint fy, f; =[rs] integer_form, no_base update form M11
(gp) Idfp8.fldtype.ldhint fqy, f, =[rg], 16 integer_form, base update form M12

Description: Eight (single_form) or sixteen (double_form/integer_form) bytes are read from memory starting at
the address specified by the valuein GR r3. The value read is treated as a contiguous pair of
floating-point numbers for the single_form/double_form and as integer/Parallel FP data for the
integer_form. Each number is converted into the floating-point register format. The value at the
lowest addressis placed in FR f1, and the value at the highest address is placed in FR f,. See
Section 5.1, “Data Types and Formats” on page 1:81 for details on conversion to floating-point
register format. The fldtype completer specifies special 1oad operations, which are described in
Table 2-36 on page 3:143.

For more details on specul ative, advanced and check loads see Section 4.4.4, “ Control Speculation”
on page 1:56 and Section 4.4.5, “ Data Speculation” on page 1:59.

For the non-speculative load types, if NaT bit associated with GR r3is 1, a Register NaT
Consumption fault is taken. For speculative and speculative advanced loads, no fault israised, and
the exception is deferred.

In the base_update_form, the valuein GR r5 is added to an implied immediate value (equal to
double the data size) and the result is placed back in GR r3. This base register update is done after
the load, and does not affect the load address.

The value of the Idhint modifier specifies the locality of the memory access. The mnemonic values
of Idhint are given in Table 2-34 on page 3:139. A prefetch hint isimplied in the base update form.
The address specified by the value in GR r5 after the base update acts as a hint to prefetch the
indicated cache line. This prefetch uses the locality hints specified by Idhint. Prefetch and locality
hints do not affect program functionality and may be ignored by the implementation. See

Section 4.4.6, “Memory Hierarchy Control and Consistency” on page 1:64 for details.

In the no_base update form, the value in GR r3 is not modified and no prefetch hint isimplied.
The PSR.mfl and PSR.mfh bits are updated to reflect the modification of FR f; and FR fs.

Thereisarestriction on the choice of target registers. Register specifiersf; and f, must specify one
odd-numbered physical FR and one even-numbered physical FR. Specifying two odd or two even
registers will cause an Illegal Operation fault to be raised. The restriction is on physical register
numbers after register rotation. This meansthat if f; and f, both specify static registers or both
specify rotating registers, then f; and f, must be odd/even or even/odd. If f; and f, specify one static
and one rotating register, the restriction depends on CFM.rrb.fr. If CFM.rrb.fr is even, the
restriction is the same; f; and f, must be odd/even or even/odd. If CFM.rrb.fr is odd, then f; and f,
must be even/even or odd/odd. Specifying one static and one rotating register should only be done
when CFM.rrb.fr will have a predictable value (such as 0).

Volume 3: Instruction Reference 3:147

ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf

ldfp

Operation: if (PR[gp]) {
size=sngle form?8: 16;

speculative = (fldtype=="s || fldtype=="sa);
advanced = (fldtype ==& || fldtype ==‘s);
check_clear = (fldtype =="‘c.clr’);
check_no_clear = (fldtype=="‘c.nc’);

check = check_clear || check_no_clear;

trandate address=1;

read_memory = 1;

itype= READ;
if (speculative) itype |- SPEC;
if (advanced) itype |- ADVANCE;

if (fp_reg_bank_conflict(f1, f2))
illegd_operation_fault();

if (base_update form)
check_target_register(ry);

fp_check_target_register(fy);

fp_check_target_register(fy);

if (tmp_isrcode = fp_reg_disabled(fy, f5, 0, 0))
disabled fp_register_fault(tmp_isrcode, itype);

if ('speculative & & GR{rs].nat) // fault on NaT address
register_nat_consumption_fault(itype);

defer = speculative & & (GR[rs].nat || PSR.ed); /I defer exception if spec
if (check && aat_cmp(FLOAT, fp) {

trandate address=aat_trandate address on_hit(fldtype, FLOAT, fy);
read_memory = aat_read memory_on_hit(fldtype, FLOAT, f,);

}
if (Itrandate_address) {
if (check_clear || advanced) I/ remove any old ALAT entry
dat_inva_single_entry(FLOAT, fy);
}ese{
if ('defer) {
paddr = tlb_trandate(GR(r3], size, itype, PSR.cpl, & méttr,
& defer);
spontaneous_deferral (paddr, size, UM .be, mattr, UNORDERED,
Idhint, & defer);

if (Idefer & & read_memory)
mem _read pair(&f1 vd, &f2_val, paddr, sze, UM.be,
mattr, UNORDERED, |dhint);

}
if (check_clear || advanced) Il remove any old ALAT entry
aat_inva_single_entry(FLOAT, fy);
if (speculative & & defer) {
FR[f;] = NATVAL;
FR[f,] = NATVAL;
} elseif (advanced & & !speculative & & defer) {
FR[f;] = (integer_form? FP_INT_ZERO: FP_ZERO);
FRI[f5] = (integer_form? FP_INT_ZERO: FP_ZERO);
} ese{ /I execute load normally
FR[f;] =fp_mem to fr_format(f1l val, Sze/2, integer_form);
FRI[f5] = fp_mem_to_fr_format(f2_va, size/2, integer_form);

if ((check_no_clear || advanced) & & ma_is_speculative(mattr))

3:148 Volume 3: Instruction Reference

ldfp

// add entry to ALAT
aat_write(fldtype, FLOAT, f,, paddr, size);
}
}
if (base_update form) { /I update base register
GR[r3] = GR[rg] + size;
GR{r3].nat = GR[rg].nat;
if (GR[rg].nat)
mem_implicit_prefetch(GR(r3], Idhint, itype);
}
fp_update_psi(fy);
fp_update_psr(fy);
}

Interruptions: Illegal Operation fault Data Page Not Present fault
Disabled Floating-point Register fault Data NaT Page Consumption fault
Register NaT Consumption fault DataKey Miss fault
Unimplemented Data Address fault Data Key Permission fault
Data Nested TLB fault Data Access Rights fault
Alternate Data TLB fault Data Access Bit fault
VHPT Data fault Data Debug fault
Data TLB fault Unaligned Data Reference fault

Volume 3: Instruction Reference 3:149

Ifetch

Ifetch — Line Prefetch

Format:

Description:

(gp) Ifetch.Iftypelfhint [r3] no_base update form M13
(gp) Ifetch.Iftypelfhint [ra], ry reg_base update_form M14
(gp) Ifetch.Iftypelfhint [rs], immg imm_base_update form M15
(gp) Ifetch.Iftype.excl.Ifhint [rs] no_base update form, exclusive form M13
(gp) Ifetch.Iftype.excl.Ifhint [rg], r) reg_base update form, exclusive form M14
(gp) Ifetch.Iftype.excl.Ifhint [rg], immg imm_base update form, exclusive_form M15

The line containing the address specified by the valuein GR r5 is moved to the highest level of the
data memory hierarchy. The value of the Ifhint modifier specifiesthe locality of the memory access;
see Section 4.4, “Memory Access Instructions’ on page 1:53 for details. The mnemonic values of
Ifhint are given in Table 2-38.

The behavior of the memory read is also determined by the memory attribute associated with the
accessed page. See Chapter 4, “Addressing and Protection” in Volume 2. Line sizeis
implementation dependent but must be a power of two greater than or equal to 32 bytes. In the
exclusive form, the cache line is allowed to be marked in an exclusive state. This qualifier is used
when the program expects soon to modify alocation in that line. If the memory attribute for the
page containing the line is not cacheable, then no reference is made.

The completer, Iftype, specifieswhether or not the instruction rai ses faults normally associated with
aregular load. Table 2-37 defines these two options.

Table 2-37. Iftype Mnemonic Values

3:150

Iftype Mnemonic Interpretation
none Ignore faults
fault Raise faults

In the base update forms, after being used to address memory, the value in GR r3 isincremented by
either the sign-extended value in immg (in theimm_base_update_form) or the valuein GRr, (in
thereg_base update form). Inthereg_base update form, if the NaT bit correspondingto GRr,is
set, then the NaT bit corresponding to GR r is set —no fault is raised.

Inthereg_base update form and theimm_base update form, if the NaT bit corresponding to GR
ryisclear, then the address specified by the value in GR r3 after the post-increment acts as a hint to
implicitly prefetch the indicated cache line. Thisimplicit prefetch uses the locality hints specified
by Ifhint. The implicit prefetch does not affect program functionality, does not raise any faults, and
may beignored by the implementation.

Inthe no_base update form, the valuein GR r3 is not modified and no implicit prefetch hint is
implied.

If the NaT bit corresponding to GR r3 is set then the state of memory is not affected. In the
reg_base update form and imm_base update form, the post increment of GR r3 is performed and
prefetch is hinted as described above.

Ifetch instructions, like hardware prefetches, are not orderable operations, i.e., they have no order
with respect to prior or subseguent memory operations.

Volume 3: Instruction Reference

ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf

Ifetch

Table 2-38. Ifhint Mnemonic Values

Operation:

Ifhint Mnemonic Interpretation
none Temporal locality, level 1
ntl No temporal locality, level 1
nt2 No temporal locality, level 2
nta No temporal locality, all levels

A faulting Ifetch to an unimplemented address results in an Unimplemented Data Address fault. A
non-faulting Ifetch to an unimplemented address does not take the fault and will not issue a prefetch
request, but, if specified, will perform aregister post-increment.

Both the non-faulting and the faulting forms of Ifetch can be used speculatively. The purpose of
raising faults on the faulting form is to allow the operating system to resolve problems with the
address to the extent that it can do so relatively quickly. If problems with the address cannot be
resolved quickly, the OS simply returnsto the program, and forces the data prefetch to be skipped
over.

Specifically, if afaulting Ifetch takes any of the listed faults (other than I1legal Operation fault), the
operating system must handle this fault to the extent that it can do so relatively quickly and
invisibly to the interrupted program. If the fault cannot be handled quickly or cannot be handled
invisibly (e.g., if handling the fault would involve terminating the program), the OS must return to
the interrupted program, skipping over the data prefetch. This can easily be done by setting the
IPSR.ed bit to 1 before executing an rfi to go back to the process, which will allow the Ifetch.fault to
perform its base register post-increment (if specified), but will suppress any prefetch request and
hence any prefetch-related fault. Note that the OS can easily identify that a faulting Ifetch was the
cause of thefault by observing that ISR.nais 1, and | SR.codeg{ 3:0} is4. The one exception to thisis
the lllegal Operation fault, which can be caused by an Ifetch.fault if base register post-increment is
specified, and the base register is outside of the current stack frame, or is GRO. Since this one fault
is not related to the prefetch aspect of Ifetch.fault, but rather to the base update portion, 111egal
Operation faults on Ifetch.fault should be handled the same as for any other instruction.

if (PR[ap]) {
itype = READ|JNON_ACCESS,
itype |= (Iftype==‘fault')? LFETCH_FAULT: LFETCH;

if (reg_base update form ||imm_base update form)
check_target_register(rg);

if (Iftype=="‘fault’) { // faulting form
if (GR[rg].nat &&!PSR.ed) /I fault on NaT address
register_nat_consumption_fault(itype);
}

excl_hint = (exclusive_form)? EXCLUSIVE: O;

if (GR[rg].nat &&!PSR.ed) {// faulting form aready faulted if rz isnat
paddr = tlb_trandate(GR{r4], 1, itype, PSR.cpl, & mattr, & defer);
if ('defer)
mem_promote(paddr, mattr, Ifhint | excl_hint);
}

if (imm_base_update_form) {
GRJr3] = GR[r3] + sign_ext(immy, 9);
GR[r3].nat = GR[r3].nat;

} dseif (reg_base_update form) {
GR[r3] = GRIrg] + GRr4l;

Volume 3: Instruction Reference 3:151

Ifetch

GR{r3].nat = GR[r,].nat || GR[r3].nat;

if ((reg_base_update form || imm_base update form) &&!GR][r3].nat)
mem_implicit_prefetch(GR{r3], Ithint | excl_hint, itype);

}

Interruptions: lllegal Operation fault Data Page Not Present fault
Register NaT Consumption fault Data NaT Page Consumption fault
Unimplemented Data Address fault Data Key Miss fault
Data Nested TLB fault Data Key Permission fault
Alternate Data TLB fault Data Access Rights fault
VHPT Data fault Data Access Bit fault
Data TLB fault Data Debug fault

3:152 Volume 3: Instruction Reference

loadrs

loadrs — Load Register Stack
Format: loadrs M25

Description: Thisinstruction ensures that a specified number of bytes (registers values and/or NaT collections)
below the current BSP have been loaded from the backing store into the stacked general registers.
The loaded registers are placed into the dirty partition of the register stack. All other stacked
genera registers are marked as invalid, without being saved to the backing store.

The number of bytesto be loaded is specified in a sub-field of the RSC application register
(RSC.loadrs). Backing store addresses are always 8-byte aligned, and therefore the low order 3 bits
of the loadrsfield (RSC.loadrs{ 2:0}) are ignored. Thisinstruction can be used to invalidate all
stacked registers outside the current frame, by setting RSC.loadrs to zero.

Thisinstruction will fault with an Illegal Operation fault under any of the following conditions:

» the RSE isnhot in enforced lazy mode (RSC.mode is hon-zero).

» CFM.sof and RSC.loadrs are both non-zero.

 an attempt is made to load up more registers than are available in the physical stacked register
file

Thisinstruction must be the first instruction in an instruction group and must either bein
instruction slot O or ininstruction slot 1 of atemplate having a stop after slot O; otherwise, the
results are undefined. This instruction cannot be predicated.

Operation: if (AR[RSC].mode!= 0)
illegal_operation_fault();

if ((CFM.sof!=0) && (AR[RSC].loadrs!=0))
illega_operation_fault();

rse_ensure_regs loaded(AR[RSC].|oadrs); /I can raisefaultslisted below
AR[RNAT] = undefined();

Interruptions: 1llegal Operation fault Data NaT Page Consumption fault
Unimplemented Data Address fault Data Key Miss fault
Data Nested TLB fault Data Key Permission fault
Alternate Data TLB fault Data Access Rights fault
VHPT Datafault Data Access Bit fault
Data TLB fault Data Debug fault

Data Page Not Present fault

Volume 3: Instruction Reference 3:153

mf

mf — Memory Fence

Format:

Description:

Operation:

Interruptions:

3:154

(ap) mf ordering_form M24
(ap) mf.a acceptance form M24

This instruction forces ordering between prior and subsequent memory accesses. The
ordering_form ensures all prior data memory accesses are made visible prior to any subsequent
data memory accesses being made visible. It does not ensure prior data memory references have
been accepted by the external platform, nor that prior data memory references are visible.

The acceptance_form prevents any subsequent data memory accesses by the processor from
initiating transactions to the external platform until:

« al prior loads to sequential pages have returned data, and
« al prior storesto sequential pages have been accepted by the external platform.

The definition of “acceptance” is platform dependent. The acceptance form istypically used to
ensure the processor has “waited” until amemory-mapped 1/O transaction has been “ accepted”
beforeinitiating additional external transactions. The acceptance_form does not ensure ordering, or
acceptance to memory areas other than sequential pages.

if (PR{gp]){
if (acceptance_form)
acceptance_fence();
else// ordering_form
ordering_fence();
}

None

Volume 3: Instruction Reference

mix — Mix

Format: (gp) mixL.l ry=rp,r3 one_byte form, left_form 12
(gp) mix2.l ry=ry,r3 two_byte form, left_form 12
(gp) mix4.l ry=ry, 13 four_byte form, left_form 12
(gp) mixd.r ry=rp,r3 one_byte form, right_form 12
(gp) mix2.r ry=rp,r3 two_byte form, right_form 12
(qp) mix4.r ry=rpr3 four_byte form, right_form 12

Description: The data elements of GR r,, and r are mixed as shown in Figure 2-25, and the result placed in GR
r,. The data elementsin the source registers are grouped in pairs, and one element from each pair is
selected for theresult. Intheleft_form, the result isformed from the leftmost elements from each of
the pairs. Intheright_form, the result isformed from the rightmost elements. Elements are selected
alternately from the two source registers.

Volume 3: Instruction Reference 3:155

mix

Figure 2-25. Mix Examples

3:156

GR o

GR o

GRry:

GRry:

GR o

GR o

mix4.r

Volume 3: Instruction Reference

Operation: if (PR[qp]) {
check_target_register(rq);
if (one_byte form) { I/ one-byte elements
X[0] = GR[ro[{ 7:0}; y[0] = GR[r3|{ 7:0};
X[1] = GR[r,]{15:8}; y[1] = GR[r3]{15:8};
X[2] = GR[r,]{ 23:16}; y[2] = GR[r3]{23:16};
X[3] = GRIr,J{31:24}; y[3] = GR[r3]{31:24};
xX[4] = GR[r;]{39:32}; y[4] = GR[r3]{39:32};
X[5] = GR{r,]{ 47:40}; y[5] = GR{[r3]{47:40};
x[6] = GR[r,]{ 55:48}; y[6] = GR([r3]{55:48};
X[7] = GR[r,]{ 63:56}; y[7] = GR[r3]{63:56};
if (Ieft_form)
GRYry] = concatenates(X[7],y[7], x[5], y[3],
_ X[3], y[3], x[1], y[1]);
else// right_form
GR[r4] = concatenates(x[6], y[6], x[4], y[4],
x[2], y[2], x[0], y[O);
} dseif (two_byte form) { I two-byte elements
X[0] = GRI[r,{ 15:0}; y[0] = GR{[r3]{15:0};
X[1] = GR[r,]{ 31:16}; y[1] = GR[r5]{31:16};
X[2] = GR[r,]{47:32}; y[2] = GR[r4]{47:32};
X[3] = GR[r,]{ 63:48}; y[3] = GR([r3]{63:48};
if (left_form)
GR[r] = concatenated(x[3], y[3], x[1], y[1]);
else//right_form
GR[r4] = concatenated(x[2], y[2], x[0], y[Q]);
} dse{ /I four-byte dements

x[0] = GR[r,]{31:0};
X[1] = GR{r,]{ 63:32};

y[0] = GRIr3l{31:0};
y[1] = GR[r3]{63:32};
if (left_form)

GR[r] = concatenate2(x[1], y[1]);
else// right_form

GR[r4] = concatenate2(x[0], y[0]);

}
GR[r].nat = GR[ry].nat || GR[r3].nat;
}

Interruptions: 1llegal Operation fault

Volume 3: Instruction Reference 3:157

mov ar

mov — Move Application Register

Format: (gp) mov ry=ary pseudo-op
(gp) mov arz=r, pseudo-op
(gp) mov arz=immg pseudo-op
(gp) mov.i ry =arg i_form, from_form 128
(gp) mov.i arg=r, i_form, register_form, to_form 126
(gp) mov.i arz=immg i_form, immediate_form, to_form 127
(gp) mov.m rqy=arz m_form, from_form M31
(gp) mov.m arz=r, m_form, register_form, to_form M29
(gp) mov.m arz=immg m_form, immediate_form, to_form M30

Description: The source operand is copied to the destination register.

In the from_form, the application register specified by ar3 iscopied into GR r4 and the
corresponding NaT hit is cleared.

Intheto_form, the valuein GRr, (in theregister_form), or the sign-extended value in immg (in the
immediate_form), isplaced in AR ar3. Intheregister_form if the NaT bit correspondingto GRr5is
set, then a Register NaT Consumption fault is raised.

Only asubset of the application registers can be accessed by each execution unit (M or 1). Table 3-3
on page 1:26 indicates which application registers may be accessed from which execution unit
type. An access to an application register from the wrong unit type causes an Illegal Operation
fault.

This instruction has multiple forms with the pseudo operation eliminating the need for specifying
the execution unit. Accesses of the ARs are aways implicitly serialized. While implicitly
serialized, read-after-write and write-after-write dependency violations must be avoided (e.g.,
setting CCV, followed by cmpxchg in the same instruction group, or simultaneous writes to the
UNAT register by Idfill and mov to UNAT).

3:158 Volume 3: Instruction Reference

ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf

mov ar

Operation: if (PR[qp]) {
tmp_type=(i_form? AR_|_TYPE: AR_M_TYPE);
if (is_reserved_reg(tmp_type, ars))
illega_operation fault();

if (from_form) {
check_target_register(rq);
if ((ar3==BSPSTORE) || (ar3 == RNAT)) && (AR[RSC].mode!= 0))
illegal_operation fault();

if (ar3==ITC && PSR.s && PSR.cpl!=0)
privileged_register_fault();

if (ar3==ITC&& PSR.s && PSRvm==1)
virtudization_fault();

GR[rq] = (is_ignored_reg(ar3))?0: AR[ar];
GR[r4].nat =0;

} dse{ // to_form
tmp_val = (register_form)? GR[r,]: sign_ext(immg, 8);

if (is_read_only_register(AR_TYPE, ar3) ||
(((ar3 == BSPSTORE) || (ar3 == RNAT)) && (AR[RSC].mode!= 0)))
illegal_operation fault();

if (register_form & & GR{r,].nat)
register_nat_consumption_fault(0);

if (is_reserved_fidd(AR_TYPE, arg, tmp_val))
reserved register_field_fault();

if ((is_kernel_reg(ars) ||ar3 ==I1TC) && (PSR.cpl!=0))
privileged_register_fault();

if (ar3==1TC && PSRvm==1)
virtudization_fault();

if (!is_ignored_reg(ars)) {
tmp_val =ignored field mask(AR_TYPE, ars, tmp_val);
/I check for illegal promotion
if (ar3==RSC && tmp_val{3:2} u< PSR.cpl)
tmp_val{3:2} = PSR.cpl;
AR[arg] =tmp_va,

if (ar3 == BSPSTORE) {
AR[BSP] =rse_update_internal_stack_pointers(tmp_val);
AR[RNAT] = undefined();

}
}
}
}
Interruptions: 1llegal Operation fault Privileged Register fault
Register NaT Consumption fault Virtualization fault
Reserved Register/Field fault

Volume 3: Instruction Reference 3:159

mov br

mov — Move Branch Register

Format:

Description:

(gp) mov ry=b, from_form 122
(gp) mov by=r, pseudo-op

(gp) mov.mwh.ih by =ry, tag;s to_form 121
(gp) mov.ret. mwh.ih by =r,, tag;s return_form, to_form 121

The source operand is copied to the destination register.

In the from_form, the branch register specified by b, is copied into GR r;. The NaT bit
corresponding to GR ry is cleared.

Intheto_form, the valuein GR r, is copied into BR by. If the NaT bit correspondingto GRr,is 1,
then a Register NaT Consumption fault is taken.

A set of hints can also be provided when moving to a branch register. These hints are very similar
to those provided on the brp instruction, and provide prediction information about a future branch
which may use the value being moved into BR by. The return_form is used to provide the hint that
this value will be used in areturn-type branch.

The values for the mwh whether hint completer are given in Table 2-39. For a description of theih
hint completer see the Branch Prediction instruction and Table 2-13 on page 3:31.

Table 2-39. Move to BR Whether Hints

Operation:

Interruptions:

3:160

mwh Completer Move to BR Whether Hint
none Ignore all hints
sptk Static Taken
dptk Dynamic

A pseudo-op is provided for copying a general register into a branch register when there isno hint
information to be specified. Thisis encoded with avalue of O for tag, 3 and values corresponding to
none for the hint completers.

it (PRap]) {

if (from_form) {
check_target_register(rq);
GRIr{] = BRb,];
GR[rq].nat =0,

} dse{//to_form
tmp_tag = IP+ sign_ext((timmg << 4), 13);
if (GRYr,].nat)

register_nat_consumption_fault(0);

BR[b,] = GR[r];
branch_predict(mwh, ih, return_form, GR{r,], tmp_tag);

}
Illegal Operation fault Register NaT Consumption fault

Volume 3: Instruction Reference

mov Cr

mov — Move Control Register

Format: (gp) mov rq=crg from_form M33
(gp) mov crz=r; to foom M32

Description: The source operand is copied to the destination register.
For the from_form, the control register specified by cry isread and the value copied into GR r.
For theto_form, GR r, is read and the value copied into CR cr5.

Control registers can only be accessed at the most privileged level, and when PSR.vm is 0. Reading
or writing an interruption control register (CR16-CR25), when the PSR.ic bit is one, will resultin
an Illegal Operation fault.

Operation: if (PR[qp]) {
if (is_reserved_reg(CR_TYPE, crs)
[[to_form && is read only reg(CR_TYPE, cry)
[[PSR.ic && is interruption_cr(crs))

illegal_operation_fault();

if (from_form)
check_target_register(rq);

if (PSR.cpl!'=0)
privileged_operation_fault(0);

if (from_form) {
if (PSRvm==1)
virtudization_fault();
if (cr3==IVR)
check_interrupt_request();

if (cr3==ITIR)
o GR[rq] = impl_itir_cwi_mask(CR[ITIR]);
*

GR[rq] = CR[cr3];

GR[rq].nat =0;
} dse{ // to_form
if (GR[r].nat)
register_nat_consumption_fault(0);

if (is_reserved_fiedd(CR_TYPE, cr3, GR{[r,]))
reserved register_field_fault();

if ((cr3 ==IFA) && impl_check_mov_ifa() &&
unimplemented_virtual_address(GR(r,], PSR.vm))
unimplemented _data_address fault(0);

if (PSRvm==1)
virtudization_fault();

if (cr==EOI)
end_of_interrupt();

tmp_va =ignored field mask(CR_TYPE, crg, GR[r,));
CR(crg] =tmp_val;

if (crg==11PA)
?ast_l P=tmp_va;
}
}
Interruptions: 1llegal Operation fault Reserved Register/Field fault
Privileged Operation fault Unimplemented Data Address fault
Register NaT Consumption fault Virtualization fault

Volume 3: Instruction Reference 3:161

mov cr

Serialization: Reads of control registers reflect the results of all prior instruction groups and interruptions.

In general, writes to control registers do not immediately affect subsequent instructions. Software
must issue a serialize operation before a dependent instruction uses a modified resource.

Control register writes are not implicitly synchronized with a corresponding control register read
and requires data serialization.

3:162 Volume 3: Instruction Reference

mov fr

mov — Move Floating-point Register
Format: (gp) mov fy =1z pseudo-op of: (gp) fmerge.s f; =f3, f3
Description: Thevalue of FR f3is copied to FR f;.

Operation: See “fmerge — Floating-point Merge” on page 3:75.

Volume 3: Instruction Reference 3:163

mov gr

mov — Move General Register
Format: (gp) mov ry=r3 pseudo-op of: (qp) adds r;=0,r3
Description: Thevalue of GRrsiscopied to GR ;.

Operation: See “add — Add” on page 3:14.

3:164 Volume 3: Instruction Reference

mov imm

mov — Move Immediate
Format: (gp) mov rq=immy, pseudo-op of: (gp) addl rq =immyy, r0
Description: ~ The immediate value, immy,, is sign extended to 64 bits and placed in GRr;.

Operation: See “add — Add” on page 3:14.

Volume 3: Instruction Reference 3:165

mov indirect

mov — Move Indirect Register

Format:

Description:

(gp) mov rq =ireg[ra] from_form M43
(gp) mov ireg[rg] =, to_form M42

The source operand is copied to the destination register.

For move from indirect register, GR r5 isread and the value used as an index into the register file
specified by ireg (see Table 2-40 below). The indexed register isread and its value is copied into
GR r.

For move to indirect register, GR r5 is read and the value used as an index into the register file
specified by ireg. GR r, isread and its value copied into the indexed register.

Table 2-40. Indirect Register File Mnemonics

3:166

ireg Register File
cpuid Processor Identification Register
dbr Data Breakpoint Register
ibr Instruction Breakpoint Register
pkr Protection Key Register
pmc Performance Monitor Configuration Register
pmd Performance Monitor Data Register
rr Region Register

For all register files other than the region registers, bits{ 7:0} of GR r3 are used as the index. For
region registers, bits{ 63:61} are used. The remainder of the bits are ignored.

Instruction and data breakpoint, performance monitor configuration, protection key, and region
registers can only be accessed at the most privileged level. Performance monitor data registers can
only be written at the most privileged level.

The CPU identification registers can only be read. Thereisno to_form of thisinstruction.

For move to protection key register, the processor ensures uniqueness of protection keys by
checking new valid protection keys against all protection key registers. If any matching keys are
found, duplicate protection keys are invalidated.

Apart from the PMC and PMD register files, access of a non-existent register resultsin a Reserved
Register/Field fault. All accesses to the implementation-dependent portion of PMC and PMD
register files result in implementation dependent behavior but do not fault.

Modifying aregion register or a protection key register which is being used to translate;

« the executing instruction stream when PSR.it == 1, or
» the data space for an eager RSE reference when PSR.rt ==

is an undefined operation.

Volume 3: Instruction Reference

mov indirect

Operation: if (PR[qp]) {
if (ireg==RR_TYPE)
tmp_index = GR[r3]{ 63:61};
else// dl other register types
tmp_index = GR[r3]{ 7:0};

if (from_form) {
check_target_register(rq);

if (PSR.cpl'=0&&!(ireg==PMD_TYPE | ireg==CPUID_TYPE))
privileged_operation_fault(0);

if (GR[r3].nat)
register_nat_consumption_fault(0);

if (is_reserved_reg(ireg, tmp_index))
reserved register_field_fault();

if (PSRvm==1&4& ireg'= PMD_TYPE)
virtuaization fault();

if (ireg==PMD_TYPE) {
if (PSR.cpl!=0) && (PSRsp==1) ||
(tmp_index >3&&
tmp_index <= IMPL_MAXGENERIC_PMCPMD &&
PMC[tmp_index].pm == 1)))

GRI[r{] =0;
ese
GR[r4] = pmd_read(tmp_index);
} dse
switch (ireg) {
case CPUID_TYPE: GR[r1] = CPUID[tmp_index]; break;
case DBR_TYPE: GR[r1] = DBR[tmp_index]; break;
cae|BR_TYPE: GR[r1] = IBR[tmp_index]; bresk;
case PKR_TYPE: GR[r1] = PKR[tmp_index]; break;
case PMC _TYPE: GR[r1] = pmc_read(tmp_index); bresk;
caeRR_TYPE: GR[rl] = RR[tmp_index]; break;
}
GR[r4].nat =0;
} dse{ /l'to_form
if (PSR.cpl!=0)

privileged_operation_fault(0);

if (GR[ry].nat || GR[r3].nat)
register_nat_consumption_fault(0);

if (is_reserved_reg(ireg, tmp_index)
|lis_reserved field(ireg, tmp_index, GR[r,]))
reserved register_field_fault();
if (PSRvm==1)
virtudization_fault();
if (ireg==PKR_TYPE && GR[r,J{0} == 1) { I/ writing valid prot key
if ((tmp_dlot = tib_search_pkr(GR([r,]{31:8}))!= NOT_FOUND)
PKR[tmp_dot].v =0; // clear valid bit of matching key reg

}

tmp_va =ignored_field_mask(ireg, tmp_index, GR[r5]);

switch (ireg) {
case DBR_TYPE: DBR[tmp_index] = tmp_vdl; break;
cae|BR_TYPE: IBR[tmp_index] = tmp_val; bresk;
cae PKR_TYPE: PKR[tmp_index] =tmp_val; break;
caePMC _TYPE: pmc_write(tmp_index, tmp_val); break;
case PMD_TYPE: pmd_write(tmp_index, tmp_val); break;

Volume 3: Instruction Reference 3:167

mov indirect

Interruptions:

Serialization:

3:168

caeRR_TYPE: RR[tmp_index]=tmp_val; break;
}
}
}
Illegal Operation fault Reserved Register/Field fault
Privileged Operation fault Virtualization fault

Register NaT Consumption fault
For move to data breakpoint registers, software must issue a data serialize operation before issuing
amemory reference dependent on the modified register.

For move to instruction breakpoint registers, software must issue an instruction serialize operation
before fetching an instruction dependent on the modified register.

For move to protection key, region, performance monitor configuration, and performance monitor
data registers, software must issue an instruction or data serialize operation to ensure the changes
are observed before issuing any dependent instruction.

To obtain improved accuracy, software can issue an instruction or data serialize operation before
reading the performance monitors.

Volume 3: Instruction Reference

mov ip

mov — Move Instruction Pointer
Format: (gp) mov ry=ip 125

Description: The Instruction Pointer (1P) for the bundle containing this instruction is copied into GR r.

Operation: if (PR[gp]) {
check_target_register(ry);

GRIr{] =P,

GR[rq].nat =0;
}

Interruptions: 1llegal Operation fault

Volume 3: Instruction Reference 3:169

mov pr

mov — Move Predicates

Format: (gp) mov rq=pr
(gp) mov pr=ry, mask7

(gp) mov pr.rot =immy,

Description:

125
123
124

from_form
to_form
to_rotate form

The source operand is copied to the destination register.

For moving the predicates to a GR, PR i is copied to bit positioni within GR r.

For moving to the predicates, the source can either be a general register, or an immediate value. In
the to_form, the source operand is GR r, and only those predicates specified by the immediate
value masky7 are written. The value mask,7 is encoded in the instruction in an immyg field such
that: immyg = mask,7 >> 1. Predicate register 0 is always one. The mask,; valueis sign extended.
The most significant bit of mask; 7, therefore, isthe mask bit for al of the rotating predicates. If
there is a deferred exception for GR r, (the NaT bit is 1), a Register NaT Consumption fault is

taken.

Intheto rotate form, only the 48 rotating predicates can be written. The source operand is taken
from the immy, operand (which is encoded in the instruction in an immyg field, such that: immyg =
immy, >> 16). The low 16-bits correspond to the static predicates. Theimmediate is sign extended to
set the top 21 predicates. Bit position i in the source operand is copied to PR i.

Thisinstruction operates asif the predicate rotation base in the Current Frame Marker (CFM..rrb.pr)

were zero.

Operation: if (PR[gp]) {
if (from_form) {
check_target_register(rq);
GRr{ =1,
for (i=1;i<=63;i++) {
GRI[r4]{i} = PR[pr_phys to_virt(i)];

GRIrq].nat =0,
} dseif (to_form) {
if (GR[r].nat)
register_nat_consumption_fault(0);
tmp_src = sign_ext(masky7, 17);
for(i=1;i<=63;i++){
if (tmp_src{i})
PR[pr_phys to_virt(i)] = GR[r5|{i};
} dse{ I to_rotate form
tmp_src = sign_ext(immyy, 44);
for (i = 16; i <= 63; i++) {
PR[pr_phys to virt(i)] =tmp_src{i};

}

Interruptions: Illegal Operation fault

3:170

/I PRIO] isalways 1

Register NaT Consumption fault

Volume 3: Instruction Reference

mov psr

mov — Move Processor Status Register

Format: (gp) mov rq = psr from_form M36
(gp) mov psr.l=r, to foom M35

Description: The source operand is copied to the destination register. See Section 3.3.2, “Processor Status
Register (PSR)” on page 2:20.

For move from processor status register, PSR bits{36:35} and { 31:0} are read, and copied into GR
r,. All other bits of the PSR read as zero.

For move to processor status register, GR r, isread, bits{ 31:0} copied into PSR{31:0} and bits
{45:32} areignored. All bits of GR r, corresponding to reserved fields of the PSR must be O or a
Reserved Register/Field fault will result.

Moves to and from the PSR can only be performed at the most privileged level, and when PSR.vm
isO.

The contents of the interruption resources (that are overwritten when the PSR.ic bitis 1) are
undefined if an interruption occurs between the enabling of the PSR.ic bit and a subsequent
instruction serialize operation.

Operation: if (PR[qp]) {
if (from_form)
check_target_register(rq);
if (PSR.cpl!'=0)
privileged_operation_fault(0);

if (from_form) {

if (PSRvm==1)
virtudization_fault();
tmp_val = zero_ext(PSR{31:0}, 32); // read lower 32 bits
tmp_val |= PSR{36:35} << 35; // read mc and it bits
GR[r4] =tmp_val; /I other bitsread as zero
GR[rq].nat =0;
} dse{ //to_form

if (GR[ro].nat)
register_nat_consumption_fault(0);

if (is_reserved field(PSR_TYPE, PSR_MOVPART, GRJr]))
reserved register_field_fault();

if (PSRvm==1)
virtudization fault();

PSR{31:0} = GR[r,}{31:0};
}

Interruptions: |llegal Operation fault Reserved Register/Field fault
Privileged Operation fault Virtualization fault
Register NaT Consumption fault

Serialization: ~ Software must issue an instruction or data serialize operation before i ssuing instructions dependent
upon the altered PSR bits. Unlike with the rsm instruction, the PSR.i bit is not treated specially
when cleared.

Volume 3: Instruction Reference 3:171

ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf

mov um

mov — Move User Mask

Format:

Description:

Operation:

Interruptions:

Serialization:

3:172

(gp) mov rq = psr.um from_form M36
(gp) mov psrum=r, to_form M35

The source operand is copied to the destination register.
For move from user mask, PSR{ 5:0} is read, zero-extend, and copied into GR r.

For moveto user mask, PSR{5:0} iswritten by bits{5:0} of GRr,. PSR.up can only be modified if
the secure performance monitor bit (PSR.sp) is zero. Otherwise PSR.up is not modified.

Writing a non-zero value into any other parts of the PSR resultsin a Reserved Register/Field fault.

if (PRap]) {

if (from_form) {
check_target_register(rq);
GR{r1] = zero_ext(PSR{5:0}, 6);
GR([r4].nat =0;

} ese{ // to_form
if (GR[r].nat)

register_nat_consumption_fault(0);

if (is_reserved_field(PSR_TYPE, PSR_UM, GR{r,]))
reserved _register_field fault();

PSR{1:0} = GR[r,]{1:0};

if (PSR.sp==0) /I unsecured perf monitor
PSR{2} = GR[r,l{2};

PSR{5:3} = GR[r,]{5:3};
}

Ilegal Operation fault Reserved Register/Field fault
Register NaT Consumption fault

All user mask modifications are observed by the next instruction group.

Volume 3: Instruction Reference

movl

movl — Move Long Immediate
Format: (gp) movl ry=immgy, X2
Description: ~ Theimmediate value immg, is copied to GR rq. The L slot of the bundle contains 41 bits of immg,.

Operation: if (PR[gp]) {
check_target_register(ry);

GRI[r4] =immgy;
GR[rq].nat =0;
}

Interruptions: 1llegal Operation fault

Volume 3: Instruction Reference 3:173

mux

mux — Mux
Format: (gp) muxl rq =rp, mbtype, one_byte form 13
(gp) mux2 rq =r,, mhtypeg two_byte form 14

Description: A permutation is performed on the packed elementsin asingle source register, GRr,, and the result
isplaced in GRr4. For 8-bit elements, only some of all possible permutations can be specified. The
five possible permutations are given in Table 2-41 and shown in Figure 2-26.

Table 2-41. Mux Permutations for 8-bit Elements

mbtypey Function
@rev Reverse the order of the bytes
@mix Perform a Mix operation on the two halves of GR r,
@shuf Perform a Shuffle operation on the two halves of GR r,
@alt Perform an Alternate operation on the two halves of GR r,
@brcst Perform a Broadcast operation on the least significand byte of GR r,

Figure 2-26. Mux1 Operation (8-bit elements)

GR [P GR ol
GR r: GR r:
muxlrl =r2, @rev mux1rl =r2, @mix
GRry: GRry:
GRry: GRry:
mux1 rl = r2, @shuf muxl1rl =r2, @alt
GRry:
GR r

mux1rl =r2, @brcst

3:174 Volume 3: Instruction Reference

mux

For 16-bit elements, all possible permutations, with and without repetitions can be specified. They
are expressed with an 8-bit mhtypeg field, which encodes the indices of the four 16-bit data

elements. Theindexed 16-bit elements of GR r, are copied to corresponding 16-bit positionsin the
target register GR r4. Theindices are encoded in little-endian order. (The 8 bits of mhtypeg[7:0] are

grouped in pairs of bits and named mhtypeg[3], mhtypeg[2], mhtypeg[1], mhtypeg[Q] in the
Figure 2-27. Mux2 Examples (16-bit elements)

Operation section).
GR ! GR !
GR r GR r:

mux2 rl =r2, 0x8d (shuffle 10 00 11 01) mux2 rl =r2, 0x1b (reverse 00 01 10 11)

GRry: GRry:
GRrq: GRrq:

mux2 rl =r2, 0xd8 (alternate 11 01 10 00) mux2 rl =r2, Oxaa (broadcast 10 10 10 10)

Volume 3: Instruction Reference 3:175

mux

Operation:

Interruptions:

3:176

if (PRgp]) {
check_target_register(ry);

if (one_byte form) {

x[0] = GRI[ry{ 7:0};
X[1] = GR[r,]{15:8};
X[2] = GR[r,]{ 23:16};
X[3] = GR{r,]{31:24};
X[4] = GR[r,]{39:32};
X[5] = GR[r,]{47:40};
x[6] = GR[r,]{55:48};
X[7] = GRIr,]{63:56};

switch (mbtype) {
case' @rev':
GR{r4] = concatenated(

break;

case' @mix':
GR(r4] = concatenated(

break;

case’ @shuf’:
GR[r4] = concatenated(

break;

cae' @alt':
GRr4] = concatenated(

break;

case @brest':
GR([r4] = concatenate(

break;

}

} esef
x[0] = GR{[r,]{15:0};
X[1] = GR[r,){31:16};
X[2] = GR[r,]{47:32};
X[3] = GR[r,]{63:48};

req 0] = x[mhtyped{ 1.0}];
req 1] = x[mhtyped{ 3:2}];
req 2] = x[mhtypes{ 5:4}];
req 3] = x[mhtyped{ 7:6}];

X[0], x[1], x[2], x[3],

x[4], (8], X[6], x[7]);

X[7], (3], X[3], x[1]

x(6], x[2], x[4], X[0]);

X[7], x(3], x[6], x[2],

X[5], x[1], x[4], x[0]);

X[7], (5], X[3], x[1],

x[6], x[4], x[2], x[0]);

X[, x[0], x[0], x[CY],

x[0], x[01, X0}, x[Q]);

GR(r4] = concatenated(req 3], req 2], req1], reqQ]);

}
GR[r4].nat = GR[r,].nét;

Ilegal Operation fault

I/l two_byte form

Volume 3: Instruction Reference

nop — No Operation

Format: (gp) nop immy,
(gp) nop.i immy;
(gp) nop.b immy
(gp) nop.m immy,
(gp) nop.f immyg
(gp) nop.x immg,

Description: No operation is done.

pseudo-op
i_unit_form
b_unit_form
m_unit_form
f_unit_form
X_unit_form

nop

118
B9
M48
F16
X5

Theimmediate, immy,4 or immgy,, can be used by software as amarker in program code. It isignored

by hardware.

For the x_unit_form, the L slot of the bundle contains the upper 41 bits of immg.

A nop.i instruction may be encoded in an MLI-template bundle, in which case the L dot of the

bundleisignored.

Thisinstruction has five forms, each of which can be executed only on a particular execution unit

type. The pseudo-op can be used if the unit type to execute on is unimportant.
Operation: if (PR[qp]) {
; I/ no operation
}

Interruptions: None

Volume 3: Instruction Reference

3:177

or

or — Logical Or

Format: (gp) or ry=ryr3 register_form Al
(ap) or ry=immg, r3 imm8_form A3

Description: Thetwo source operands are logically ORed and the result placed in GR r4. In the register form the
first operand is GR ro; in theimmediate form the first operand is taken from the immg encoding
field.

Operation: if (PR[gp]) {
check_target_register(ry);

tmp_src = (register_form? GR{r,]: sign_ext(immy, 8));
tmp_nat = (register_form? GR{[r,].nat: 0);

GR[rq] =tmp_sc| GRIr3];
GR{r4].nat = tmp_nat || GR[r3].nat;
}

Interruptions: Illegal Operation fault

3:178 Volume 3: Instruction Reference

pack

pack — Pack

Format: (gp) pack2.sss ry=ry,r3 two_byte form, signed_saturation_form 12
(gp) pack2.uss ry=ry,r3 two_byte form, unsigned_saturation_form 12
(gp) pack4.sss ry=ry, I3 four_byte form, signed_saturation_form 12

Description:

32-bit or 16-bit elements from GR r, and GR r3 are converted into 16-bit or 8-bit elements
respectively, and the results are placed GR r ;. The source elements are treated as signed values. If a
source element cannot be represented in the result element, then saturation clipping is performed.
The saturation can either be signed or unsigned. If an element is larger than the upper limit value,
the result is the upper limit value. If it is smaller than the lower limit value, the result is the lower
limit value. The saturation limits are given in Table 2-42.

Table 2-42. Pack Saturation Limits

Figure 2-28. Pack Operation

Size Sourc\:;icljitlﬁment Resu\lltligltiment Saturation li’?'?ftr Lower Limit
16 bit 8 bit signed ox7f 0x80
16 bit 8 bit unsigned Oxff 0x00
32 hit 16 bit signed Oox7fff 0x8000

GR ra3:

pack4

GR ra:

pack2

Volume 3: Instruction Reference 3:179

pack

Operation: if (PR[gp]) {
check_target_register(ry);

if (two_byte form) {
if (Sgned_saturation_form) {
max = sign_ext(0x7f, 8);
min = sign_ext(0x80, 8);
} dsef /I unsigned_saturation_form
max = Oxff;
min = 0x00;

}

temp[0] = sign_ext(GR[r,]{15:0}, 16);
temp[1] = sign_ext(GR[r,]{ 31:16}, 16);
temp[2] = sign_ext(GR[r,]{ 47:32}, 16);
temp[3] = sign_ext(GR[r,]{ 63:48}, 16);
temp[4] = sign_ext(GR[r3]{ 15:0}, 16);
temp[5] = sign_ext(GR[r3]{ 31:16}, 16);
temp[6] = sign_ext(GR[r3]{47:32}, 16);
temp[7] = sign_ext(GR[r3]{ 63:48}, 16);

for(i=0;i<8;i++){
if (temp[i] > max)
temp[i] = max;

if (temp[i] <min)
temp[i] = min;

GRr4] = concatenate8(temp[7], temp[6], temp[5], temp[4],
temp(3], temp[2], temp[1], temp[0]);

} dse{ Il four_byte form
max = sign_ext(0x7fff, 16); // Signed_saturation_form
min = sign_ext(0x8000, 16);
temp[0] = sign_ext(GR[r,]{ 3L:0}, 32);
temp[1] = sign_ext(GR[r,]{ 63:32}, 32);
temp[2] = sign_ext(GR[r3]{ 31:0}, 32);
temp[3] = sign_ext(GR[r3]{ 63:32}, 32);

for(i=0;i<4;i++){
if (templi] > max)
temp[i] = max;
if (temp[i] < min)
temp[i] = min;
GR([r4] = concatenated(temp[3], temp[2], temp[1], temp[Q]);

}
GR[rq].nat = GR{r,].nat || GR[r3].nat;

Interruptions: Illegal Operation fault

3:180 Volume 3: Instruction Reference

padd — Parallel Add

Format:

Description:

(gp) paddl ry=rp r3

(gp) paddl.sss rq=ry I3
(gp) paddl.uus ry=ry,r3
(gp) paddl.uuu ry=ry,r3
(ap) padd2 rq=ry,r3

(gp) padd2.sss rq=ry, I3
(gp) padd2.uus ry=ry,r3
(gp) padd2.uuu ry=ry, 13

(ap) paddd rq=rp 13

padd

one_byte form, modulo_form
one_byte form, sss_saturation_form
one_byte form, uus_saturation_form
one_byte form, uuu_saturation_form
two_byte form, modulo_form
two_byte form, sss_saturation_form
two_byte form, uus_saturation_form
two_byte form, uuu_saturation_form
four_byte form, modulo_form

The sets of elements from the two source operands are added, and the results placed in GR r.

A9
A9
A9
A9
A9
A9
A9
A9
A9

If asum of two elements cannot be represented in the result element and a saturation completer is

specified, then saturation clipping is performed. The saturation can either be signed or unsigned, as
given in Table 2-43. If the sum of two elementsis larger than the upper limit value, the result isthe
upper limit value. If it is smaller than the lower limit value, the result is the lower limit value. The

saturation limits are given in Table 2-44.

Table 2-43. Parallel Add Saturation Completers

Completer Result rq treated as Source I'y treated as Source 'z treated as
sss signed signed signed
uus unsigned unsigned signed
uuu unsigned unsigned unsigned
Table 2-44. Parallel Add Saturation Limits
)) Result 4 Signed Result 'y Unsigned
Size Element Width — — — —
Upper Limit Lower Limit Upper Limit Lower Limit
1 8 bit ox7f 0x80 Oxff 0x00
16 bit Ox7fff 0x8000 Oxffff 0x0000

Figure 2-29. Parallel Add Examples

I
B So6600

paddl

L

padd2

Volume 3: Instruction Reference

3:181

padd

Operation: if (PR[gp]) {

check_target_register(rq);

if (one_byte form) {

x[0] = GRI[ry|{ 7:0};
X[1] = GR[r,]{15:8};
X[2] = GR[r,]{ 23:16};
X[3] = GRIr,]{31:24};
X[4] = GR[r,]{39:32};
X[5] = GR[r,]{47:40};
x[6] = GR[r,]{55:48};
X[7] = GRIr,]{63:56};

if (sss_saturation_form) {

max = sign_ext(0x7f, 8);
min=sign_ext(0x80, 8);

for(i=0;i<8;i++){

y[0] = GRIrgl{7:0};
y[1] = GR{r3]{15:8};

y[2] = GR[r3]{23:16};
y[3] = GR(r3]{31:24};
y[4] = GRr3]{39:32};
y[5] = GRIral{ 47:40};
y[6] = GRIr3|{55:48};
Y171 = GRIrgl{ 63:56};

temp[i] =sign_ext(x[i], 8) + sign_ext(y][i], 8);

} eseif (uus_saturation form) {

max = Oxff;
min = 0x00;

for(i=0;i<8;i++){

temp[i] = zero_ext(x[i], 8) + sign_ext(y[i], 8);

} eseif (uuu_saturation form) {

max = Oxff;
min = 0x00;

for(i=0;i<8;i++){

temp[i] = zero_ext(x[i], 8) + zero_ext(y[i], 8);

}dse{
for(i=0;i<8;i++){

temp[i] = zero_ext(x[i], 8) + zero_ext(y][i], 8);

}

if (sss_saturation_form || uus_saturation_form ||

uuu_saturation _form) {

for(i=0;i<8;i++){

if (templi] > max)
temp[i] = max;

if (temp[i] < min)

temp[i] = min;

}
GR([r4] = concatenate8(temp[7], temp[6], temp[5], temp[4],
temp(3], temp(2], temp[1], temp[0]);

} dseif (two_byte form) {
X[0] = GR[r,l{ 15:0};
X[1] = GR{[r,]{31:16};
X[2] = GRI[ro{47:32};
X[3] = GR[r,]{ 63:48};

if (sss_saturation form) {

max = sign_ext(Ox7fff, 16);
min = sign_ext(0x8000, 16);

3:182

y[0] = GRIr3{15.0};

y[1] = GRr3]{31:16};
y[2] = GRIr3]{47:32};
y[3] = GR{r3]{ 63:48};

Il one-byte elements

/I modulo_form

/I 2-byte elements

Volume 3: Instruction Reference

for (i=0;i<4;i++){

temp[i] = sgn_ext(x[i], 16) + sign_ext(y[i], 16);

} dseif (uus_saturation form) {

max = Oxffff;
min = 0x0000;

for (i=0;i<4;i++){

temp[i] = zero_ext(x[i], 16) + sign_ext(y[i], 16);

} dseif (uuu_saturation form) {

max = Oxffff;
min = 0x0000;

for(i=0;i<4;i++){

temp[i] = zero_ext(x[i], 16) + zero_ext(y][i], 16);

}
}else{
for(i=0;i<4;i++){

temp[i] = zero_ext(x[i], 16) + zero_ext(y[i], 16);

}

if (sss_saturation_form || uus_saturation_form ||

uuu_saturation_form) {
for (i=0;i<4;i++){
if (temp[i] > max)
temp[i] = max;

if (temp[i] <min)
temp[i] = min;

}

GR[r] = concatenated(temp[3], temp[2], temp[1], temp[Q]);

}else{
x[0] = GRIry]{ 3L:0};
X[1] = GR[r;]{ 63:32};

for(i=0;i<2i++){

temp[i] = zero_ext(x[i], 32) + zero_ext(y[i], 32);

GR[r4] = concatenate2(temp[1], temp[Q]);

GRrq].nat = GR{r].nat || GR[r3].nat;

Interruptions: lllegal Operation fault

Volume 3: Instruction Reference

y[0] = GRIr3]{31:0};
y[1] = GR[r4]{63:32};

padd

/l modulo_form

// four-byte elements

/I modulo_form

3:183

pavg

pavg — Parallel Average

Format:

Description:

(ap) pavgl ry=ryr3 normal_form, one_byte form
(ap) pavglraz ry=ryr3 raz_form, one_byte form
(ap) pavg2 ry=ry,r3 normal_form, two_byte form
(qp) pavg2.raz ry=rp I3 raz_form, two_byte form

A9
A9
A9
A9

The unsigned data elements of GR r,, are added to the unsigned data elements of GR r3. Theresults
of the add are then each independently shifted to the right by one bit position. The high-order bits
of each element are filled with the carry bits of the sums. To prevent cumulative round-off errors,

an averaging is performed. The unsigned results are placed in GR ;.

The averaging operation works as follows. In the normal_form, the low-order bit of each result is
set to 1if at least one of the two least significant bits of the corresponding sumis 1. Intheraz_form,

the average rounds away from zero by adding 1 to each of the sums.

Figure 2-30. Parallel Average Example

3:184

Shift Right 1 Bit
with Average in
16-hit Sum Low-order Bit

Plus

Carry I

Shift Right
1 Bit

GRrq:

Volume 3: Instruction Reference

pavg

Figure 2-31. Parallel Average with Round Away from Zero Example

GRrj:

GR [P

Shift Right 1 Bit

16-bit Sum
Plus

Carry I

Shift Right
1 Bit

GR r:

pavg2.raz

Volume 3: Instruction Reference 3:185

pavg

Operation: if (PR[gp]) {
check_target_register(ry);

if (one_byte form) {
x[0] = GRI[ry|{ 7:0};
X[1] = GR[r,]{15:8};

X[2] = GR[r,]{ 23:16};
X[3] = GRIr,]{31:24};
X[4] = GR[r,]{39:32};
X[5] = GR[r,]{47:40};
x[6] = GR[r,]{55:48};
X([7] = GRIr,}{ 63:56};

if (raz_form) {

y[0] = GRIr3[{ 7:0};
y[1] = GR{r3|{15:8};
y[2] = GR[r3]{23:16};
y[3] = GR(r3]{31:24};
y[4] = GRr3]{39:32};
y[5] = GRIral{ 47:40};
y[6] = GRIr3|{55:48};
Y171 = GRIrgl{ 63:56};

Interruptions:

3:186

for(i=0;i<8;i++){
temp[i] = zero_ext(x[i], 8) + zero_ext(y[i], 8) + 1,
reqi] = shift_right_unsigned(tempi], 1);

} dse{ // norma form
for(i=0;i<8;i++){
temp[i] = zero_ext(x[i], 8) + zero_ext(y[i], 8);
reqli] = shift_right_unsigned(tempfi], 1) | (temp[il{ 0});

}
GR{r4] = concatenate8(res[7], re 6], req[5], res/4],
req3], reg2], req 1], req0]);

} ese{ I/l two_byte form

x[0] = GR{[r,]{15:0};

X[1] = GR[r,){31:16};
X[2] = GR[r,]{47:32};
X[3] = GR[r,]{63:48};

y[0] = GR([r3]{15:0};

y[1] = GRIr3]{31:16};
y[2] = GR[r3]{47:32};
y[3] = GRIr3}{63:48};

if (raz_form) {
for(i=0;i<4;i++){
temp[i] = zero_ext(x[i], 16) + zero_ext(y[i], 16) + 1;
reqi] = shift_right_unsigned(tempi], 1);

} dse{ // normal form
for(i=0;i<4;i++){
temp[i] = zero_ext(x[i], 16) + zero_ext(y][i], 16);
reqi] = shift_right_unsigned(templi], 1) | (temp[i]{ O});

}
GR(r4] = concatenated(req 3], req 2], req[1], reqQ]);

GR{rq].nat = GR[r,].nat || GR[r3].nat;

Ilegal Operation fault

Volume 3: Instruction Reference

pavgsub

pavgsub — Parallel Average Subtract

Format:

Description:

(ap) pavgsubl ry=ry, 13 one_byte form A9
(ap) pavgsub2 ry=ry, 13 two_byte form A9

The unsigned data elements of GR r5 are subtracted from the unsigned data elements of GR r,. The
results of the subtraction are then each independently shifted to the right by one bit position. The
high-order bits of each element are filled with the borrow bits of the subtraction (the complements
of the ALU carries). To prevent cumulative round-off errors, an averaging is performed. The
low-order bit of each result isset to 1 if at least one of the two least significant bits of the

corresponding differenceis 1. The signed results are placed in GR r5.

Figure 2-32. Parallel Average Subtract Example

GRr3:
GRry:
‘ ‘ ‘ ‘ Shift Right 1 Bit
with Average in
16-bit Difference
Plus
Carry I
Shift Right
1 Bit
GRrq:
pavgsub?2

Volume 3: Instruction Reference

3:187

pavgsub

Operation:

Interruptions:

3:188

if (PRgp]) {
check_target_register(ry);

if (one_byte form) {

x[0] = GRI[ry|{ 7:0};
X[1] = GR[r,]{15:8};

X[2] = GR[r,]{ 23:16};
X[3] = GRIr,]{31:24};
X[4] = GR[r,]{39:32};
X[5] = GR[r,]{47:40};
x[6] = GR[r,]{55:48};
X([7] = GRIr,}{ 63:56};

for(i=0;i<8;i++){

y[0] = GRIr3[{ 7:0};
y[1] = GR{r3|{15:8};
y[2] = GR[r3]{23:16};
y[3] = GR(r3]{31:24};
y[4] = GRr3]{39:32};
y[5] = GRIral{ 47:40};
y[6] = GRIr3|{55:48};
Y171 = GRIrgl{ 63:56};

temp[i] = zero_ext(x[i], 8) - zero_ext(y[i], 8);
redfi] = (temp[i]{8:0} u>>1) | (temp[i[{ O});

}
GR(r4] = concatenate8(req[7], req[6], req[5], reg4],

} else{

X[0] = GR[r,l{ 15:0};

x[1] = GR{[r,]{31:16};
X[2] = GRIr,){47:32};
X[3] = GR[r,]{ 63:48};

for(i=0;i<4;i++){

reg(3], reg2], req[1], re[0]);

y[0] = GRIrgl{15:0};
y[1] = GRr3]{31:16};
y[2] = GRIr3|{47:32};
y[3] = GRIr3l{63:48};

temp[i] = zero_ext(x[i], 16) - zero_ext(y[i], 16);
regi] = (temp[i]{ 16:0} u>> 1) | (temp[il{ G});

}
GR{r4] = concatenated(req 3], req 2], req 1], req0]);

}
GRr4].nat = GR{r,].nat || GR[r3].nét;

Illegal Operation fault

I/l two_byte form

Volume 3: Instruction Reference

pcmp

pcmp — Parallel Compare

Format: (gp) pcmpl.prel r{=ryr3 one_byte form A9
(ap) pcmp2.prel 14 =r,,r3 two_byte form A9
(ap) pcmpd.prel 11 =r5,r3 four_byte form A9

Description: The two source operands are compared for one of the two relations shown in Table 2-45. If the
comparison condition istrue for corresponding data elements of GR r, and GR r3, then the
corresponding data element in GR rq is set to all ones. If the comparison condition isfalse, then the
corresponding data element in GR rq is set to al zeros. For the ‘>’ relation, both operands are
interpreted as signed.

Table 2-45. Pcmp Relations

prel Compare Relation (I prel rg)
eq ry==r3
gt ro > r3 (signed)

Figure 2-33. Parallel Compare Examples

GRrq: 0x0000| Oxffff | Oxffff

pcmp2.eq

GRrq: Oxffffffff 0x00000000

pcmp4.eq

Volume 3: Instruction Reference 3:189

pcmp

Operation: if (PR[gp]) {
check_target_register(rq);
if (one_byte form) {
X[0] = GR[r,l{ 7:0}; y[0] = GR]r3|{ 7:0};
X[1] = GR[r,]{15:8}; y[1] = GR]r3]{15:8};
x[2] = GR[r,J{ 23:16}; y[2] = GR(r3]{23:16};
X[3] = GRIr,|{ 31:24}; y[3] = GRIr3|{31:24};
x[4] = GR[r,]{39:32}; y[4] = GR(r3]{39:32};
X[5] = GR[r,){ 47:40}; y[5] = GR]r3|{47:40};
x[6] = GR[r,]{ 55:48}; y[6] = GR[r3]{55:48};
X[7] = GR[r,){ 63:56}; y[7] = GR{r3]{63:56};
for(i=0;1<8;i++){
if (prel =="eq')
tmp_rel = x[i] ==y[i];
dse// ‘gt

tmp_rel = greater_signed(sign_ext(x][i], 8),
sign_ext(y[i], 8));

if (tmp_rel)

regi] = Oxff;
dse

reg[i] = 0x00;

}GR[r]_'l = concatenate8(req 7], req 6], red 5], re4],
: req[3], res[2], req[1], reg[0]);
} dseif (two_byte form) {

X[0] = GR[r,[{ 15:0} ; y[0] = GR[r3]{15:0};
x[1] = GR[r,){ 31:16}; y[1] = GR(r3]{ 31:16};
X[2] = GR[ry|{ 47:32} y[2] = GRIr3]{47:32};
X[3] = GR[r,|{ 63:48}; y[3] = GR[r3]{63:48};
for(i=0;1<4;i++){

if (prel =='eq’)
tmp_rel = x[i] == y[i];
dse// ‘gt
tmp_rel = greater_signed(sign_ext(x[i], 16),
sign_ext(y[i], 16));
if (tmp_rel)
regi] = Oxffff;
dse
reqi] = 0x0000;

%3R[r]] = concatenated(req 3], req 2], req 1], req0]);
e

e
) x{[O] = GR[r,]{ 31:0}; y[0] = GR(r3]{31:0};
X[1] = GR[r,{63:32}; y[1] = GRr3]{63:32};
for(i=0;1<2i++){
if (prel =="eq)
tmp_rel = x[i] == y[i];
dse// gt
tmp_rel = greater_signed(sign_ext(x[i], 32),

sign_ext(y(i], 32));

if (tmp_rel)
res{i] = OXFffffff;
ese
refi] = 0x00000000;
GR{r4] = concatenate2(req[1], res[]);

GRIr4].net = GR{r,].nat || GR[r3].nét;

Interruptions: Illegal Operation fault

3:190

/I one-byte elements

I two-byte elements

/I four-byte elements

Volume 3: Instruction Reference

pmax

pmax — Parallel Maximum

Format:

Description:

(gp) pmaxl.u ry=rpr3 one_byte form 12
(ap) pmax2 ry=rp, r3 two_byte form 12

The maximum of the two source operandsis placed in the result register. In the one_byte form,
each unsigned 8-bit element of GR r, is compared with the corresponding unsigned 8-bit element
of GR r3 and the greater of the two is placed in the corresponding 8-bit element of GR r4. In the
two_byte form, each signed 16-bit element of GR r, is compared with the corresponding signed
16-bit element of GR r5 and the greater of the two is placed in the corresponding 16-bit element of
GR rq.

Figure 2-34. Parallel Maximum Examples

Operation:

Interruptions:

GRr3:

GR [P

if (PRIgp]) { _
check_target_register(rq);
if (one_byte form) { /I one-byte dements
X[0] = GR[r,|{ 7:0}; y[0] = GRI[r3|{ 7:0};
x[1] = GR[r,[{ 15:8}; y[1] = GR[r3]{15:8};
X[2] = GR[r,]{ 23:16}; y[2] = GR{r3|{ 23:16};
X[3] = GR[r,|{ 31:24}; y[3] = GR(r3|{31:24};
x[4] = GR[r,]{ 39:32}; y[4] = GR[r3]{39:32};
X[5] = GR[r,|{ 47:40}; y[5] = GR{r3|{47:40};
x[6] = GR[r,]{ 55:48}; y[6] = GR([r3|{55:48};
X[7] = GR[r,]{ 63:56}; y[7] = GR{[r3]{63:56} ;
for (i=0;1<8;i++){

reqi] = (zero_ext(x[i],8) < zero_ext(y[i],8))?y[i]: X[il;

}GR[r]] = concatenated(req 7], req 6], req 5], reg4],
reg3], reg2], req1], reg[Q]);

} dse{ I/ two-byte elements
X[0] = GR[r,J{ 15:G}; y[0] = GR{r3]{ 15:0};
X[1] = GR[r,|{ 31:16}; y[1] = GR[r3}{31:16};
X[2] = GR[r,|{47:32} y[2] = GRr3]{47:32};
X[3] = GR[r,|{ 63:48}; y[3] = GR[r3]{63:48};

for (i=0;1<4;i++){
req[i] = (sign_ext(x[i],16) < sign_ext(y[i],16))? y[i]: x[i];

GR[r] = concatenated(req 3], req 2], red 1], req0]);
]EBR[r]_].nat =GR[ry].nét || GR[r3].nat;

Illegal Operation fault

Volume 3: Instruction Reference 3:191

pmin

pmin — Parallel Minimum

Format:

Description:

(gp) pminlu ry=rpr3 one_byte form 12
(gp) pmin2 ry=ryr3 two_byte form 12

The minimum of the two source operandsis placed in the result register. In the one_byte form,
each unsigned 8-bit element of GR r, is compared with the corresponding unsigned 8-bit element
of GR r5 and the smaller of the two is placed in the corresponding 8-bit element of GR r4. In the
two_byte form, each signed 16-bit element of GR r, is compared with the corresponding signed
16-bit element of GR r5 and the smaller of the two is placed in the corresponding 16-bit element of
GR r.

Figure 2-35. Parallel Minimum Examples

Operation:

Interruptions:

3:192

GRrg: GRirg:

GR o

pmin2
if (PRIgp]) { _
check_target_register(rq);
if (one_byte form) { /I one-byte elements
X[0] = GRI[ro){ 7:0}; y[0] = GRIr3|{ 7:0};
x[1] = GR(r,]{15:8}; y[1] = GR([r3]{15:8};
X[2] = GR[r,){ 23:16}; y[2] = GR{r3|{ 23:16};
X[3] = GR{r,]{31:24}; y[3] = GR(r3]{31:24};
X[4] = GR[r,]{ 39:32}; y[4] = GR[r3]{ 39:32};
X[5] = GR(r,|{ 47:40}; y[5] = GR(r3|{47:40};
x[6] = GR[r,]{55:48}; y[6] = GR{r3]{ 55:48};
X[7] = GR{r,]{ 63:56}; y[7] = GR(r3]{63:56};
for (i=0;1<8;i++){
regli] = (zero_ext(x[i],8) < zero_ext(y[i],8))?x[i1: ylil;
}GR[r]] = concatenate8(req 7], req 6], req[5], req 4],
reg 3], req 2], reg[1], res[0));
} ese{ I two-byte dlements
x[0] = GR[r,]{15:0}; y[0] = GR(r3]{15:0};
x[1] = GR(r,]{ 31:16}; y[1] = GR(r3]{31:16};
X[2] = GRIr,|{ 47:32}; y[2] = GRIr3|{47:32};
x(3] = GR[r,|{63:48}; y[3] = GRIr|{63:48};

for(i=0;1<4;i++){
reqli] = (Sgn_ext(x[i],16) < sign_ext(y[i],16))?x[i]: y[il;

}GR[r]] = concatenated(req 3], req 2], req1], reg0]);
}GR[r]].nat = GRJry].nat || GR[r4].nat;

Illegal Operation fault

Volume 3: Instruction Reference

pmpy

pmpy — Parallel Multiply

Format: (ap) pmpy2.r ry=ror3 right_form 12
(ap) pmpy2l ry=rp,r3 left_form 12

Description: Two signed 16-bit data elements of GR r, are multiplied by the corresponding two signed 16-bit
data elements of GR r3 as shown in Figure 2-36. The two 32-bit results are placed in GR r.

Figure 2-36. Parallel Multiply Operation

GR r3: GR ra:
GR I GR I
GRry: GRry:
pmpy2.1 pmpy2.r
Operation: if (PRap]) {

check_target_register(rq);

if (right_form) {
GR[r]{31:0} =sign_ext(GR[r,l{ 15:0}, 16) *
sign_ext(GR[r3]{ 15:0}, 16);
GR[r]{63:32} =s€ign_ext(GR[r,]{47:32}, 16) *
sgn_ext(GR[r3l{47:32}, 16);
} dse{ I/ left_form
GR[rJ{31:0} =sign_ext(GR[r,]{ 31:16}, 16) *
sign_ext(GR[r3l{ 31:16}, 16);
GR[r{]{63:32} =sign_ext(GR[r,]{63:48}, 16) *
sign_ext(GRr3]{ 63:48}, 16);
}

GR[r].nat = GR[r].nat || GR[rs].nat;

Interruptions: |llegal Operation fault

Volume 3: Instruction Reference 3:193

pmpyshr

pmpyshr — Parallel Multiply and Shift Right

Format:

Description:

signed_form 11
unsigned_form 11

(ap) pmpyshr2 rq =ry, I3, count,
(ap) pmpyshr2.u ry =r, r3, count,

The four 16-bit data elements of GR r, are multiplied by the corresponding four 16-bit data
elements of GR r3 as shown in Figure 2-37. This multiplication can either be signed (pmpyshr2), or
unsigned (pmpyshr2.u). Each product is then shifted to the right count, bits, and the
least-significant 16-bits of each shifted product form 4 16-bit results, which are placed in GRr;. A
count, of O gives the 16 low bits of the results, a count, of 16 gives the 16 high bits of the results.
The allowed values for count, are given in Table 2-46.

Table 2-46. Parallel Multiply and Shift Right Shift Options

Figure 2-37. Parallel Multiply and Shift Right Operation

3:194

count, Selected Bit Field from Each 32-bit Product
0 15:0
7 22:7
15 30:15
16 31:16

GRr3:
16-bit
Source
GRry: Elements
32-bit
Products
Shift Right
count, Bits 16-bit
-bi
GRry: Result
Elements

pmpyshr2

Volume 3: Instruction Reference

pmpyshr

Operation: if (PR[qp]) {
check_target_register(rq);
x[0] = GR[r,]{15:0}; y[0] = GR{[r3]{15:0};
X[1] = GR{r,]{ 31:16}; y[1] = GR[r3]{31:16};
X[2] = GRIr,]{47:32}; y[2] = GR[r4]{47:32};
X[3] = GR[r;]{ 63:48}; y[3] = GR{r3]{63:48};
for(i=0;i<4;i++){
if (unsigned_form) I unsigned multiplication
temp[i] = zero_ext(x[i], 16) * zero_ext(y[i], 16);
dse // signed multiplication

temp[i] = sign_ext(x[i], 16) * sign_ext(y[i], 16);
reg{i] = temp]i]{ (count, + 15):count,} ;
GR[r] = concatenated(req 3], req 2], red 1], req0]);

GR[r].nat = GR[r].nat || GR[r3].nat;
}

Interruptions: 1llegal Operation fault

Volume 3: Instruction Reference 3:195

popcnt

popcnt — Population Count
Format: (gp) popent ry=rz 19
Description: ~ The number of bitsin GR r3 having the value 1 is counted, and the resulting sumis placed in GRr5.

Operation: if (PR[ap]) {
check_target_register(ry);

res=0;

/I Count up al the one bits

for (i=0;i <64 i++){
res+= GR[r3l{i};

GR([rq] =res,
GR[r4].nat = GR[r3].nét;
}

Interruptions: Illegal Operation fault

3:196 Volume 3: Instruction Reference

probe

probe — Probe Access

Format:

Description:

(gp) prober ry=rzry read form, register_form M38
(gp) probew ry=rz,r, write_form, register_form M38
(gp) prober rq=rg, immy, read_form, immediate_form M39
(gp) probew ry =rg, immy write_form, immediate_form M39
(gp) probe.r.fault rg, immy fault_form, read_form, immediate_form M40
(gp) probew.fault ra, imm, fault_form, write_form, immediate_form M40
(gp) probe.rw.fault ra, immy fault_form, read_write_form, immediate_form M40

Thisinstruction determines whether read or write access, with a specified privilege level, to agiven
virtual addressis permitted. GR r isset to 1 if the specified accessis allowed and to O otherwise. In
the fault_form, if the specified accessis allowed this instruction does nothing; if the specified
accessis not allowed, afault is taken.

When PSR.dt is 1, the DTLB and the VHPT are queried for present translations to determine if
access to the virtual address specified by GR r3 bits { 60:0} and the region register indexed by GR
r; bits{63:61}, is permitted at the privilege level given by either GR r, bits{ 1:0} or immy,. If
PSR.pk is 1, protection key checks are also performed. The read or write form specifieswhether the
instruction checks for read or write access, or both.

When PSR.dt is 0, a non-faulting probe uses its address operand as a virtual address to query the
DTLB only, because the VHPT walker is disabled. If the probed addressis found in the DTLB, the
non-faulting probe returns the appropriate value, if not an Alternate Data TLB fault is raised.

When PSR.dt is 0, afaulting probe treats its address operand as a physical address, and takes no
TLB related faults.

A non-faulting probe to an unimplemented virtual address returns 0. A faulting probe to an
unimplemented virtual address (when PSR.dt is 1) or unimplemented physical address (when
PSR.dt is 0) takes an Unimplemented Data Address fault.

If thisinstruction faults, then it will set the non-access bit in the ISR and set the ISR read or write
bits depending on the completer. The following faults are taken by the faulting form of the probe
instruction only (the non-faulting form of the instruction does not take them): Unimplemented Data
Address fault, Data Key Permissions fault, Data Access Rights fault, Data Dirty Bit fault, Data
Access Bit fault, and Data Debug fault.

Thisinstruction can only probe with equal or lower privilege levels. If the specified privilege level
is higher (lower number), then the probe is performed with the current privilege level.

Volume 3: Instruction Reference 3:197

probe

Operation: if (PR[gp]) {
itype= NON_ACCESS;
itype |= (reed_write form)? READ|WRITE: ((write_form)? WRITE: READ);
itype |- (fault_form)? PROBE_FAULT: PROBE;

if (Ifault_form)
check_target_register(rq);

if (GR[rg].nét || (register_form? GR{[r,].nét: 0))
register_nat_consumption_fault(itype);

tmp_pl = (register_form)? GR[r,]{ 1.0} : immy;
if (tmp_pl < PSR.cpl)
tmp_pl =PSR.cpl;

if (fault_form) {
tib_trandate(GR([r4], 1, itype, tmp_pl, & mattr, & defer);

dse
) G{R[r]_'l =tlb_grant_permisson(GRr3], itype, tmp_pl);
GR[rq].nat =0;
}
}

Interruptions: Illegal Operation fault Data NaT Page Consumption fault
Register NaT Consumption fault Data Key Miss fault
Unimplemented Data Address fault Data Key Permission fault
Data Nested TLB fault Data Access Rights fault
Alternate Data TLB fault Data Dirty Bit fault
VHPT Data fault Data Access Bit fault
Data TLB fault Data Debug fault

Data Page Not Present fault

3:198 Volume 3: Instruction Reference

psad

psad — Parallel Sum of Absolute Difference
Format: (gp) psadl ry=rp,r3 12

Description: The unsigned 8-bit elements of GR r, are subtracted from the unsigned 8-bit elements of GR r3.
The absolute value of each difference is accumulated across the elements and placed in GRr4.

Figure 2-38. Parallel Sum of Absolute Difference Example

GR r

psadil

Operation: if (PR[gp]) {
check_target_register(ry);

Interruptions:

x[0] = GR[r,[{ 7:0};
X[1] = GR[r,]{15:8};

X[2] = GR[r,]{ 23:16};
X[3] = GR[r,|{ 31:24};
x[4] = GR[r,]{ 39:32};
X[5] = GR[r,|{ 47:40};

{55:48};
X[7] = GR[r,J{ 63:56};

x[6] = GR[r

GR[r{] =0;

for(i=0;i<8;i++){

y[0] = GRIrgl{ 7:0};
y[1] = GRIr;]{ 158}

y[2] = GR[r3]{ 23:16};
y[3] = GR(r3|{31:24};
y[4] = GR[r3]{39:32};
y[5] = GR(r3|{47:40};
y[6] = GR{r3]{55:48};
y[7] = GR[r3l{ 63:56};

temp[i] = zero_ext(x[i], 8) - zero_ext(y[i], 8);

if (temp[i] <0)

temp[i] = -temp[i];

GRJr] +=temp][il;

GR[r].nat = GR[r].nat || GR[r3].nat;

Illegal Operation fault

Volume 3: Instruction Reference

3:199

pshl

pshl — Parallel Shift Left

Format:

Description:

(ap) pshl2 ry=ry, 13 two_byte form, variable form 17
(gp) pshl2 ry =r,, countg two_byte form, fixed_form 18
(ap) pshld ry=ry 13 four_byte form, variable form 17
(gp) pshl4 ry =ry, countg four_byte form, fixed_form 18

The dataelements of GR r, are each independently shifted to the | eft by the scalar shift count in GR
r3, or in theimmediate field counts. The low-order bits of each element are filled with zeros. The
shift count isinterpreted as unsigned. Shift counts greater than 15 (for 16-bit quantities) or 31 (for
32-bit quantities) yield all zero results. The results are placed in GR 1.

Figure 2-39. Parallel Shift Left Examples

Operation:

Interruptions:

3:200

GR o GR o

Shift Left

GR r a a a a GR r a

pshi2 pshi4

if (PRlap]) { ,
check_target_register(rq);

shift_count = (veriable_form? GR[r3]: counts);
tmp_nat = (variable_form? GR{[r3].nat: 0);

if (two_byte form) { /I two_byte form
if (shift_count u> 16)
shift_count = 16;
GR[r{|{15:0} =GR[r,]{15:0} << shift_count;
GR[r{]{31:16} = GR[r,]{31:16} << shift_count;
GRIr{{47:32} = GR[r,]{47:32} << shift_count;
GR{r]{63:48} = GR[r,]{63:48} << shift_count;
} ese{ Il four_byte form
if (shift_count u> 32)
shift_count = 32;
GRIr{|{3L:0} =GR[r,]{31.0} << shift_count;
GRIr]{63:32} = GR[r,]{63:32} << shift_count;

GR[rq].nat = GR{r,].nat || tmp_nat;
}
Illegal Operation fault

Volume 3: Instruction Reference

pshladd

pshladd — Parallel Shift Left and Add
Format: (gp) pshladd2 rq =r,, county, ra3 A10

Description: The four signed 16-bit data elements of GR r, are each independently shifted to the left by count,
bits (shifting zerosinto the low-order bits), and added to the four signed 16-bit data elements of GR
r3. Both the left shift and the add operations are saturating: if the result of either the shift or the add
is not representable as a signed 16-bit value, the final result is saturated. The four signed 16-bit
results are placed in GR r4. Thefirst operand can be shifted by 1, 2 or 3 bits.

Operation: if (PRap]) {
check_target_register(rq);
X[0] = GR[ry}{ 15:0}; y[0] = GR[r3l{ 15:0};
X[1] = GR[r,{ 31:16}; y[1] = GRIr5]{31:16};
X[2] = GR[r]{47:32}; y[2] = GRIr3l{47:32};
X[3] = GR{r,]{63:48}; y[3] = GR[r4]{63:48};

max = sign_ext(0x7fff, 16);
min=sign_ext(0x8000, 16);

for (i=0;i<4;i++){
templi] = sign_ext(x[i], 16) << county;

if (temp[i] > max)
req(i] = max;
eseif (temp[i] <min)
req(i] =min;
dee{
req(i] =temp[i] + sign_ext(y[i], 16);
if (reqi] > max)
req(i] = max;
if (reqi] <min)
reqfi] =min;
}
}

GR[r4] = concatenated(req 3], red 2], req1], req0]);
GR[r].nat = GR[r].nat || GR[r3].nat;
}

Interruptions: 1llegal Operation fault

Volume 3: Instruction Reference 3:201

pshr

pshr — Parallel Shift Right

Format:

Description:

3:202

(qp) pshr2 ry=rz, 1,

(gp) pshr2 ry =r3, counts
(gp) pshr2.u ry=rsz,ro
(gp) pshr2.u rq =rg, countg
(ap) pshrd ry=rz, 1

(qp) pshr4 ry =r3, counts
(gp) pshrd.u ry=ra,rp
(gp) pshrd.u ry =r3, counts

signed_form, two_byte form, variable form
signed_form, two_byte form, fixed_form
unsigned_form, two_byte form, variable_form
unsigned_form, two_byte form, fixed_form
signed_form, four_byte form, variable form
signed_form, four_byte form, fixed_form
unsigned_form, four_byte form, variable form
unsigned_form, four_byte form, fixed_form

15
16
15
16
15
16
15
16

The data elements of GR r5 are each independently shifted to the right by the scalar shift count in

GR 1y, or in the immediate field counts. The high-order bits of each element arefilled with either
theinitial value of the sign bits of the data elementsin GR r5 (arithmetic shift) or zeros (logical

shift). The shift count isinterpreted as unsigned. Shift counts greater than 15 (for 16-bit quantities)

or 31 (for 32-bit quantities) yield all zero or all one results depending on theinitial values of the

sign bits of the data elementsin GR r5 and whether a signed or unsigned shift is done. The results

areplaced in GRry.

Volume 3: Instruction Reference

pshr

Operation: if (PRap]) {
check_target_register(ry);

shift_count = (variable_form? GR{[r,]: counts);
tmp_nat = (varisble_form? GR[r,].nat: 0);

if (two_byte form) { I/ two_byte form
if (shift_count u> 16)
shift_count = 16;
if (unsigned_form) { // unsigned shift
GR[r]{15:0} = shift_right unsigned(zero_ext(GR([r3]{15:0}, 16),
shift_count);
GR[r]{31:16} = shift_right_unsigned(zero_ext(GR[r3]{ 31:16}, 16),
shift_count);
GR[rq]{47:32} = shift_right_unsigned(zero_ext(GR[r3]{ 47:32}, 16),
shift_count);
GR[r]{63:48} = shift_right_unsigned(zero_ext(GR[r3]{ 63:48}, 16),
shift_count);
} dse{ /I signed shift
GR[r{]{15:0} = shift_right_signed(sign_ext(GR[r3]{15:0}, 16),
shift_count);
GR[r]{31:16} = shift_right_signed(sign_ext(GR[r3]{ 31:16}, 16),
shift_count);
GR[rq]{47:32} = shift_right_signed(sign_ext(GR[r]{ 47:32}, 16),
shift_count);
GR[r]{63:48} = shift_right_signed(sign_ext(GR[r5]{ 63:48}, 16),
shift_count);
} dse{ I/ four_byte form
if (shift_count > 32)
shift_count = 32;
if (unsigned_form) { /I unsigned shift
GR[rJ{31:0} = shift_right unsigned(zero_ext(GR[rs]{ 31:0}, 32),
shift_count);
GR[r]{63:32} = shift_right_unsigned(zero_ext(GR[r3]{ 63:32}, 32),
shift_count);
} dse{ /I signed shift
GR[r{]{3L:0} =shift_right_signed(sign ext(GR[r3]{31:0}, 32),
shift_count);
GR[r]{63:32} = shift_right_signed(sign_ext(GR[r5]{ 63:32}, 32),
shift_count);
}
}

GRrq].nat = GR[rg].nat || tmp_nat;

Interruptions: lllegal Operation fault

Volume 3: Instruction Reference 3:203

pshradd

pshradd — Parallel Shift Right and Add
Format: (gp) pshradd2 rq =ry,, county, r3 A10

Description: Thefour signed 16-bit data elements of GR r,, are each independently shifted to the right by count,
bits, and added to the four signed 16-bit data elements of GR r3. The right shift operation fills the
high-order bits of each element with the initial value of the sign bits of the data elementsin GR»,.
The add operation is performed with signed saturation. The four signed 16-bit results of the add are
placed in GR r4. Thefirst operand can be shifted by 1, 2 or 3 bits.

Operation: if (PR[qp]) {
check_target_register(rq);
X[0] = GR[r5J{ 15:0} ; y[0] = GR[rg]{15:0};
X[1] = GR[r,]{ 31:16}; y[1] = GR[r4]{31:16};
X[2] = GR[ry]{47:32}; y[2] = GRIr3]{47:32};
X[3] = GR[r,{ 63:48}; y[3] = GR[r4]{63:48};

max = sign_ext(0x7fff, 16);
min = sign_ext(0x8000, 16);

for(i=0;i<4;i++){
templ[i] = shift_right_signed(sign_ext(x[i], 16), county);

reqi] =temp[i] + Sign_ext(y[i], 16);
if (reqi] > max)

regli] = max;
if (req[i] <min)

regii] =min;

GR(r4] = concatenated(req 3], req 2], req1], req0]);
GR{rq].nat = GR[r,].nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault

3:204 Volume 3: Instruction Reference

psub

psub — Parallel Subtract

Format:

Description:

(gp) psubl ry=rp, 13 one_byte form, modulo_form A9
(gp) psubl.sss ry=ry, I3 one_byte form, sss_saturation_form A9
(gp) psubl.uus ry=ry, r3 one_byte form, uus_saturation_form A9
(gp) psubl.uuu rq=ry,r3 one_byte form, uuu_saturation_form A9
(ap) psub2 ry=ryp,r3 two_byte form, modulo_form A9
(gp) psub2.sss ry=ry,r3 two_byte form, sss_saturation_form A9
(gp) psub2.uus ry=ry, 3 two_byte form, uus_saturation_form A9
(gp) psub2.uuu rqy=ry,r3 two_byte form, uuu_saturation_form A9
(gp) psubd ry=ry, 13 four_byte form, modulo_form A9

The sets of elements from the two source operands are subtracted, and the results placed in GR 1.

If the difference between two elements cannot be represented in the result element and a saturation
completer is specified, then saturation clipping is performed. The saturation can either be signed or
unsigned, as given in Table 2-47. If the difference of two elementsislarger than the upper limit
value, theresult is the upper limit value. If it is smaller than the lower limit value, the result isthe
lower limit value. The saturation limits are given in Table 2-48.

Table 2-47. Parallel Subtract Saturation Completers

Completer Result Iy treated as Source I'p treated as Source I'ztreated as
sss signed signed signed
uus unsigned unsigned signed
uuu unsigned unsigned unsigned

Table 2-48. Parallel Subtract Saturation Limits

Result 4 Signed Result 'y Unsigned
Size Element Width — — — —
Upper Limit Lower Limit Upper Limit Lower Limit
8 bit 0ox7f 0x80 Oxff 0x00
16 bit Ox7fff 0x8000 Ox(ffff 0x0000
Figure 2-40. Parallel Subtract Examples
GR ra3: GR r3:
I N

GRry: GRry:
GR r: GR r:

psub2

Volume 3: Instruction Reference

3:205

psub

Il one-byte elements

/I sss_saturation_form

/I uus_saturation_form

/I uuu_saturation_form

/I modulo_form

I/ two-byte elements

/I sss_saturation_form

/I uus_saturation_form

Operation: if (PR[gp]) {
check_target_register(rq);
if (one_byte form) {
X[0] = GRr,|{ 7:0}; y[0] = GRr3|{ 7:0};
X[1] = GR[r,]{15:8}; y[1] = GR[r3]{15:8};
X[2] = GR[r,]{ 23:16}; y[2] = GR[r3]{23:16};
X[3] = GRIr,]{31:24}; y[3] = GR(r3]{31:24};
X[4] = GR[r,]{39:32}; y[4] = GRr3]{39:32};
X[5] = GRr,]{47:40}; y[5] = GRIr3|{47:40};
x[6] = GR[r,]{55:48}; y[6] = GR[r3]{55:48};
X[7] = GR{r,l{ 63:56}; y[7] = GR{r3]{ 63:56};
if (sss_saturation_form) {
max = sign_ext(0x7f, 8);
min = sign_ext(0x80, 8);
for(i=0;i<8;i++){
temp[i] = sign_ext(x[i], 8) - sign_ext(y[i], 8);
} eseif (uus_saturation form) {
max = Oxff;
min = 0x00;
for(i=0;i<8;i++){
temp[i] = zero_ext(x[i], 8) - sign_ext(y[i], 8);
} eseif (uuu_saturation form) {
max = Oxff;
min = 0x00;
for (i=0;i<8;i++){
temp[i] = zero_ext(x[i], 8) - zero_ext(y[i], 8);
}dse{
for(i=0;i<8;i++){
temp[i] = zero_ext(x[i], 8) - zero_ext(y[i], 8);
}
}
if (sss_saturation_form || uus_saturation_form ||
uuu_saturation _form) {
for(i=0;i<8;i++){
if (templi] > max)
temp[i] = max;
if (temp[i] <min)
temp[i] = min;
}
}
GR([r4] = concatenate8(temp[7], temp[6], temp[5], temp[4],
_ temp(3], temp(2], temp[1], temp[0]);
} dseif (two_byte form) {
X[0] = GR[r,]{15:0}; y[0] = GRI[r3]{15:0};
X[1] = GR[r,]{31:16}; y[1] = GRr3]{31:16};
X[2] = GRI[r,]{47:32}; y[2] = GRr3]{47:32};
X[3] = GR(r,l{ 63:48}; y[3] = GR{r3]{ 63:48};
if (sss_saturation_form) {
max = sign_ext(0x7fff, 16);
min = sign_ext(0x8000, 16);
for(i=0;i<4;i++){
temp[i] =sign_ext(x[i], 16) - Sign_ext(y[i], 16);
} elseif (uus_saturation form) {
3:206

Volume 3: Instruction Reference

psub

max = Oxffff;
min = 0x0000;
for (i=0;i<4;i++){
temp[i] = zero_ext(x[i], 16) - sign_ext(y[i], 16);

} dseif (uuu_saturation form) { // uuu_saturation_form
max = Oxffff;
min = 0x0000;
for (i=0;i<4;i++){
temp[i] = zero_ext(x[i], 16) - zero_ext(y[i], 16);

} dse{ / modulo_form
for(i=0;i<4;i++){
temp[i] = zero_ext(X[i], 16) - zero_ext(y[i], 16);

}

if (sss_saturation_form || uus_saturation_form ||
uuu_saturation_form) {
for(i=0;i<4;i++){
if (temp[i] > max)

temp[i] = max;
if (temp[i] <min)

temp[i] = min;
}
GR[r] = concatenated(temp[3], temp[2], temp[1], temp[Q]);

} dse{ // four-byte elements

x[0] = GR[r,]{31:0}; y[0] = GR{[r3]{31:0};
X[1] = GR{r,]{ 63:32}; y[1] = GR[r3]{63:32};
for(i=0;i<2i++){ // modulo_form

temp[i] = zero_ext(X[i], 32) - zero_ext(y[i], 32);

GR[r] = concatenate2(temp[1], temp[0]);

GR[r].nat = GR{r,].nat || GR[r3].nat;

Interruptions: Illegal Operation fault

Volume 3: Instruction Reference 3:207

ptc.e

ptc.e — Purge Translation Cache Entry
Format: (gp) ptc.e r3 M47

Description: ~ One or more translation entries are purged from the local processor’s instruction and data
trandation cache. Trandation Registers and the VHPT are not modified.

The number of trandlation cache entries purged is implementation specific. Some implementations
may purge al levels of the translation cache hierarchy with one iteration of PTC.e, while other
implementations may require several iterationsto flush all levels, sets and associativities of both
instruction and data translation caches. GR rg specifies an implementation-specific parameter
associated with each iteration.

The following loop is defined to flush the entire trandlation cache for all processor models.
Software can acquire parameters through a processor dependent layer that is accessed through a
procedural interface. The selected region registers must remain unchanged during the loop.

disable interrupts();
addr = basg;
for (i =0; i <countl; i++) {
for =0; j < count2; j++) {
ptc.e(addr);
addr += stride2;

}
addr += stridel,;

}
enable_interrupts();

This instruction can only be executed at the most privileged level, and when PSR.vm is 0.

Operation: if (PR[ap]) {

if (PSR.cpl!=0)
privileged operation_fault(0);

if (GR[r3].nat)
register_nat_consumption_fault(0);

if (PSRvm==1)
virtuaization_fault();

tlb_purge_trandation_cache(GR[r3]);

}

Interruptions: Privileged Operation fault Virtualization fault
Register NaT Consumption fault

Serialization: Software must issue a data serialization operation to ensure the purge is complete before issuing a
data access or non-access reference dependent upon the purge. Software must issue instruction
serialize operation before fetching an instruction dependent upon the purge.

3:208 Volume 3: Instruction Reference

ptc.g, ptc.ga

ptc.g, ptc.ga — Purge Global Translation Cache

Format:

Description:

Operation:

(ap) ptc.g r3 1o global_form M45
(ap) ptc.ga rz, 1y global_alat form M45

Theinstruction and data translation cache for each processor in the local TLB coherence domain
are searched for al entries whose virtual address and page size partially or completely overlap the
specified purge virtual address and purge address range. These entries are removed.

The purge virtual addressis specified by GR r3 bits{ 60:0} and the purge region identifier is
selected by GR r bits {63:61} . GR r,, specifies the address range of the purge as 1<<GR[r,]{ 7:2}
bytesin size.

Based on the processor model, the translation cache may be also purged of more trand ations than
specified by the purge parameters up to and including removal of all entries within the trandlation
cache.

ptc.g has release semantics and is guaranteed to be made visible after al previous data memory
accesses are made visible. The memory fence instruction forces all processors to complete the
purge prior to any subsequent memory operations. Serialization is till required to observe the
side-effects of atranslation being removed.

ptc.g must be the last instruction in an instruction group; otherwise, its behavior (including its
ordering semantics) is undefined.

The behavior of the ptc.gainstruction issimilar to ptc.g. In addition to the behavior specified for ptc.g
the ptc.gainstruction encodes an extra bit of information in the broadcast transaction. This
information specifies the purge is due to a page remapping as opposed to a protection change or
page tear down. The remote processors within the coherence domain will then take what ever
additional action is necessary to make their ALAT consistent. The local ALAT is not purged.

Thisinstruction can only be executed at the most privileged level, and when PSR.vm is 0.

Unless specifically supported by the processors and platform, only one global purge transaction
may beissued at atime by all processors, the operation is undefined otherwise. Softwareis
responsible for enforcing this restriction. Implementations may optionally support multiple
concurrent global purge transactions. The firmware returnsif implementations support this optional
behavior. It also returns the maximum number of simultaneous outstanding purges allowed.

Propagation of ptc.g between multiple local TLB coherence domains is platform dependent, and
must be handled by software. It is expected that the local TLB coherence domain covers at |east the
processors on the same local bus.

if (PRIgp]) {

if (Ifollowed_by_stop())
undefined_behavior();

if (PSR.cpl!=0)
privileged operation_fault(0);

if (GR[rg].nat || GR[r].nat)
register_nat_consumption_fault(0);

if (unimplemented_virtual_address(GR[r], PSR.vm))
unimplemented_data_address fault(0);

if (PSRvm==1)
virtudization_fault();

tmp_rid = RR[GR([r3]{ 63:61}].rid;

tmp_va= GR{[r;]{ 60:0};

tmp_size= GR[r,){7:2};

tmp_va=dign to_size boundary(tmp_va, tmp_size);
tlb_must_purge dtc_entrie(tmp_rid, tmp_va, tmp_size);

Volume 3: Instruction Reference 3:209

ptc.g, ptc.ga

Interruptions:

Serialization:

3:210

tlb_must_purge itc_entries(tmp_rid, tmp_va, tmp_size);

if (globa_dat_form) tmp_ptc_type= GLOBAL_ALAT_FORM;
else tmp_ptc type= GLOBAL_FORM;

tib_broadcast_purge(tmp_rid, tmp_va, tmp_size, tmp_ptc_type);

}
Machine Check abort Unimplemented Data Address fault
Privileged Operation fault Virtualization fault

Register NaT Consumption fault

The broadcast purge TC is not synchronized with the instruction stream on a remote processor.
Software cannot depend on any such synchronization with the instruction stream. Hardware on the
remote machine cannot reload an instruction from memory or cache after acknowledging a
broadcast purge TC without first retranslating the I-side accessin the TLB. Hardware may continue
to use avalid private copy of the instruction stream data (possibly in an I-buffer) obtained prior to
acknowledging a broadcast purge TC to a page containing the i-stream data. Hardware must
retransate access to an instruction page upon an interruption or any explicit or implicit instruction
serialization event (e.g., srlzi, rfi).

Software must issue the appropriate data and/or instruction serialization operation to ensure the
purgeis completed before alocal data access, non-access reference, or local instruction fetch access
dependent upon the purge.

Volume 3: Instruction Reference

ptc.l

ptc.| — Purge Local Translation Cache

Format:

Description:

Operation:

Interruptions:

Serialization:

(ap) ptcl rg,ry M45

The instruction and data translation cache of the local processor is searched for al entries whose
virtual address and page size partially or completely overlap the specified purge virtual address and
purge address range. All these entries are removed.

The purge virtual addressis specified by GR r5 bits{ 60:0} and the purge region identifier is
selected by GR r3 bits { 63:61} . GR r,, specifies the address range of the purge as 1<<GR[r,]{ 7:2}
bytesin size.

The processor ensures that al entries matching the purging parameters are removed. However,
based on the processor model, the translation cache may be a so purged of more translations than
specified by the purge parameters up to and including removal of al entries within the translation
cache.

Thisinstruction can only be executed at the most privileged level, and when PSR.vm isO.

Thisisalocal operation, no purge broadcast to other processors occurs in a multiprocessor system.
Thisinstruction ensures that all prior stores are made locally visible before the actual purge
operation is performed.

if (PRIgp]) {

if (PSR.cpl!=0)
privileged_operation_fault(0);

if (GR[r].nat || GR[r,].nat)
register_nat_consumption_fault(0);

if (unimplemented_virtual_address(GR{[r3], PSR.vm))
unimplemented data._address fault(0);

if (PSRvm==1)
virtudization_fault();

tmp_rid = RR[GR{[r3]{ 63:61}].rid;

tmp_va= GR[r3]{ 60:0};

tmp_size= GRIr,]{7:2};

tmp_va=adlign to_size boundary(tmp_va, tmp_size);
tib_must_purge _dtc_entries(tmp_rid, tmp_va, tmp_size);
tib_must_purge itc_entries(tmp_rid, tmp_va, tmp_size);

}
Machine Check abort Unimplemented Data Address fault
Privileged Operation fault Virtualization fault

Register NaT Consumption fault

Software must issue the appropriate data and/or instruction serialization operation to ensure the
purgeis completed before a data access, non-access reference, or instruction fetch access dependent
upon the purge.

Volume 3: Instruction Reference 3:211

ptr

ptr — Purge Translation Register

Format:

Description:

3:212

(ap) ptrd ra3,r; data foom M45
(ap) ptri r3,ry instruction_form M45

In the data form of thisinstruction, the data translation registers and caches are searched for all
entries whose virtual address and page size partially or completely overlap the specified purge
virtual address and purge address range. All these entries are removed. Entries in the instruction
translation registers are unaffected by the data form of the purge.

In the instruction form, the instruction translation registers and caches are searched for all entries
whose virtual address and page size partialy or completely overlap the specified purge virtual
address and purge address range. All these entries are removed. Entriesin the data translation
registers are unaffected by the instruction form of the purge.

In addition, in both forms, the instruction and data translation cache may be purged of more
translations than specified by the purge parameters up to and including removal of all entrieswithin
the tranglation cache.

The purge virtual addressis specified by GR r3 bits{ 60:0} and the purge region identifier is
selected by GR r5 bits {63:61} . GR r, specifies the address range of the purge as 1<<GR[r,]{ 7:2}
bytesin size.

This instruction can only be executed at the most privileged level, and when PSR.vm is 0.
Thisisalocal operation, no purge broadcast to other processors occurs in a multiprocessor system.

Asdescribed in Section 4.1.1.2, “ Translation Cache (TC)” on page 2:45, the processor may use the
translation caches to cache virtual address mappings held by trandation registers. The ptr.i and ptr.d
instructions purge the processor’s tranglation registers as well as cached translation register copies
that may be contained in the respective translation caches.

Volume 3: Instruction Reference

ftp://download.intel.com/design/Itanium/manuals/245318.pdf

Operation:

Interruptions:

Serialization:

if (PRIgp) {

}

if (PSR.cpl!=0)
privileged_operation_fault(0);

if (GR[rz].nat || GR[r,].nat)
register_nat_consumption_fault(0);

if (unimplemented_virtual_address(GR{[r3], PSR.vm))
unimplemented_data_address fault(0);

if (PSRvm==1)
virtudization_fault();

tmp_rid = RR[GR{[r3]{ 63:61}].rid;

tmp_va= GR[r3]{ 60:0};

tmp_size=GR[r,l{ 7:2};

tmp_va=adlign to_size boundary(tmp_va, tmp_size);

if (data_form) {

tib_must_purge dtr_entries(tmp_rid, tmp_va, tmp_size);
tib_must_purge dtc_entries(tmp_rid, tmp_va, tmp_size);
tlb_may_purge itc_entries(tmp_rid, tmp_va, tmp_size);

} elsef

tib_must_purge itr_entries(tmp_rid, tmp_va, tmp_size);
tlb_must_purge itc_entries(tmp_rid, tmp_va, tmp_size);
tib_may_purge dtc_entries(tmp_rid, tmp_va, tmp_size);

Privileged Operation fault
Register NaT Consumption fault

ptr

/l'ingtruction_form

Unimplemented Data Address fault
Virtualization fault

For the data form, software must issue a data serialization operation to ensure the purge is
completed before issuing an instruction dependent upon the purge. For the instruction form,
software must issue an instruction serialization operation to ensure the purge is completed before
fetching an instruction dependent on that purge.

Volume 3: Instruction Reference

3:213

rfi

rfi — Return From Interruption

Format:

Description:

3:214

rfi B8

The machine context prior to an interruption is restored. PSR is restored from IPSR, IPSR is
unmodified, and IP isrestored from |1P. Execution continues at the bundle address |oaded into the
IP, and the instruction slot loaded into PSR.ri.

Thisinstruction must be immediately followed by a stop; otherwise, operation is undefined. This
instruction switches to the register bank specified by IPSR.bn. Instructions in the same instruction
group that access GR16 to GR31 reference the previous register bank. Subsegquent instruction
groups reference the new register bank.

Thisinstruction performs instruction serialization, which ensures:

« prior modifications to processor register resources that affect fetching of subsequent
instruction groups are observed.

* prior modifications to processor register resources that affect subsequent execution or data
memory accesses are observed.

* prior memory synchronization (sync.i) operations have taken effect on the local processor
instruction cache.

* subseguent instruction group fetches (including the target instruction group) are re-initiated
after rfi completes.

The rfi instruction must be in an instruction group after the instruction group containing the
operation that is to be serialized.

Thisinstruction can only be executed at the most privileged level, and when PSR.vm is 0. This
instruction can not be predicated.

Execution of thisinstruction is undefined if PSR.ic or PSR.i are 1. Software must ensure that an
interruption cannot occur that could modify 1P, IPSR, or IFS between when they are written and
the subsequent rfi.

Execution of thisinstruction is undefined if IPSR.ic is 0 and the current register stack frameis
incomplete.

This instruction does not take Lower Privilege Transfer, Taken Branch or Single Step traps.

If thisinstruction sets PSR.ri to 2 and the target isan ML X bundle, then an Illegal Operation fault
will be taken on the target bundle.

If IPSR.isis 1, control isresumed in the |A-32 instruction set at the virtual linear address specified
by 11P{31:0}. PSR.di does not inhibit instruction set transitions for thisinstruction. If PSR.dfhis 1
after rfi completes execution, a Disabled FP Register fault is raised on the target 1 A-32 instruction.

If IPSR.isis 1 and an Unimplemented I nstruction Addresstrap istaken, [P will contain the original
64-hit target IP. (The value will not have been zero extended from 32 hits.)

When entering the 1A-32 instruction set, the size of the current stack frameis set to zero, and all
stacked general registers are | eft in an undefined state. Software can not rely on the value of these
registers across an instruction set transition. Software must ensure that BSPSTORE==BSP on entry
to the | A-32 instruction set, otherwise undefined behavior may result.

If IPSR.isis 1, software must set other PSR fields properly for |A-32 instruction set execution;
otherwise processor operation is undefined. See Table 3-2, “ Processor Status Register Fields’ on
page 2:21 for details.

Volume 3: Instruction Reference

ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf

rfi

Software must issue amf instruction before thisinstruction if memory ordering is required between
| A-32 processor-consistent and Itanium unordered memory references. The processor does not
ensure |tanium-instruction-set-generated writes into the instruction stream are seen by subsequent
|A-32 instructions.

Software must ensure the code segment descriptor and selector are loaded before issuing this
instruction. If the target EIP value exceeds the code segment limit or has a code segment privilege
violation, an 1A_32_Exception(GPFault) exception is raised on the target 1 A-32 instruction. For
entry into 16-bit |A-32 code, if [P is not within 64K-bytes of CSD.base a GPFault israised on the
target instruction.

EFLAGf and PSR.id are unmodified until the successful completion of the target |A-32
instruction. PSR.da, PSR.dd, PSR.ia and PSR.ed are cleared to zero before the target 1A-32
instruction begins execution.

| A-32 instruction set execution leaves the contents of the ALAT undefined. Software can not rely
on ALAT state across an instruction set transition. On entry to 1A-32 code, existing entriesin the
ALAT areignored.

Operation: if (Ifollowed by_stop())
undefined_behavior();

unimplemented_address=0;
if (PSR.cpl!=0)
privileged operation_fault(0);

if (PSRvm==1)
virtudization fault();

taken rfi=1;

PSR = CR[IPSR];
if (CR[IPSR].is==1) { /lresume |A-32 ingtruction set
if (CR[IPSR].ic==0|| CR[IPSR].dt==0||
CR[IPSR].mc==1|| CR[IPSR].it == 0)
undefined_behavior();
tmp_IP=CRJlIF];
if (limpl_uia fault_supported() & &
((CR[IPSR].it && unimplemented_virtua_address(tmp_IP, IPSR.vm))
[l CCR[IPSR].it && unimplemented physica_address(tmp_IP))))
unimplemented_address= 1;
/lcompute effective instruction pointer
EIP{31:0} = CR[IIP|{31:0} - AR[CSD].Basg;
/lforce zero-sized restored frame
rse_restore_frame(0, 0, CFM.sof);
CFM.sof =0;
CFM.sol =0;
CFM.sor =0;
CFM.rrb.gr=0;
CFM.rrb.fr=0;
CFM.rrb.pr =0;
rse_invdidate_non_current_regs();
/[Theregister stack engineis disabled during 1A-32
/linstruction set execution.
} dse{ /Ireturn to Itanium instruction set
tmp_IP=CR[IIP] & ~Oxf;
dot = CR[IPSR].fi;
if ((CR[IPSR].it && unimplemented virtual_address(tmp_IP, IPSR.vm))
|| (CR[IPSR].it && unimplemented_physica_address(tmp_IP)))
unimplemented _address= 1;
if (CR{IFS.v) {

Volume 3: Instruction Reference 3:215

rfi

tmp_growth = -CFM .sof;
aa_frame_update(-CR[IFS].ifm.sof, 0);

rse_restore frame(CR[IFS].ifm.sof, tmp_growth, CFM.sof);
CFM = CR[IFS].ifm;

rse_enable_current_frame |oad();

}

IP=tmp_IP;

ingtruction_seridize();

if (unimplemented_address)
unimplemented_instruction_address_trap(0, tmp_IP);

Interruptions: Privileged Operation fault Unimplemented Instruction Address trap
Virtualization fault

Additional Faults on |A-32 target instructions

|A_32_Exception(GPFault)
Disabled FP Reg Fault if PSR.dfhis 1

Serialization: Animplicit instruction and data serialization operation is performed.

3:216 Volume 3: Instruction Reference

rsm

rsm — Reset System Mask

Format:

Description:

Operation:

(gp) rsm immy, M44

The complement of theimmy,, operand is ANDed with the system mask (PSR{23:0}) and the result
is placed in the system mask. See Section 3.3.2, “Processor Status Register (PSR)” on page 2:20.

The PSR system mask can only be written at the most privileged level, and when PSR.vm isO.

When the current privilege level is zero (PSR.cpl is 0), an rsm instruction whose mask includes
PSR.i may cause external interrupts to be disabled for an implementation-dependent number of
instructions, even if the qualifying predicate for the rsminstruction is false. Architecturally, the
extents of this external interrupt disabling “window” are defined as follows:

» External interrupts may be disabled for any instructions in the same instruction group as the
rsm, including those that precede the rsmin sequential program order, regardless of the value of
the qualifying predicate of the rsm instruction.

« If the qualifying predicate of the rsm istrue, then externa interrupts are disabled immediately
following the rsm instruction.

« |If the qualifying predicate of the rsm is fase, then external interrupts may be disabled until the
next data serialization operation that follows the rsm instruction.

The external interrupt disable window is guaranteed to be no larger than defined by the above
criteria, but it may be smaller, depending on the processor implementation.

When the current privilege level is non-zero (PSR.cpl is not 0), an rsm instruction whose mask
includes PSR.i may briefly disable external interrupts, regardless of the value of the qualifying
predicate of the rsm instruction. However, processor implementations guarantee that non-privileged
code cannot lock out external interrupts indefinitely (e.g., viaan arbitrarily long sequence of rsm
instructions with zero-valued qualifying predicates).

if (PR[gp]) {
if (PSR.cpl!=0)
privileged_operation_fault(0);

if (is_reserved_field(PSR_TYPE, PSR_SM, immyy))
reserved register_field_fault();

if (PSRvm==1)

virtudization_fault();
if (immp{1}) PSR{1} =0;) 1l'be
if (immy,{2}) PSR{2} =0) /1 up
if (iImmp{3}) PSR{3} =0;) Ilac
if (immpa{4}) PSR{4} =0;) /I mfl
if (immy,{ 5}) PSR{5} =0;) /I mfh
if (immp,{ 13}) PSR{13} =0;) Ilic
if (immyp,{ 14}) PSR{14} =0;) i
if (immyp,{ 15}) PSR{15} =0;) 1 pk
if (iImmp{17}) PSR{17} =0;) Il dt
if (immy,{ 18}) PSR{18} =0;) /1 dfl
if (immy,{19}) PSR{19} =0;) /I dfh
if (immp,{ 20}) PSR{20} =0;) II'sp
if (immp,{ 21}) PSR{21} =0;) /1 pp
if (immp,{22}) PSR{22} =0;) /1 di
if (iImmp{23}) PSR{23} =0;) /s

Volume 3: Instruction Reference

3:217

ftp://download.intel.com/design/Itanium/manuals/245318.pdf

rsm

Interruptions: Privileged Operation fault Virtualization fault
Reserved Register/Field fault

Serialization: Software must use a data serialize or instruction serialize operation before issuing instructions
dependent upon the altered PSR bits — except the PSR.i bit. The PSR.i bit isimplicitly serialized
and the processor ensures that external interrupts are masked by the time the next instruction
executes.

3:218 Volume 3: Instruction Reference

rum

rum — Reset User Mask

Format:

Description:

Operation:

Interruptions:

Serialization:

(gp) rum immy, M44

The complement of the immy,, operand is ANDed with the user mask (PSR{5:0}) and theresult is
placed in the user mask. See Section 3.3.2, “Processor Status Register (PSR)” on page 2:20.

PSR.up isonly cleared if the secure performance monitor bit (PSR.sp) is zero. Otherwise PSR.up is
not modified.

if (PRIqp]) { _ _
if (is_reserved_field(PSR_TYPE, PSR_UM, immyy))
reserved register_field_fault();

if (immp,{1}) PSR{1} =0;) 1'be
if (iMmmps{2} && PSR.gp==0) /Inon-secure perf monitor
PSR{2} =0;) /l'up
if (immp,{3}) PSR{3} =0;) Ilac
if (immy{4}) PSR{4} =0;) I mfl
if immy{5}) PSR{5} =0;) /I mfh
}
Reserved Register/Field fault

All user mask modifications are observed by the next instruction group.

Volume 3: Instruction Reference 3:219

ftp://download.intel.com/design/Itanium/manuals/245318.pdf

setf

setf — Set Floating-point Value, Exponent, or Significand

Format:

Description:

(qp) setf.s fy=r; single form
(gp) setf.d fy=r; double_form
(ap) setf.exp fy=r; exponent_form
(qp) setf.sig fy=rp significand_form

M18
M18
M18
M18

In the single and double forms, GRr, istreated asasingle precision (in the single_form) or double

precision (in the double_form) memory representation, converted into floating-point register
format, and placed in FR f4, as shown in Figure 5-4 and Figure 5-5 on page 1:89, respectively.

In the exponent_form, bits 16:0 of GR r,, are copied to the exponent field of FR f; and bit 17 of GR

r, iscopied to the sign bit of FR f;. The significand field of FR f; is set to one (0x800...000).

Figure 2-41. Function of setf.exp

63 18 17 0
GR
FRf; [s|exponent | 1000 000

In the significand_form, the valuein GR r, is copied to the significand field of FR f;.

The exponent field of FR f; is set to the biased exponent for 2.088 (Ox1003E) and the sign field of

FR f; is set to positive (0).

Figure 2-42. Function of setf.sig

3:220

63 0

GR r

v

FRf; |0| Ox1003E significand

For al forms, if the NaT bit corresponding to r, isequal to 1, FR f; is set to NaT Val instead of the

computed result.

Volume 3: Instruction Reference

ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf

Operation:

Interruptions:

if (PR[gp]) {
fp_check_target_register(fy);
if (tmp_isrcode =fp_reg_disabled(fy, 0, O, 0))
disabled fp_register_fault(tmp_isrcode, 0);

if (GRJ[rj].nat) {

if (single_form)

FR[f;] =fp_mem to_fr_format(GR[r,], 4, 0);
elseif (double_form)

FR[f,] =fp_mem to_fr_format(GR[r,], 8, 0);
eseif (sgnificand_form) {

FR([f,].significand = GR[r,);

FR[f,].exponent = FP_INTEGER_EXP;

FR[f;].50n=0;

} dse{ I/ exponent_form
FR[f1].significand = 0x8000000000000000;
FR[f1].exp = GR[r2]{ 16:0};

FR[f1].d9gn = GR[r2|{17};

} dse
FR[f;] = NATVAL;

fp_update_psr(fy);

Illegal Operation fault Disabled Floating-point Register fault

Volume 3: Instruction Reference

setf

3:221

shl

shl — Shift Left

Format:

Description:

Operation:

Interruptions:

3:222

(qp) shl ry=rpr3 17
(gp) shl rq=ry,, countg pseudo-op of: (gp) dep.z rq =r,, countg, 64-countg

Thevaluein GR, isshifted to the left, with the vacated bit positionsfilled with zeroes, and placed
in GR r4. The number of bit positionsto shift is specified by the valuein GR r5 or by an immediate
value countg. The shift count isinterpreted as an unsigned number. If the valuein GR r is greater

than 63, then the result is all zeroes.

See “dep — Deposit” on page 3:48 for the immediate form.

if (PRlap]) {
check_target_register(rq);

count = GR[r];
GR{r4] = (count > 63)?0: GR[r,] << count;
GR{rq].nat = GR{r,].nat || GR[r3].nat;

Illegal Operation fault

Volume 3: Instruction Reference

shladd

shladd — Shift Left and Add

Format: (gp) shladd rq =r,, county, r3 A2

Description: Thefirst source operand is shifted to the | eft by count, bits and then added to the second source
operand and the result placed in GR r4. The first operand can be shifted by 1, 2, 3, or 4 bits.

Operation: if (PR[gp]) {
check_target_register(ry);

GR[r4] = (GR[r,] << count,) + GR{r4];
GR[r].nat = GR[r].nat || GR[r3].nat;
}

Interruptions: 1llegal Operation fault

Volume 3: Instruction Reference 3:223

shladdp4

shladdp4 — Shift Left and Add Pointer

Format: (gp) shladdp4 rq =r,, county, r3 A2

Description: Thefirst source operand is shifted to the left by count, bits and then is added to the second source
operand. The upper 32 bits of the result are forced to zero, and then bits { 31:30} of GR rz are
copied to bits {62:61} of the result. Thisresult is placed in GR r4. Thefirst operand can be shifted
by 1, 2, 3, or 4 hits.

Figure 2-43. Shift Left and Add Pointer

orec o0

Operation: if (PR[gp]) {
check_target_register(rq);

tmp_res= (GR[r,] << count,) + GR[r3];
tmp_res=zero_ext(tmp_res{31:0}, 32);
tmp_res{ 62:61} = GR([r3]{31:30};
GR[rq] =tmp_res,
GR{rq].nat = GR[rj].nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault

3:224 Volume 3: Instruction Reference

shr

shr — Shift Right

Format: (gp) shr ry=r3z, 1y signed_form 15
(gp) shru ry=rgz, 1, unsigned_form 15
(gp) shr rq=r3, countg pseudo-op of: (qp) extr rq = rs, countg, 64-countg
(gp) shr.u rq =rg, countg pseudo-op of: (gp) extr.u ry =rs, countg, 64-countg

Description: ~ Thevaluein GR r3 is shifted to the right and placed in GR r4. In the signed_form the vacated bit
positions are filled with bit 63 of GR r3; in the unsigned_form the vacated bit positions arefilled
with zeroes. The number of bit positions to shift is specified by the valuein GR r, or by an
immediate value countg. The shift count isinterpreted as an unsigned number. If the valuein GRr,
isgreater than 63, then theresultisall zeroes (for the unsigned_form, or if bit 63 of GR rz was0) or
all ones (for the signed_form if bit 63 of GR r3 was 1).

If the.u completer is specified, the shift isunsigned (logical), otherwiseit is signed (arithmetic).
See “extr — Extract” on page 3:51 for the immediate forms.

Operation: if (PR[gp]) {
check_target_register(ry);

if (sgned_form) {
count = (GR[r,] >63)?63: GR[r,];
GR[r] = shift_right_signed(GR{[r3], count);
} dsef
count = GR[r];
GR[r] = (count > 63)?0: shift_right_unsigned(GR([r3], count);

GR[r].nat = GR[r,].nat || GR[r3].nat;

Interruptions: Illegal Operation fault

Volume 3: Instruction Reference 3:225

shrp

shrp — Shift Right Pair

Format: (gp) shrp rq=ry, r, countg 110

Description: The two source operands, GR r, and GR r3, are concatenated to form a 128-bit value and shifted to
the right countg bits. The |east-significant 64 bits of the result are placed in GR ;.

The immediate val ue countg can be any number in the range O to 63.

Figure 2-44. Shift Right Pair

GRry: GRrj3:

GR r:

Operation: if (PR[gp]) {
check_target_register(rq);

templ = shift_right_unsigned(GR[r], countg);
temp2 = GR{r,] << (64 - countg);
GR[r4] = zero_ext(templ, 64 - countg) | temp2;
GR[r4].na = GR[r,].nat || GR[r].nat;

}

Interruptions: Illegal Operation fault

3:226 Volume 3: Instruction Reference

srlz

srlz — Serialize

Format:

Description:

Operation:

Interruptions:

(ap) srlz.i instruction_form M24
(ap) srlzd data_form M24

Instruction serialization (srlz.i) ensures:

« prior modifications to processor register resources that affect fetching of subsequent
instruction groups are observed,

« prior modifications to processor register resources that affect subsequent execution or data
memory accesses are observed,

« prior memory synchronization (sync.i) operations have taken effect on the local processor
instruction cache,

« subsequent instruction group fetches are re-initiated after srlzi completes.

The slzi instruction must be in an instruction group after the instruction group containing the
operation that isto be serialized. Operations dependent on the serialization must bein aninstruction
group after the instruction group containing the sz.i.

Data serialization (srlz.d) ensures:

« prior modifications to processor register resources that affect subsequent execution or data
memory accesses are observed.

The s1zd instruction must be in an instruction group after the instruction group containing the
operation that is to be serialized. Operations dependent on the serialization must follow the srlz.d,
but they can be in the same instruction group as the srlz.d.

A srlz cannot be used to stall processor data memory references until prior data memory references,
or memory fences are visible or “accepted” by the external platform.

The following processor resources require a serialize to ensure side-effects are observed; CRs,
PSR, DBRs, IBRs, PMDs, PMCs, RRs, PKRs, TRs and TCs (refer to Section 3.2, “ Serialization”
on page 2:15 for details).

if (PR[gp]) {
if (ingtruction_form)
instruction_serialize();
dse // data_form
data_seridize();
}

None

Volume 3: Instruction Reference 3:227

ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf

ssm

ssm — Set System Mask

Format:

Description:

Operation:

Interruptions:

Serialization:

3:228

(dp) ssm immy,

M44

The imm,, operand is ORed with the system mask (PSR{23:0}) and theresult is placed in the
system mask. See Section 3.3.2, “Processor Status Register (PSR)” on page 2:20.

The PSR system mask can only be written at the most privileged level, and when PSR.vm isO.

The contents of the interruption resources (that are overwritten when the PSR.ic bit is 1), are
undefined if an interruption occurs between the enabling of the PSR.ic bit and a subsequent
instruction serialize operation.

if (PRIap) {

}

Privileged Operation fault

if (PSR.cpl!=0)

privileged_operation_fault(0);

if (is_reserved field(PSR_TYPE, PSR_SM, immyy))
reserved _register_field_fault();

if (PSRvm==1)

virtualization_fault();

if (immp{ 1})
if (immp,{ 2})
if (immp4{ 3})
it (immp,{ 4})
if (immp4{ 5})
if (immp,{ 13})
if (immp,{ 14})
if (immp,{ 15})
if (immp{ 17})
if (immp,{ 18})
if (immp{ 19})
if (immp,{ 20})
if (immp{ 21})
if (immp{ 22})
if (immps{ 23})

PSR{1} = 1;)
PSR{2} = 1)

PSR{3} = 1)

PSR{4} = 1;)

PSR{5} = 1)

PSR{13} = 1;)
PSR{14} = 1;)
PSR{15} = 1;)
PSR{17} = 1)
PSR{18} = 1;)
PSR{19} = 1;)
PSR{20} = 1;)
PSR{21} = 1,)
PSR{22} = 1)
PSR{23} = 1))

Reserved Register/Field fault

Il'be
Il'up
Il'ac
1 mfl
Il mfh
Ilic
i

1l pk
Il dt
I dfl
Il dfh
II'sp
I'pp
I di

II's

Virtualization fault

Software must issue a data serialize or instruction serialize operation before issuing instructions
dependent upon the altered PSR bits from the ssm instruction. Unlike with the rsm instruction,
setting the PSR.i bit is not treated specially. Refer to Section 3.2, “ Serialization” on page 2:15 for a
description of serialization.

Volume 3: Instruction Reference

ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf

st

st — Store

Format: (gp) stsz.sttype.sthint [rg] =r5 normal_form, no_base_update form M4
(gp) stsz.sttype.sthint [r3] =rp, immg normal_form, imm_base_update_form M5
(gp) st16.sttype.sthint [r3] =ry, ar.csd sixteen_byte form, no_base_update form M4
(gp) st8.spill.sthint [rg] =15 spill_form, no_base update form M4
(gp) st8.spill.sthint [r3] =ry, immgy spill_form, imm_base update form M5

Description: A value consisting of the least significant sz bytes of the value in GR r,, is written to memory

starting at the address specified by the value in GR r3. The values of the sz completer are given in
Table 2-32 on page 3:138. The sttype completer specifies specia store operations, which are
described in Table 2-49. If the NaT bit corresponding to GR r3is 1, or in sixteen_byte form or
normal_form, if the NaT bit corresponding to GR r, is 1, a Register NaT Consumption fault is
taken.

In the sixteen_byte form, two 8-byte values are stored as a single, 16-byte atomic memory write.
Thevaluein GRr, iswritten to memory starting at the address specified by thevaluein GRr3. The
value in the Compare and Store Data application register (AR[CSD]) is written to memory starting
at the address specified by the valuein GR r3 plus 8.

In the spill_form, an 8-byte value is stored, and the NaT bit corresponding to GR r5, is copied to a
bit in the UNAT application register. Thisinstruction is used for spilling aregister/NaT pair. See
Section 4.4.4, “Control Speculation” on page 1:56 for details.

Intheimm_base update form, the valuein GRr3 is added to asigned immediate value (immg) and
the result is placed back in GR r3. This base register update is done after the store, and does not
affect the store address, nor the value stored (for the case wherer, and r5 specify the sameregister).
Base register update is not supported for the st16 instruction.

Table 2-49. Store Types

tt . . .
sttype Interpretation Special Store Operation
Completer
none Normal store
rel Ordered store An ordered store is performed with release semantics.

For more details on ordered stores see Section 4.4.7, “Memory Access Ordering” on page 1:68.

The ALAT is queried using the physical memory address and the access size, and all overlapping
entries are invalidated.

The value of the sthint completer specifies the locality of the memory access. The values of the
sthint completer are given in Table 2-50. A prefetch hint isimplied in the base update forms. The
address specified by the valuein GR ry after the base update acts as a hint to prefetch the indicated
cacheline. This prefetch uses the locality hints specified by sthint. See Section 4.4.6, “Memory
Hierarchy Control and Consistency” on page 1:64.

Hardware support for 16 instructions that reference a page that is neither a cacheable page with
write-back policy nor aNaTPageis optional. On processor models that do not support such st16
accesses, an Unsupported Data Reference fault is raised when an unsupported referenceis
attempted.

For the sixteen_byte form, Illegal Operation fault is raised on processor models that do not support
the instruction. CPUID register 4 indicates the presence of the feature on the processor model. See
Section 3.1.11, “Processor |dentification Registers’ on page 1:31 for details.

Volume 3: Instruction Reference 3:229

ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf

st

Table 2-50. Store Hints

Operation:

Interruptions:

3:230

sthint Completer

Interpretation

none

Temporal locality, level 1

nta

Non-temporal locality, all levels

if (PRIap]) {

}

size=spill_form?8: (sixteen_byte form? 16: s2);
itype=WRITE;
if (size== 16) itype |- UNCACHE_OFT;

otype = (sttype == ‘rel")? RELEASE: UNORDERED;

if (Sxteen_byte form & &lingruction_implemented(ST16))

illega_operation fault();
if (imm_base_update_form)
check_target_register(ry);

if (GR[rg].net || ((sixteen_byte form || normal_form) && GRr,].nat))

register_nat_consumption_fault(WRITE);

paddr = tib_trandate(GR(r3], size, itype, PSR.cpl, & mattr,

&tmp_unused);
if (spill_form && GR[r,].nat) {

natd_gr_write(GR([r], paddr, size, UM.be, mattr, otype, sthint);

}
dse{
if (Sxteen_byte form)

mem_writel6(GR[r,], AR[CSD], paddr, UM.be, mattr, otype, sthint);

dse

mem_write(GR{r,], paddr, size, UM .be, mattr, otype, sthint);

}

if (spill_form) {
bit_pos= GR[r3]{8:3};
AR[UNAT]{ bit_pos} = GR{[r,].nat;

aat_inval_multiple_entries(paddr, size);

if (imm_base_update_form) {
GRIr3] = GRIr3] +sign_ext(immy, 9);
GR[r3].nat =0;
mem_implicit_prefetch(GR{[r3], sthint, WRITE);

Illegal Operation fault

Register NaT Consumption fault
Unimplemented Data Address fault
Data Nested TLB fault

Alternate Data TLB fault

VHPT Data fault

Data TLB fault

Data Page Not Present fault

Data NaT Page Consumption fault

DataKey Miss fault

Data Key Permission fault

Data Access Rights fault

Data Dirty Bit fault

Data Access Bit fault

Data Debug fault

Unaligned Data Reference fault
Unsupported Data Reference fault

Volume 3: Instruction Reference

stf

stf — Floating-point Store

Format: (gp) stffsz.sthint [rg] =f5 normal_form, no_base_update_form M9
(gp) stffsz.sthint [r3] = fy, immyg normal_form, imm_base_update_form M10
(gp) stf8.sthint [rg] =1, integer_form, no_base_update_form M9
(gp) stf8.sthint [rg] =f,, immg integer_form, imm_base_update_form M10
(gp) stf.spill.sthint [rg] =1, spill_form, no_base update form M9
(qp) stf.spill.sthint [r3] =fo, immg spill_form, imm_base update form M10

Description: A value, consisting of fsz bytes, is generated from the value in FR f, and written to memory starting
at the address specified by the value in GR r3. In the normal_form, the value in FR f, is converted
to the memory format and then stored. In the integer_form, the significand of FR f, is stored. The
values of the fsz completer are given in Table 2-35 on page 3:143. In the normal_form or the
integer_form, if the NaT bit corresponding to GR rzis 1 or if FR f, contains NaT Val, a Register
NaT Consumption fault is taken. See Section 5.1, “ Data Types and Formats’ on page 1:81 for
details on conversion from floating-point register format.

In the spill_form, a 16-byte value from FR f, is stored without conversion. Thisinstruction is used
for spilling aregister. See Section 4.4.4, “Control Speculation” on page 1:56 for details.

Intheimm_base update form, the valuein GR r3 is added to asigned immediate value (immg) and
the result is placed back in GR r3. This base register update is done after the store, and does not
affect the store address.

The ALAT is queried using the physical memory address and the access size, and all overlapping
entries are invalidated.

The value of the sthint completer specifies the locality of the memory access. The values of the
sthint completer are given in Table 2-50 on page 3:230. A prefetch hint isimplied in the base
update forms. The address specified by the value in GR r3 after the base update acts as a hint to
prefetch the indicated cache line. This prefetch uses the locality hints specified by sthint. See
Section 4.4.6, “Memory Hierarchy Control and Consistency” on page 1:64.

Hardware support for stfe (10-byte) instructions that reference a page that is neither a cacheable
page with write-back policy nor a NaTPage is optional. On processor models that do not support
such stfe accesses, an Unsupported Data Reference fault is raised when an unsupported reference is
attempted.

Volume 3: Instruction Reference 3:231

ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf

stf

Operation: if (PR[gp]) {
if (imm_base _update_form)
check_target_register(ry);
if (tmp_isrcode = fp_reg_disabled(f,, 0, 0, 0))
disabled fp_register_fault(tmp_isrcode, WRITE);

if (GR[rg].nat || ('spill_form && (FR[f,] == NATVALY)))
register_nat_consumption_fault(WRITE);

size=spill_form? 16: (integer_form? 8: fsz);
itype=WRITE;
if (size== 10) itype |- UNCACHE_OFT;

paddr = tlb_trandate(GR(r3], size, itype, PSR.cpl, & mattr, &tmp_unused);
val =fp_fr_to_mem format(FR[f,], Size, integer_form);

mem_write(val, paddr, size, UM.be, mattr, UNORDERED, sthint);
aat_inval_multiple_entries(paddr, size);

if (imm_base_update_form) {
GR(r3] = GR[r3] +sign_ext(immy, 9);
GR{r3].nat =0;
mem_implicit_prefetch(GR{[r3], sthint, WRITE);

}
}
Interruptions: Illegal Operation fault Data NaT Page Consumption fault
Disabled Floating-point Register fault Data Key Miss fault
Register NaT Consumption fault Data Key Permission fault
Unimplemented Data Address fault Data Access Rights fault
Data Nested TLB fault Data Dirty Bit fault
Alternate Data TLB fault Data Access Bit fault
VHPT Data fault Data Debug fault
Data TLB fault Unaligned Data Reference fault
Data Page Not Present fault Unsupported Data Reference fault

3:232 Volume 3: Instruction Reference

sub

sub — Subtract

Format: (gp) sub ry=rp,r3 register_form Al
(gp) sub ry=rpr3 1 minusl_form, register_form Al
(gp) sub ry=immg, r3 imm8_form A3

Description: The second source operand (and an optional constant 1) are subtracted from the first operand and
the result placed in GR r4. In the register form thefirst operand is GR r,; in theimmediate form the
first operand is taken from the sign-extended immg encoding field.

The minusl_formisavailable only in the register form (although the equivalent effect can be
achieved by adjusting the immediate).

Operation: if (PR[gp]) {
check_target_register(rq);

tmp_src = (register_form? GR{r,]: sign_ext(immg, 8));
tmp_nat = (register_form? GR[r] .nat: 0);
if (minusl_form)
GR[rq] =tmp_src- GR[rg] - L;
ese
GR[rq] =tmp_src- GR[r3];

GR[r4].nat = tmp_nat || GR[ry].nét;
}

Interruptions: Illegal Operation fault

Volume 3: Instruction Reference 3:233

sum

sum — Set User Mask

Format:

Description:

Operation:

Interruptions:

Serialization:

3:234

(ap) sum immy, M44

The imm,, operand is ORed with the user mask (PSR{5:0}) and the result is placed in the user
mask. See Section 3.3.2, “Processor Status Register (PSR)” on page 2:20.

PSR.up can only be set if the secure performance monitor bit (PSR.sp) iszero. Otherwise PSR.upis
not modified.

if (PRIGp]) { _ _
if (is_reserved field(PSR_TYPE, PSR_UM, immy,))
reserved _register_field_fault();

if (immp{1}) PSR{1} =1,) Il'be
if (iMMmps{2} && PSR.p==0) /Inon-secure perf monitor
PSR{2} = 1;) /l'up
if (immp{3}) PSR{3} =1, Ilac
if (immp{4}) PSR{4} = 1;) I mfl
if immp{5}) PSR{5} = 1) /I mfh
}
Reserved Register/Field fault

All user mask modifications are observed by the next instruction group.

Volume 3: Instruction Reference

ftp://download.intel.com/design/Itanium/manuals/245318.pdf

sxt

sxt — Sign Extend
Format: (gp) sxtxsz ry=r3 129

Description: ~ Thevauein GRr3issign extended from the bit position specified by xsz and the result is placed in
GR r;. The mnemonic values for xsz are given in Table 2-51.

Table 2-51. xsz Mnemonic Values

XSz Mnemonic Bit Position
1 7
2 15
4 31

Operation: if (PR[gp]) {
check_target _register(ry);

GRJrq] =sign_ext(GR[r3],xsz* 8);
GR[r].nat = GR[r].n&t;
}

Interruptions: 1llegal Operation fault

Volume 3: Instruction Reference 3:235

sync

sync — Memory Synchronization

Format:

Description:

Operation:

Interruptions:

3:236

(gp) sync.i M24

sync.i ensures that when previously initiated Flush Cache (fc, fc.i) operationsissued by the local
processor become visible to local data memory references, prior Flush Cache operations are also
observed by the local processor instruction fetch stream. sync.i also ensures that at the time
previoudly initiated Flush Cache (fc, fc.i) operations are observed on a remote processor by data
memory references they are also observed by instruction memory references on the remote
processor. sync.i is ordered with respect to al cache flush operations as observed by another
processor. A sync.i and a previous fc must be in separate instruction groups. If semantically
required, the programmer must explicitly insert ordered data references (acquire, release or fence
type) to appropriately constrain sync.i (and hence fc and fc.i) visibility to the data stream on other
processors.

sync.i is used to maintain an ordering relationship between instruction and data caches on local and
remote processors. An instruction serialize operation must be used to ensure synchronization
initiated by sync.i on the local processor has been observed by a given point in program execution.

An example of self-modifying code (local processor):

& [L1] =data /Igtoreinto local ingtruction stream
fei L1 /lflush stale datum from instruction/data cache
" /Irequire instruction boundary between fc.i and sync.i
sync. /lensurelocal and remote datalinst caches
[lare synchronized
;rlz.i [lensure sync has been observed by theloca processor,
" /lensure subsequent instructions observe
/Imodified memory
L1: target [lingtruction modified
if (PRap]) {
ingtruction_synchronize();
}
None

Volume 3: Instruction Reference

tak

tak — Translation Access Key

Format:

Description:

Operation:

Interruptions:

(gp) tek ry=rsz M46

The protection key for agiven virtual addressis obtained and placed in GRr;.

When PSR.dt is 1, the DTLB and the VHPT are searched for the virtual address specified by GR r3
and the region register indexed by GR r3 bits{63:61}. If amatching present translation is found,
the protection key of the translation isplaced in bits 31:8 of GR r;. If amatching present trandlation
is not found or if an unimplemented virtual addressis specified by GR r3, the value 1 is returned.

When PSR.dt is O, only the DTLB is searched, because the VHPT walker is disabled. If no
matching present translation is found in the DTLB, the value 1 is returned.

A tranglation with the NaT Page attribute is not treated differently and returns its key field.

Thisinstruction can only be executed at the most privileged level, and when PSR.vm isO.

if (PRgp]) {
itype= NON_ACCESS[TAK;
check_target_register(rq);

if (PSR.cpl!=0)
privileged_operation_fault(itype);

if (GR[r3].nat)
register_nat_consumption_fault(itype);

if (PSRvm==1)
virtudization_fault();

GRIr1] = tlb_access key(GR{r3], itype);

GR[rq].nat =0;
}
Illegal Operation fault Register NaT Consumption fault
Privileged Operation fault Virtualization fault

Volume 3: Instruction Reference 3:237

thit

tbit — Test Bit

Format:

Description:

Table 2-52. Test Bit Relations for Normal and unc tbits

(gp) thit.trel.ctype pq, p; =r3, POSg

116

The bit specified by the pos; immediate is selected from GR r3. The selected bit forms a single bit
result either complemented or not depending on the trel completer. This result iswritten to the two
predicate register destinations p; and p,. The way the result is written to the destinationsis

determined by the compare type specified by ctype. See the Compare instruction and Table 2-15 on

page 3:37.

Thetrel completer values.nz and.z indicate non-zero and zero sense of the test. For normal and unc
types, only the.z value is directly implemented in hardware; the.nz valueis actually a pseudo-op.
For it, the assembler simply switches the predicate target specifiers and uses the implemented
relation. For the paralel types, both relations are implemented in hardware.

trel

Test Relation

Pseudo-op of

nz

z

selected bit == 1
selected bit == 0

P’ P2

Table 2-53. Test Bit Relations for Parallel tbits

3:238

trel

Test Relation

nz

selected bit==1

z

selected bit ==

If the two predicate register destinations are the same (p; and p, specify the same predicate
register), the instruction will take an I1legal Operation fault, if the qualifying predicate is set, or if

the compare typeis unc.

Volume 3: Instruction Reference

Operation: if (PRap]) {
if (P, ==pp)
illegal_operation fault();

if (trel =='nZz’)
tmp_rel = GR[r3l{ posg};
dse

tmp_rel =IGR{r3){ posg};

switch (ctype) {
case'and’:
if (GR[rg].nat |'tmp_rel) {
PR[py] =0;

}
bresk;
case‘or’:
if (GR[rg].nat && tmp_rel) {
PRpy] = 1;
PRp] = 1;

}
bresk;
case‘orandem’:
if (GR[rg].nat && tmp_rel) {
PRpy] = 1;
} PR[p,] =0;
bresk;
case‘unc':
default:
if (GR[rz].nat) {
PR[py] =0;
PRIp,] =0;
} dsef
PR[py] =tmp_rel;
PR[p,] =!tmp_rdl;

}
break;
}
}ese{
if (ctype=="unc’) {
if (1 ==pp)
illega_operation fault();
PR[py] =0;
PRIp,] =0;
}

Interruptions: 1llegal Operation fault

Volume 3: Instruction Reference

thit

/l'nzZ' - test for 1

11'Z -testfor O

// and-type compare

I/ or-type compare

/I or.andcm-type compare

/I unc-type compare
// normal compare

3:239

tf

tf — Test Feature
Format: (gp) tf.trel.ctype pq, po = immg 130

Description: ~ Theimmg value (in the range of 32-63) selects the feature bit defined in Table 2-56 to be tested
from the features vector in CPUID[4]. See Section 3.1.11, “Processor Identification Registers’ on
page 1:31 for details on CPUID registers. The selected bit forms a single-bit result either
complemented or not depending on the trel completer. This result is written to the two predicate
register destinations p; and p,. Theway the result iswritten to the destinationsis determined by the
compare type specified by ctype. See the Compare instruction and Table 2-15 on page 3:37.

Thetrel completer values.nz and.z indicate non-zero and zero sense of the test. For normal and unc
types, only the.z value is directly implemented in hardware; the.nz valueis actually a pseudo-op.
For it, the assembler simply switches the predicate target specifiers and uses the implemented
relation. For the parallel types, both relations are implemented in hardware.

Table 2-54. Test Feature Relations for Normal and unc tf

trel Test Relation Pseudo-op of
nz selected feature available z p1 P2
z selected feature unavailable

Table 2-55. Test Feature Relations for Parallel tf

trel Test Relation
nz selected feature available
z selected feature unavailable

If the two predicate register destinations are the same (p; and p, specify the same predicate
register), the instruction will take an Illegal Operation fault, if the qualifying predicate is set or the
compare typeis unc.

Table 2-56. Test Feature Features Assignment

immg Feature Symbol Feature
32-63 none No features currently defined

Implementation of PSR.vm is optional. If it isimplemented but the instruction is disabled, this
instruction takes Virtualization fault when executed with PSR.vm equalsto 1.

3:240 Volume 3: Instruction Reference

ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf

Operation: if (PRap]) {
if (P, ==pp)

illegal_operation fault();
if (PSRvm==1&& vm tf_disabled())

virtudization_fault();
tmp_rel = cpuid[4]{imm5};

if (trel =='2')
tmp_rel =Itmp _rd;

switch (ctype) {
case'and’:
if ("tmp_rel) {
PR[py] =0;
} PR[p,] =0;
break;
case'or':
if (tmp_rel) {
PR[py] = 1;
PRIp] = 1;

}
break;
case‘or.andcm’:
if (tmp_rel) {
PR[py] = 1L,
PR[p,] =0;

}
break;

case‘unc':

defaullt:
PR[p,] =tmp_rd;
PR[p,] =!tmp_rd;
bresk;

}
} else{
if (ctype=="unc’) {
it (P ==py)

tf

/'Z -testfor O, not 1

/I and-type compare

/I or-type compare

/I or.andcm-type compare

I/ unc-type compare
// norma compare

illega_operation fault();
if (PSRvm==1&& vm_tf_disabled())
virtudization_fault();

PRpy] =0;
PR[p,] =0;
}
}
Interruptions: lllegal Operation fault Virtualization fault

Volume 3: Instruction Reference 3:241

thash

thash — Translation Hashed Entry Address

Format:

Description:

Operation:

Interruptions:

3:242

(gp) thash ry=r3 M46

A Virtual Hashed Page Table (VHPT) entry address is generated based on the specified virtual
address and the result is placed in GR r4. The virtual addressis specified by GR r5 and the region
register selected by GR r3 bits {63:61} .

If thash is given aNaT input argument or an unimplemented virtual address as an input, the
resulting target register value is undefined, and its NaT bit is set to one.

When the processor is configured to use the region-based short format VHPT (PTA.vf=0), the value
returned by thash is defined by the architected short format hash function. See Section 4.1.5.3,
“Region-based VHPT Short Format” on page 2:58.

When the processor is configured to use the long format VHPT (PTA.vf=1), thash performs an
implementation-specific long format hash function on the virtual address to generate a hash index
into the long format VHPT.

In the long format, atrandation in the VHPT must be uniquely identified by its hash index
generated by this instruction and the hash tag produced from the ttag instruction.

The hash function must use al implemented region bits and only virtual address bits { 60:0} to
determine the offset into the VHPT. Virtual address bits{63:61} are used only by the short format
hash to determine the region of the VHPT.

Thisinstruction must be implemented on all processor models, even processor models that do not
implement a VHPT walker.

Thisinstruction can only be executed when PSR.vm is 0.

if (PRop]) { _
check_target_register(rq);

if (PSRvm==1)
virtualization_fault();

if (GR[r3].nat || unimplemented_virtual_address(GR([r3], PSR.vm)) {
GR{r4] = undefined();
GRIrq].nat =1,
}ese{
tmp_vr = GR[r3]{ 63:61};
tmp_va= GR[r3]{ 60:0};
GR([r4] =tlb_vhpt_hash(tmp_vr, tmp_va, RR[tmp_vr].rid,
RR[tmp_vr].ps);
GR[rq].nat =0,

}
Illegal Operation fault Virtualization fault

Volume 3: Instruction Reference

ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf

tnat

tnat — Test NaT
Format: (gp) tnat.trel.ctype py, po=r3 117

Description: ~ TheNaT bit from GR r5 formsasingle bit result, either complemented or not depending on the trel
completer. Thisresult iswritten to the two predicate register destinations, p; and p,. The way the
result iswritten to the destinations is determined by the compare type specified by ctype. See the
Compareinstruction and Table 2-15 on page 3:37.

Thetrel completer values.nz and.z indicate non-zero and zero sense of the test. For normal and unc
types, only the.z value is directly implemented in hardware; the.nz value is actually a pseudo-op.
For it, the assembler simply switches the predicate target specifiers and uses the implemented
relation. For the paralle types, both relations are implemented in hardware.

Table 2-57. Test NaT Relations for Normal and unc tnats

trel Test Relation Pseudo-op of
nz selected bit == 1 z p1 P2
z selected bit == 0

Table 2-58. Test NaT Relations for Parallel tnats

trel Test Relation
nz selected bit == 1
z selected bit ==

If the two predicate register destinations are the same (p; and p, specify the same predicate
register), the instruction will take an Illegal Operation fault, if the qualifying predicate is set, or if
the compare type isunc.

Volume 3: Instruction Reference 3:243

tnat

Operation: if (PR[ap]) {
if (0 ==pp)

illegal_operation fault();

if (trel ==‘nz’)

tmp_rel = GR[r3].nat;
dse

tmp_rel =!GR[r3].nat;

switch (ctype) {
case‘and’:
if (Itmp_rel) {

case‘or’:

case‘or.andem’:
if (tmp_rel) {
PRpy] =1,
PRIp,] =0;
}

break;
case‘unc'’:
default:
PR[p;] =tmp_rd;
PR[p,] =!tmp_rd;
break;
}
} elsef
if (ctype=="unc’) {
if (b ==p)

illegal_operation_fault();

PR[py] =0;
PR[py] =0;

}
Interruptions: Illegal Operation fault

3:244

/'nZ -testfor 1

/1'Z -testfor O

/I and-type compare

I/ or-type compare

/I or.andcm-type compare

I/ unc-type compare
/I norma compare

Volume 3: Instruction Reference

tpa

tpa — Translate to Physical Address
Format: (gp) tpary=rz M46

Description: The physical address for the virtual address specified by GRr3 is obtained and placed in GR ;.

When PSR.dt is 1, the DTLB and the VHPT are searched for the virtual address specified by GR r3
and theregion register indexed by GR r3 bits{63:61} . If amatching present translation isfound the
physical address of the translation is placed in GR r. If amatching present translation is not found
the appropriate TLB fault is taken.

When PSR.dt is O, only the DTLB is searched, because the VHPT walker is disabled. If no
matching present trandlation isfound inthe DTLB, an Alternate Data TLB fault israised if psr.icis
one or aDataNested TLB fault israised if psr.icis zero.

If thisinstruction faults, then it will set the non-access bit in the ISR. The ISR read and write bits
are not set.

Thisinstruction can only be executed at the most privileged level, and when PSR.vm isO.

Operation: if (PR[gp]) {
itype=NON_ACCESS|TPA;
check_target_register(rq);

if (PSR.cpl!=0)
privileged_operation_fault(itype);

if (GR[r3].nat)
register_nat_consumption_fault(itype);

GR[rq] =tlb_trandate nonaccess(GR{r3], itype);

GR[rq].nat =0;

}

Interruptions: lllegal Operation fault Alternate Data TLB fault
Privileged Operation fault VHPT Datafault
Register NaT Consumption fault Data TLB fault
Unimplemented Data Address fault Data Page Not Present fault
Virtualization fault Data NaT Page Consumption fault
Data Nested TLB fault

Volume 3: Instruction Reference 3:245

ttag

ttag — Translation Hashed Entry Tag
Format: (gp) ttag ry=r3 M46

Description: A tag used for matching during searches of the long format Virtual Hashed Page Table (VHPT) is
generated and placed in GRr4. Thevirtual addressis specified by GR r3 and the region register
selected by GRr3 bits { 63:61} .

If ttag isgiven aNaT input argument or an unimplemented virtual address as an input, the resulting
target register value is undefined, and its NaT bit is set to one.

The tag generation function generates an implementation-specific long format VHPT tag. The tag
generation function must use all implemented region bits and only virtual address bits { 60:0} .
PTA.vf isignored by thisinstruction.

A trandlation in the long format VHPT must be uniquely identified by its hash index generated by
the thash instruction and the tag produced from this instruction.

Thisinstruction must be implemented on all processor models, even processor models that do not
implement a VHPT walker.

Thisinstruction can only be executed when PSR.vm is 0.

Operation: if (PRap]) {
check_target_register(ry);

if (PSRvm==1)
virtualization_fault();

if (GR[r3].nat || unimplemented_virtual_address(GR([r3], PSR.vm)) {
GR{r4] = undefined();
GRIrq].nat =1,

}ese{
tmp_vr = GR[r3]{ 63:61};
tmp_va= GR[r3]{ 60:0};
GR([r4] =tlb_vhpt_tag(tmp_va, RR[tmp_vr].rid, RR[tmp_vr].ps);
GR[rq].nat =0;

}
Interruptions: |llegal Operation fault Virtualization fault

3:246 Volume 3: Instruction Reference

unpack

unpack — Unpack

Format: (gp) unpackl.h rq=ry,r3 one_byte form, high_form 12
(gp) unpack2.h rq=r,,r3 two_byte form, high_form 12
(gp) unpack4.h ry=ryp,r3 four_byte form, high_form 12
(gp) unpackl.l ry=ry,r3 one_byte form, low_form 12
(gp) unpack2.l ry=ry,r3 two_byte form, low_form 12
(qp) unpack4.l ry=ry,r3 four_byte form, low_form 12

Description: ~ The data elements of GR r,, and r3 are unpacked, and the result placed in GR ry. In the high_form,
the most significant elements of each source register are selected, whilein the low_form the least
significant elements of each source register are selected. Elements are selected alternately from the
source registers.

Volume 3: Instruction Reference 3:247

unpack

Figure 2-45. Unpack Operation

3:248

GR o

unpackl.h

GR o

unpackl.|

GR1y:

unpack2.h

GRry:

unpack?2.|

GRry:

unpack4.h

GRry:

unpackd4.|

Volume 3: Instruction Reference

Operation: if (PRap]) {

check_target_register(rq);

if (one_byte form) {
X[0] = GR[r,J{ 7:0};
X[1] = GR[r,]{15:8};

X[2] = GR[r,]{ 23:16};
X[3] = GR{r,]{ 31:24};
xX[4] = GR[r;]{39:32};
X[5] = GR{r,]{ 47:40};
x[6] = GR[r,]{ 55:48};
X[7] = GR[r,]{ 63:56};

if (high_form)

GR[r4] = concatenates(

ese//low_form

GR[r4] = concatenates(

} dseif (two_byte form) {
x[0] = GR[r,]{15:0};

X[1] = GR[r,]{ 31:16};
X[2] = GR[r,]{47:32};
X[3] = GR[r;]{ 63:48};

if (high_form)

I/ one-byte elements

y[0] = GR{r3|{ 7:0};

y[1] = GRIr3l{158};

y[2] = GR[r3]{23:16};

y[3] = GR[r3]{31:24};

y[4] = GR[r3]{39:32};

y[5] = GRIr3l{47:40};

y[6] = GRIr3]{55:48};

y[7] = GRIr3l{6356};

x[7],y[7], x(6], y[6],
x[5], y[3], x[4], y[4]);

x[3], y[3], x[2], y[2],
x[1], y[11, X0}, y[0]);

y[0] = GRIr3l{15:0};
y[1] = GR[r3]{31:16};
y[2] = GR[r4]{47:32};
y[3] = GR([r3]{63:48};

I/ two-byte elements

GR[r4] = concatenated(x[3], y[3], x[2], y[2]);

ese// low_form

GR{r] = concatenate4(x[1], y[1], x[0], y[0]);

} dse{
x[0] = GRI[r,|{ 3L:0};

x[1] = GR[r,}{63:32};

if (high_form)

// four-byte elements
y[0] = GRIrgl{31:0};
y[1] = GR[r4]{63:32};

GRJr] = concatenate2(x[1], y[1]);

dse//low_form

GRr4] = concatenate2(x[0], y[0]);

}
GRrq].nat = GR[r].nat || GR[r3].nat;

}

Interruptions: lllegal Operation fault

Volume 3: Instruction Reference

unpack

3:249

vmsw

vmsw — Virtual Machine Switch

Format: vmsw.0 zero_form B8
vmsw.1 one_form B8

Description: Thisinstruction sets the PSR.vm bit to the specified value. Thisinstruction can be used to
implement transitions to/from virtual machine mode without the overhead of an interruption.

If instruction address trand ation is enabled and the page contai ning the vmsw instruction has access
rights equal to 7, then the new value is written to the PSR.vm bit. In the zero_form, PSR.vm is set
to 0, and in the one form, PSR.vmisset to 1.

Instructions after the vmsw instruction in the same instruction group may be executed with the old
or new value of PSR.vm. Instructionsin subsequent instruction groups will be executed with
PSR.vm equal to the new value.

If the above conditions are not met, this instruction takes a Virtualization fault.

Thisinstruction can only be executed at the most privileged level. Thisinstruction cannot be
predicated.

Implementation of PSR.vm isoptional. If it is not implemented, this instruction takes I11egal
Operation fault. If it isimplemented but is disabled, thisinstruction takes Virtualization fault when
executed at the most privileged level. See Section 3.4, “Processor Virtualization” on page 2:38 and
PAL_PROC_GET_FEATURES on page 2:429 for details.

Operation: if (limplemented_vm())
illega_operation fault();

if (PSR.cpl!'=0)
privileged_operation_fault(0);

if ((PSR.it==1&& itlb_ar() == 7) || vm_disabled())
virtualization_fault();

if (zero_form) {
PSRvm=0;
}

dse{
PSRvm=1;
}

Interruptions: Illegal Operation fault Virtualization fault
Privileged Operation fault

3:250 Volume 3: Instruction Reference

ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf

xchg

xchg — Exchange
Format: (gp) xchgszldhint rqy={rs],ro M16

Description: A value consisting of sz bytesisread from memory starting at the address specified by the valuein
GRr3. Theleast significant sz bytes of the value in GR r, are written to memory starting at the
address specified by the value in GR r3. The value read from memory is then zero extended and
placed in GR r; and the NaT bit corresponding to GR r4 is cleared. The values of the sz completer
are given in Table 2-59.

If the address specified by the value in GR r3 is not naturally aligned to the size of the value being
accessed in memory, an Unaligned Data Reference fault is taken independent of the state of the
User Mask alignment checking bit, UM.ac (PSR.ac in the Processor Status Register).

Both read and write access privileges for the referenced page are required.

Table 2-59. Memory Exchange Size

sz Completer Bytes Accessed
1 1 byte
2 2 bytes
4 4 bytes
8 8 bytes

The exchange is performed with acquire semantics, i.e., the memory read/write is made visible
prior to all subsequent data memory accesses. See Section 4.4.7, “ Sequentiality Attribute and
Ordering” on page 2:75 for details on memory ordering.

The memory read and write are guaranteed to be atomic.

Thisinstruction is only supported to cacheable pages with write-back write policy. Accesses to
NaT Pages cause a Data NaT Page Consumption fault. Accesses to pages with other memory
attributes cause an Unsupported Data Reference fault.

The value of the Idhint completer specifies the locality of the memory access. The values of the
Idhint completer are given in Table 2-34 on page 3:139. Locality hints do not affect program
functionality and may be ignored by the implementation. See Section 4.4.6, “Memory Hierarchy
Control and Consistency” on page 1:64 for details.

Operation: if (PR[gp]) {
check_target _register(rq);

if (GR[rg].nat || GR[r,].nat)
register_nat_consumption_fault(SEMAPHORE);

paddr = tlb_trandate(GR{[r3], sz SEMAPHORE, PSR.cpl, & meattr,
&tmp_unused);

if (!ma_supports_semaphores(mattr))
unsupported _data reference fault(SEMAPHORE, GR[r3]);

val = mem_xchg(GRr], paddr, sz, UM.be, mattr, ACQUIRE, Idhint);
dat_inva_multiple_entries(paddr, 2);

GR[r4] = zero_ext(va, sz* 8);
GR[rq].nat =0;

Volume 3: Instruction Reference 3:251

ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf

xchg

Interruptions:

3:252

Illegal Operation fault

Register NaT Consumption fault
Unimplemented Data Address fault
Data Nested TLB fault

Alternate Data TLB fault

VHPT Data fault

Data TLB fault

Data Page Not Present fault

Data NaT Page Consumption fault

DataKey Miss fault

Data Key Permission fault

Data Access Rights fault

Data Dirty Bit fault

Data Access Bit fault

Data Debug fault

Unaligned Data Reference fault
Unsupported Data Reference fault

Volume 3: Instruction Reference

xma — Fixed-Point Multiply Add

Format:

Description:

Operation:

(gp) xmal f; =13, f4 f, low_form
(gp) xmalu fy =1, 4 f5 pseudo-op of: (qp) xmall fy =13, fy, f5
(gp) xmah fy =13, f, f, high _form
(gp) xmahu fy =13, fy fp high_unsigned form

Two source operands (FR f3 and FR f,) are treated as either signed or unsigned integers and

Xma

F2

F2
F2

multiplied. The third source operand (FR f,) is zero extended and added to the product. The upper

or lower 64 bits of the resultant sum are selected and placed in FR f;.

In the high_unsigned_form, the significand fields of FR f5 and FR f, are treated as unsigned

integers and multiplied to produce a full 128-bit unsigned result. The significand field of FR f, is
zero extended and added to the product. The most significant 64-bits of the resultant sum are placed

inthe significand field of FR f;.
In the high_form, the significand fields of FR f5 and FR f, are treated as signed integers and

multiplied to produce afull 128-bit signed result. The significand field of FR f, is zero extended

and added to the product. The most significant 64-bits of the resultant sum are placed in the
significand field of FR f;.

In the other forms, the significand fields of FR f3 and FR f, are treated as signed integers and

multiplied to produce a full 128-bit signed result. The significand field of FR f, is zero extended

and added to the product. The least significant 64-bits of the resultant sum are placed in the
significand field of FR f;.

In all forms, the exponent field of FR f; is set to the biased exponent for 2.0%3 (0x1003E) and
sign field of FR f; is set to positive (0).

Note: flasan operand isnot aninteger 1; it isjust the register file format’s 1.0 value.

Inall forms, if any of FR f3, FR f4, or FR fy isaNaTVal, FR f; is set to NaTVal instead of the
computed result.

if (PR[op]) {
fp_check_target_register(fy);
if (tmp_isrcode = fp_reg_disabled(fy, fy, fa, f4))
disabled fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval (FR[f,]) || fp_is_natval (FR[f3]) ||
fp_is_natval (FR[f4])) {
FR[f;] = NATVAL,;
}else{
if (low_form || high_form)
tmp_res 128 =
fp_164_x_164 to_|128(FR[f5].significand, FR[f,].significand);
else// high_unsigned_form
tmp_res 128 =
fp_U64_x_U64 to U128(FR([f5].sgnificand, FR[f,].significand);

tmp_res 128 =
fp_U128 add(tmp_res 128, fp_U64 to U128(FR([f,].sgnificand));

if (high_form || high_unsigned form)
FR([f,].sgnificand = tmp_res 128.hi;
ese// low_form
FR[f,].significand = tmp_res 128.lo;

FR[f,].exponent = FP_INTEGER_EXP:;

Volume 3: Instruction Reference

the

3:253

Xma

FR[f;].sign = FP_SIGN_POSITIVE;

fp_update_psr(fy);

Interruptions: Disabled Floating-point Register fault

3:254 Volume 3: Instruction Reference

Xmpy

xmpy — Fixed-Point Multiply

Format:

Description:

Operation:

(gp) xmpy.l f; =13, 1,4 pseudo-op of: (qp) xmal fy =fz, fy, fO
(ap) xmpy.lu fy =13 4 pseudo-op of: (qp) xmal f; = fs, f,, O
(ap) xmpy.h f;="f3,f4 pseudo-op of: (gp) xmah fy = f3, f; f0
(ap) xmpy.hu 1 =13, f4 pseudo-op of: (qp) xmahu f; =f3, f,, fO

Two source operands (FR f3 and FR f,) are treated as either signed or unsigned integers and
multiplied. The upper or lower 64 bits of the resultant product are selected and placed in FR f;.

In the high_unsigned_form, the significand fields of FR ;3 and FR f, are treated as unsigned
integers and multiplied to produce afull 128-bit unsigned result. The most significant 64-bits of the
resultant product are placed in the significand field of FR f;.

In the high_form, the significand fields of FR f3 and FR f, are treated as signed integers and
multiplied to produce a full 128-bit signed result. The most significant 64-bits of the resultant
product are placed in the significand field of FR f;.

In the other forms, the significand fields of FR f3 and FR f4 are treated as signed integers and
multiplied to produce a full 128-bit signed result. The least significant 64-bits of the resultant
product are placed in the significand field of FR f;.

In all forms, the exponent field of FR f, is set to the biased exponent for 2.0%% (0x1003E) and the
sign field of FR f; is set to positive (0). Note: f1 as an operand is not an integer 1; it isjust the
register file format’s 1.0 value.

See “xma— Fixed-Point Multiply Add” on page 3:253.

Volume 3: Instruction Reference 3:255

xor

xor — Exclusive Or

Format: (gp) xor ry=rp,r3 register_form Al
(gp) xor rqy=1immg, ra imm8_form A3

Description: The two source operands are logically XORed and the result placed in GR r4. In the register_form
thefirst operand is GR ro; in theimm8_form the first operand is taken from the immg encoding
field.

Operation: if (PR[gp]) {
check_target_register(ry);

tmp_src = (register_form? GR{r,]: sign_ext(immy, 8));
tmp_nat = (register_form? GR{[r,].nat: 0);

GR[rq] =tmp_src” GR[rg];
GR[r4].nat = tmp_nat || GR[r3].nat;
}

Interruptions: Illegal Operation fault

3:256 Volume 3: Instruction Reference

zxt

zxt — Zero Extend
Format: (gp) zxtxsz ry=r3 129

Description: ~ Thevaluein GR r3 is zero extended above the bit position specified by xsz and the result is placed
in GR r4. The mnemonic values for xsz are given in Table 2-51 on page 3:235.

Operation: if (PR[gp]) {
check_target_register(ry);

GR[r4] = zero_ext(GR[r] xsz* 8);
GR[r].nat = GR[r].nat;
}

Interruptions: 1llegal Operation fault

Volume 3: Instruction Reference 3:257

3:258 Volume 3: Instruction Reference

Pseudo-Code Functions 3

This chapter contains a table of all pseudo-code functions used on the Itanium instruction pages.

Table 3-1. Pseudo-code Functions

Function

Operation

xxx_fault(parameters...)

There are several fault functions. Each fault function accepts parameters specific to
the fault, e.g., exception code values, virtual addresses, etc. If the fault is deferred for
speculative load exceptions the fault function will return with a deferral indication.
Otherwise, fault routines do not return and terminate the instruction sequence.

Xxx_trap(parameters...)

There are several trap functions. Each trap function accepts parameters specific to
the trap, e.g., trap code values, virtual addresses, etc. Trap routines do not return.

acceptance_fence()

Ensures prior data memory references to uncached ordered-sequential memory
pages are “accepted” before subsequent data memory references are performed by
the processor.

alat_cmp(rtype, raddr)

Returns a one if the implementation finds an ALAT entry which matches the register
type specified by rtype and the register address specified by raddr, else returns
zero. This function is implementation specific. Note that an implementation may
optionally choose to return zero (indicating no match) even if a matching entry exists
in the ALAT. This provides implementation flexibility in designing fast ALAT lookup
circuits.

alat_frame_update(delta_bof, delta_sof)

Notifies the ALAT of a change in the bottom of frame and/or size of frame. This allows
management of the ALAT's tag bits or other management functions it might need.

alat_inval()

Invalidate all entries in the ALAT.

alat_inval_multiple_entries(paddr, size)

The ALAT is queried using the physical memory address specified by paddr and the
access size specified by size. All matching ALAT entries are invalidated. No value is
returned.

alat_inval_single_entry(rtype, rega)

The ALAT is queried using the register type specified by rtype and the register
address specified by rega. At most one matching ALAT entry is invalidated. No
value is returned.

alat_translate_address_on_hit(ldtype,
rtype, raddr)

Returns a one if the implementation requires that the requested check load should
translate the source address and take associated faults; returns a zero otherwise.

alat_read_memory_on_hit(ldtype, rtype,
raddr)

Returns a one if the implementation requires that the requested check load should
perform a memory access (requires prior address translation); returns a zero
otherwise.

alat_write(ldtype, rtype, raddr, paddr,
size)

Allocates a new ALAT entry or updates an existing entry using the load type specified
by 1dtype, the register type specified by rtype, the register address specified by
raddr, the physical memory address specified by paddr, and the access size
specified by size. No value is returned. This function guarantees that at most only
one ALAT entry exists for a given raddr. Based on the load type 1dtype, if a
1d.c.nc, 1df.c.nc, or 1dfp. c.ncinstruction's raddr matches an existing
ALAT entry's register tag, but the instruction's size and/or paddr are different than
that of the existing entry's, then this function may either preserve the existing entry, or
invalidate it and write a new entry with the instruction's specified size and paddr.

align_to_size_boundary(vaddr, size)

Returns vaddr aligned to the boundary specified by size.

branch_predict(wh, ih, ret, target, tag)

Implementation-dependent routine which updates the processor’s branch prediction
structures.

Volume 3: Pseudo-Code Functions

3:259

Table 3-1. Pseudo-code Functions (Continued)

Function

Operation

check_branch_implemented(check_type)

Implementation-dependent routine which returns TRUE or FALSE, depending on
whether a failing check instruction causes a branch (TRUE), or a Speculative
Operation fault (FALSE). The result may be different for different types of check
instructions: CHKS_GENERAL, CHKS_FLOAT, CHKA_GENERAL, CHKA_FLOAT. In
addition, the result may depend on other implementation-dependent parameters.

check_target_register(rl)

If the r1 argument specifies an out-of-frame stacked register (as defined by CFM) or
r1 specifies GRO, an lllegal Operation fault is delivered, and this function does not
return.

check_target_register_sof(rl, newsof)

If the r1 argument specifies an out-of-frame stacked register (as defined by the
newsof argument) or r1 specifies GRO, an lllegal Operation fault is delivered and
this function does not return.

concatenate2(x1, x2)

Concatenates the lower 32 bits of the 2 arguments, and returns the 64-bit result.

concatenate4(x1, x2, x3, x4)

Concatenates the lower 16 bits of the 4 arguments, and returns the 64-bit result.

concatenate8(x1, x2, x3, x4, x5, x6, X7,
x8)

Concatenates the lower 8 bits of the 8 arguments, and returns the 64-bit result.

data_serialize()

Ensures all prior register updates with side-effects are observed before subsequent
execution and data memory references are performed.

deliver_unmasked_pending_interrupt()

This implementation-specific function checks whether any unmasked external
interrupts are pending, and if so, transfers control to the external interrupt vector.

execute_hint(hint)

Executes the hint specified by hint.

fadd(fp_dp, fr2)

Adds a floating-point register value to the infinitely precise product and return the
infinitely precise sum, ready for rounding.

fcmp_exception_fault_check(f2, {3, frel,
sf, *tmp_fp_env)

Checks for all floating-point faulting conditions for the f£cmp instruction.

fevt_fx_exception_fault_check(fr2,
signed_form, trunc_form, sf *tmp_fp_env)

Checks for all floating-point faulting conditions for the fcvt . £x, fcvt . fxu,
fovt.fx.trunc and fcvt. fxu. trunc instructions. It propagates NaNs.

fma_exception_fault_check(f2, {3, f4, pc,
sf, *tmp_fp_env)

Checks for all floating-point faulting conditions for the £ma instruction. It propagates
NaNs and special IEEE results.

fminmax_exception_fault_check(f2, {3, sf,
*tmp_fp_env)

Checks for all floating-point faulting conditions for the famax, famin, fmax, and
fmin instructions.

fms_fnma_exception_fault_check(f2, f3,
f4, pc, sf, *tmp_fp_env)

Checks for all floating-point faulting conditions for the £ms and £nma instructions. It
propagates NaNs and special IEEE results.

fmul(fr3, fr4)

Performs an infinitely precise multiply of two floating-point register values.

followed_by_stop()

Returns TRUE if the current instruction is followed by a stop; otherwise, returns
FALSE.

fp_check_target_register(f1)

If the specified floating-point register identifier is O or 1, this function causes an illegal
operation fault.

fp_decode_fault(tmp_fp_env)

Returns floating-point exception fault code values for ISR.code.

fp_decode_traps(tmp_fp_env)

Returns floating-point trap code values for ISR.code.

fp_is_nan_or_inf(freg)

Returns true if the floating-point exception_fault_check functions returned a IEEE
fault disabled default result or a propagated NaN.

fp_equal(frl, fr2)

|IEEE standard equality relationship test.

fp_ieee_recip(num, den)

Returns the true quotient for special sets of operands, or an approximation to the
reciprocal of the divisor to be used in the software divide algorithm.

fp_ieee_recip_sqrt(root)

Returns the true square root result for special operands, or an approximation to the
reciprocal square root to be used in the software square root algorithm.

fp_is_nan(freg)

Returns true when floating register contains a NaN.

fp_is_natval(freg)

Returns true when floating register contains a NaTVal

fp_is_normal(freg)

Returns true when floating register contains a normal number.

fp_is_pos_inf(freg)

Returns true when floating register contains a positive infinity.

3:260

Volume 3: Pseudo-Code Functions

Table 3-1. Pseudo-code Functions (Continued)

Function

Operation

fp_is_gnan(freg)

Returns true when floating register contains a quiet NaN.

fp_is_snan(freg)

Returns true when floating register contains a signalling NaN.

fp_is_unorm(freg)

Returns true when floating register contains an unnormalized
number.

fp_is_unsupported(freg)

Returns true when floating register contains an unsupported format.

fp_less_than(frl, fr2)

|IEEE standard less-than relationship test.

fp_lesser_or_equal(frl, fr2)

IEEE standard less-than or equal-to relationship test

fp_normalize(frl)

Normalizes an unnormalized fp value. This function flushes to zero any unnormal
values which can not be represented in the register file

fp_raise_fault(tmp_fp_env)

Checks the local instruction state for any faulting conditions which require an
interruption to be raised.

fp_raise_traps(tmp_fp_env)

Checks the local instruction state for any trapping conditions which require an
interruption to be raised.

fp_reg_bank_conflict(f1, 2)

Returns true if the two specified FRs are in the same bank.

fp_reg_disabled(f1, f2, {3, f4)

Check for possible disabled floating-point register faults.

fp_reg_read(freg)

Reads the FR and gives canonical double-extended denormals (and
pseudo-denormals) their true mathematical exponent. Other classes of operands are
unaltered.

fp_unordered(frl, fr2)

|EEE standard unordered relationship

fp_fr_to_mem_format(freg, size)

Converts a floating-point value in register format to floating-point memory format. It
assumes that the floating-point value in the register has been previously rounded to
the correct precision which corresponds with the size parameter.

fpcmp_exception_fault_check(f2, {3, frel,
sf, *tmp_fp_env)

Checks for all floating-point faulting conditions for the £pcmp instruction.

fpevt_exception_fault_check(f2,
signed_form, trunc_form, sf,
*tmp_fp_env)

Checks for all floating-point faulting conditions for the £pcvt . £x, fpcvt. £xu,
fpevt. £x.trunc, and fpcvt. £xu. trunc instructions. It propagates NaNs.

fpma_exception_fault_check(f2, f3, f4, sf,
*tmp_fp_env)

Checks for all floating-point faulting conditions for the £pma instruction. It propagates
NaNs and special IEEE results.

fpminmax_exception_fault_check(f2, 3,
sf, *tmp_fp_env)

Checks for all floating-point faulting conditions for the fpmin, fpmax, fpamin and
fpamax instructions.

fpms_fpnma_exception_fault_check(f2,
{3, f4, sf, *tmp_fp_env)

Checks for all floating-point faulting conditions for the fpms and fpnma instructions.
It propagates NaNs and special IEEE results.

fprcpa_exception_fault_check(f2, 3, sf,
*tmp_fp_env, *limits_check)

Checks for all floating-point faulting conditions for the £prcpa instruction. It
propagates NaNs and special IEEE results. It also indicates operand limit violations.

fprsqrta_exception_fault_check(f3, sf,
*tmp_fp_env, *limits_check)

Checks for all floating-point faulting conditions for the fprsqgrta instruction. It
propagates NaNs and special IEEE results. It also indicates operand limit violations.

frcpa_exception_fault_check(f2, 3, sf,
*tmp_fp_env)

Checks for all floating-point faulting conditions for the £rcpa instruction. It
propagates NaNs and special IEEE results.

frsqrta_exception_fault_check(f3, sf,
*tmp_fp_env)

Checks for all floating-point faulting conditions for the £rsqgrta instruction. It
propagates NaNs and special IEEE results

ignored_field_mask(regclass, reg, value)

Boolean function that returns value with bits cleared to O corresponding to ignored
bits for the specified register and register type.

impl_check_mov_itir()

Implementation-specific function that returns TRUE if ITIR is checked for reserved
fields and encodings on a mov to ITIR instruction.

impl_check_tlb_itir()

Implementation-specific function that returns TRUE if all fields of ITIR are checked for
reserved encondings on a TLB insert instruction regardless of whether the translation
is present.

Volume 3: Pseudo-Code Functions

3:261

Table 3-1. Pseudo-code Functions (Continued)

Function

Operation

impl_ia32_ar_reserved_ignored(ar3)

Implementation-specific function which indicates how the reserved and ignored fields
in the specified I1A-32 application register, ar3, behave. If it returns FALSE, the
reserved and/or ignored bits in the specified application register can be written, and
when read they return the value most-recently written. If it returns TRUE, attempts to
write a non-zero value to a reserved field in the specified application register cause a
Reserved Register/Field fault, and reads return O; writing to an ignored field in the
specified application register is ignored, and reads return the constant value defined
for that field.

impl_itir_cwi_mask()

Implementation-specific function that either returns the value passed to it or the value
passed to it masked with zeros in bit positions {63:32} and/or {1:0}.

impl_uia_fault_supported()

Implementation-specific function that either returns TRUE if the processor reports
unimplemented instruction addresses with an Unimplemented Instruction Address
fault, and returns FALSE if the processor reports them with an Unimplemented
Instruction Address trap.

implemented_vm()

Returns TRUE if the processor implements the PSR.vm bit.

instruction_implemented(inst)

Implementation-dependent routine which returns TRUE or FALSE, depending on
whether inst is implemented.

instruction_serialize()

Ensures all prior register updates with side-effects are observed before subsequent
instruction and data memory references are performed. Also ensures prior SYNC.i
operations have been observed by the instruction cache.

instruction_synchronize()

Synchronizes the instruction and data stream for Flush Cache operations. This
function ensures that when prior Flush Cache operations are observed by the local
data cache they are observed by the local instruction cache, and when prior Flush
Cache operations are observed by another processor’s data cache they are observed
within the same processor’s instruction cache.

is_finite(freg)

Returns true when floating register contains a finite number.

is_ignored_reg(regnum)

Boolean function that returns true if regnum is an ignored application register,
otherwise false.

is_inf(freg)

Returns true when floating register contains an infinite number.

is_interruption_cr(regnum)

Boolean function that returns true if regnum is one of the Interruption Control
registers (see Section 3.3.5, “Interruption Control Registers” on page 2:31 in SDM),
otherwise false.

is_kernel_reg(ar_addr)

Returns a one if ar _addr is the address of a kernel register application register

is_read_only_reg(rtype, raddr)

Returns a one if the register addressed by raddr in the register bank of type rtype
is a read only register.

is_reserved_field(regclass, arg2, arg3)

Returns true if the specified data would write a one in a reserved field.

is_reserved_reg(regclass, regnum)

Returns true if register regnum is reserved in the regclass register file.

is_supported_hint(hint)

Returns true if the implementation supports the specified hint. This function may
depend on factors other than the hint value, such as which execution unit it is
executed on or the slot number the instruction was encoded in.

itlb_ar()

Returns the page access rights from the ITLB for the page addressed by the current
IP, or INVALID_AR if PSR.itis 0.

make_icache_coherent(paddr)

The cache line addressed by the physical address paddr is flushed in an
implementation-specific manner that ensures that the instruction cache is coherent
with the data caches.

mem_flush(paddr)

The line addressed by the physical address paddr is invalidated in all levels of the
memory hierarchy above memory and written back to memory if it is inconsistent with
memory.

mem_flush_pending_stores()

The processor is instructed to start draining pending stores in write coalescing and
write buffers. This operation is a hint. There is no indication when prior stores have
actually been drained.

3:262

Volume 3: Pseudo-Code Functions

ftp://download.intel.com/design/Itanium/manuals/245318.pdf

Table 3-1. Pseudo-code Functions (Continued)

Function

Operation

mem_implicit_prefetch(vaddr, hint, type)

Moves the line addressed by vaddr to the location of the memory hierarchy
specified by hint. This function is implementation dependent and can be ignored.
The type allows the implementation to distinguish prefetches for different instruction
types.

mem_promote(paddr, mtype, hint)

Moves the line addressed by paddr to the highest level of the memory hierarchy
conditioned by the access hints specified by hint. Implementation dependent and
can be ignored.

mem_read(paddr, size, border, mattr,
otype, hint)

Returns the size bytes starting at the physical memory location specified by paddr
with byte order specified by border, memory attributes specified by mattzx, and
access hint specified by hint. ot ype specifies the memory ordering attribute of this
access, and must be UNORDERED or ACQUIRE.

mem_read_pair(*low_value, *high_value,
paddr, size, border, mattr, otype, hint)

Reads the size / 2 bytes of memory starting at the physical memory address
specified by paddr into low_value, and the size / 2 bytes of memory starting at
the physical memory address specified by (paddr + size/2)into high value,
with byte order specified by border, memory attributes specified by mattzr, and
access hint specified by hint. ot ype specifies the memory ordering attribute of this
access, and must be UNORDERED or ACQUIRE. No value is returned.

fp_mem_to_fr_format(mem, size)

Converts a floating-point value in memory format to floating-point register format.

mem_write(value, paddr, size, border,
mattr, otype, hint)

Writes the least significant size bytes of value into memory starting at the physical
memory address specified by paddr with byte order specified by bordexr, memory
attributes specified by mattr, and access hint specified by hint. otype specifies
the memory ordering attribute of this access, and must be UNORDERED or
RELEASE. No value is returned.

mem_writel6(gr_value, ar_value, paddr,
border, mattr, otype, hint)

Writes the 8 bytes of gr_value into memory starting at the physical memory
address specified by paddr, and the 8 bytes of ar_value into memory starting at
the physical memory address specified by (paddr + 8), with byte order specified by
border, memory attributes specified by mattx, and access hint specified by hint.
otype specifies the memory ordering attribute of this access, and must be
UNORDERED or RELEASE. No value is returned.

mem_xchg(data, paddr, size, byte_order,
mattr, otype, hint)

Returns size bytes from memory starting at the physical address specified by paddr.
The read is conditioned by the locality hint specified by hint. After the read, the
least significant size bytes of data are written to size bytes in memory starting at
the physical address specified by paddzr. The read and write are performed
atomically. Both the read and the write are conditioned by the memory attribute
specified by mattr and the byte ordering in memory is specified by byte order.
otype specifies the memory ordering attribute of this access, and must be
ACQUIRE.

mem_xchg_add(add_val, paddr, size,
byte_order, mattr, otype, hint)

Returns size bytes from memory starting at the physical address specified by
paddr. The read is conditioned by the locality hint specified by hint. The least
significant size bytes of the sum of the value read from memory and add_val is
then written to size bytes in memory starting at the physical address specified by
paddr. The read and write are performed atomically. Both the read and the write are
conditioned by the memory attribute specified by mattr and the byte ordering in
memory is specified by byte order. otype specifies the memory ordering
attribute of this access, and has the value ACQUIRE or RELEASE.

mem_xchg_cond(cmp_val, data, paddr,
size, byte_order, mattr, otype, hint)

Returns size bytes from memory starting at the physical address specified by
paddr. The read is conditioned by the locality hint specified by hint. If the value
read from memory is equal to cmp_val, then the least significant size bytes of
data are written to size bytes in memory starting at the physical address
specified by paddr. If the write is performed, the read and write are performed
atomically. Both the read and the write are conditioned by the memory attribute
specified by mattr and the byte ordering in memory is specified by byte order.
otype specifies the memory ordering attribute of this access, and has the value
ACQUIRE or RELEASE.

Volume 3: Pseudo-Code Functions

3:263

Table 3-1. Pseudo-code Functions (Continued)

Function

Operation

mem_xchgl6_cond(cmp_val, gr_data,
ar_data, paddr, byte_order, mattr, otype,
hint)

Returns 8 bytes from memory starting at the physical address specified by paddr.
The read is conditioned by the locality hint specified by hint. If the value read from
memory is equal to cmp_val, then the 8 bytes of gr data are written to 8 bytes in
memory starting at the physical address specified by (paddr & ~0x8), and the 8
bytes of ar data are written to 8 bytes in memory starting at the physical address
specified by ((paddr & ~0x8) + 8). If the write is performed, the read and write are
performed atomically. Both the read and the write are conditioned by the memory
attribute specified by mattr and the byte ordering in memory is specified by

byte order. The byte ordering only affects the ordering of bytes within each of the
8-byte values stored. otype specifies the memory ordering attribute of this access,
and has the value ACQUIRE or RELEASE.

ordering_fence()

Ensures prior data memory references are made visible before future data memory
references are made visible by the processor.

partially_implemented_ip()

Implementation-dependent routine which returns TRUE if the implementation, on an
Unimplemented Instruction Address trap, writes IIP with the sign-extended virtual
address or zero-extended physical address for what would have been the next value
of IP. Returns FALSE if the implementation, on this trap, simply writes 1P with the full
address which would have been the next value of IP.

pr_phys_to_virt(phys_id)

Returns the virtual register id of the predicate from the physical register id, phys_id
of the predicate.

rotate_regs()

Decrements the Register Rename Base registers, effectively rotating the register
files. CFM.rrb.gr is decremented only if CFM.sor is non-zero.

rse_enable_current_frame_load()

If the RSE load pointer (RSE.BSPLoad) is greater than AR[BSP], the RSE . CFLE bit
is set to indicate that mandatory RSE loads are allowed to restore registers in the
current frame (in no other case does the RSE spill or fill registers in the current
frame). This function does not perform mandatory RSE loads. This procedure does
not cause any interruptions.

rse_ensure_regs_loaded(number_of_byt
es)

All registers and NaT collections between AR [BSP] and

(AR [BSP] -number of bytes) which are not already in stacked registers are
loaded into the register stack with mandatory RSE loads. If the number of registers to
be loaded is greater than RSE.N_STACK_PHYS an lllegal Operation fault is raised.
All registers starting with backing store address (AR[BSP] - 8) and decrementing
down to and including backing store address (AR[BSP] - number_of_bytes) are made
part of the dirty partition. With exception of the current frame, all other stacked
registers are made part of the invalid partition. Note that number of bytes may
be zero. The resulting sequence of RSE loads may be interrupted. Mandatory RSE
loads may cause an interruption; see Table 6-6 “RSE Interruption Summary” on
page 2:138 in SDM.

rse_invalidate_non_current_regs()

All registers outside the current frame are invalidated.

rse_load (type)

Restores a register or NaT collection from the backing store (load_address =
RSE.BspLoad - 8). If load_address{8:3} is equal to 0x3f then a NaT
collection is loaded into a NaT dispersal register. (dispersal register may not
be the same as AR [RNAT] .) If load_address{8:3} is not equal to 0x3f then the
register RSE . LoadReg - 1 is loaded and the NaT bit for that register is set to
dispersal register{load address{8:3}}. If the load is successful
RSE.BspLoad is decremented by 8. If the load is successful and a register was
loaded RSE . LoadReg is decremented by 1 (possibly wrapping in the stacked
registers). The load moves a register from the invalid partition to the current frame if
RSE.CFLE is 1, or to the clean partition if RSE.CFLE is 0. For mandatory RSE loads,
type is MANDATORY. Mandatory RSE loads may cause interruptions. See

Table 6-6 “RSE Interruption Summary” on page 2:138 in SDM.

3:264

Volume 3: Pseudo-Code Functions

ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf

Table 3-1. Pseudo-code Functions (Continued)

Function

Operation

rse_new_frame(current_frame_size,
new_frame_size)

A new frame is defined without changing any register renaming. The new frame size
is completely defined by the new_frame size parameter (successive calls are not
cumulative). If new_frame sizeislargerthan current frame size andthe
number of registers in the invalid and clean partitions is less than the size of frame
growth then mandatory RSE stores are issued until enough registers are available.
The resulting sequence of RSE stores may be interrupted. Mandatory RSE stores
may cause interruptions; see Table 6-6 “RSE Interruption Summary” on page 2:138 in
SDM.

rse_preserve_frame(preserved_frame_si
ze)

The number of registers specified by preserved frame size are marked to be
preserved by the RSE. Register renaming causes the preserved frame size
registers after GR [32] to be renamed to GR [32]. AR [BSP] is updated to contain
the backing store address where the new GR [32] will be stored.

rse_restore_frame(preserved_sol,
growth, current_frame_size)

The first two parameters define how the current frame is about to be updated by a
branch return or rfi: preserved sol defines how many registers need to be
restored below RSE.BOF; growth defines by how many registers the top of the
current frame will grow (growth will generally be negative). The number of registers
specified by preserved sol are marked to be restored. Register renaming
causes the preserved_sol registers before GR [32] to be renamed to GR [32] .
AR [BSP] is updated to contain the backing store address where the new GR [32]
will be stored. If the number of dirty and clean registers is less than
preserved sol then mandatory RSE loads must be issued before the new
current frame is considered valid. This function does not perform mandatory RSE
loads. This function returns TRUE if the preserved frame grows beyond the invalid
and clean regions into the dirty region. In this case the third argument,
current_frame_size, is used to force the returned to frame to zero (see
Table 6-6 “RSE Interruption Summary” on page 2:138 in SDM).

rse_store(type)

Saves a register or NaT collection to the backing store (store_address =
AR[BSPSTORE]). If store_address{8:3} is equal to 0x3f then the NaT collection
AR[RNAT] is stored. If store_address{8:3} is not equal to 0x3f then the register
RSE.StoreReg is stored and the NaT bit from that register is deposited in
AR[RNAT]{store_address{8:3}}. If the store is successful AR[BSPSTORE] is
incremented by 8. If the store is successful and a register was stored RSE.StoreReg
is incremented by 1 (possibly wrapping in the stacked registers). This store moves a
register from the dirty partition to the clean partition. For mandatory RSE stores,
type is MANDATORY. Mandatory RSE stores may cause interruptions. See

Table 6-6 “RSE Interruption Summary” on page 2:138 in SDM.

rse_update_internal_stack_pointers(new
_store_pointer)

Given a new value for AR [BSPSTORE] (new_store pointer) this function
computes the new value for AR [BSP] . This value is equal to

new_store pointer plus the number of dirty registers plus the number of
intervening NaT collections. This means that the size of the dirty partition is the same
before and after a write to AR [BSPSTORE] . All clean registers are moved to the
invalid partition.

sign_ext(value, pos)

Returns a 64 bit number with bits pos-1 through 0 taken from value and bit pos-1
of value replicated in bit positions pos through 63. If pos is greater than or equal to
64, value is returned.

spontaneous_deferral(paddr, size,
border, mattr, otype, hint, *defer)

Implementation-dependent routine which optionally forces *defer to TRUE if all of
the following are true: spontaneous deferral is enabled, spontaneous deferral is
permitted by the programming model, and the processor determines it would be
advantageous to defer the speculative load (e.g., based on a miss in some patrticular
level of cache).

spontaneous_deferral_enabled()

Implementation-dependent routine which returns TRUE or FALSE, depending on
whether spontaneous deferral of speculative loads is enabled or disabled in the
processor.

Volume 3: Pseudo-Code Functions

3:265

ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf

Table 3-1. Pseudo-code Functions (Continued)

Function

Operation

tlb_access_key(vaddr, itype)

This function returns, in bits 31:8, the access key from the TLB for the entry
corresponding to vaddr and itype; bits 63:32 and 7:0 return 0. If vaddr is an
unimplemented virtual address, or a matching present translation is not found, the
value 1 is returned.

tlb_broadcast_purge(rid, vaddr, size,
type)

Sends a broadcast purge DTC and ITC transaction to other processors in the
multiprocessor coherency domain, where the region identifier (rid), virtual address
(vaddr) and page size (size) specify the translation entry to purge. The operation
waits until all processors that receive the purge have completed the purge operation.
The purge type (type) specifies whether the ALAT on other processors should also
be purged in conjunction with the TC.

tlb_enter_privileged_code()

This function determines the new privilege level for epc from the TLB entry for the
page containing this instruction. If the page containing the epc instruction has
execute-only page access rights and the privilege level assigned to the page is higher
than (numerically less than) the current privilege level, then the current privilege level
is set to the privilege level field in the translation for the page containing the epc
instruction.

tlb_grant_permission(vaddr, type, pl)

Returns a boolean indicating if read, write access is granted for the specified virtual
memory address (vaddr) and privilege level (p1l). The access type (type) specifies
either read or write. The following faults are checked:

» Data Nested TLB fault

» Alternate Data TLB fault

* VHPT Data fault

» Data TLB fault

» Data Page Not Present fault

» Data NaT Page Consumption fault

» Data Key Miss fault
If a fault is generated, this function does not return.

tlb_insert_data(slot, pteO, ptel, vaddr, rid,
tr)

Inserts an entry into the DTLB, at the specified slot number. pte0, ptel
compose the translation. vaddr and rid specify the virtual address and region
identifier for the translation. If tr is true the entry is placed in the TR section,
otherwise the TC section.

tlb_insert_inst(slot, pte0, ptel, vaddr, rid,
tr)

Inserts an entry into the ITLB, at the specified slot number. pte0, ptel compose
the translation. vaddr and rid specify the virtual address and region identifier for
the translation. If tr is true, the entry is placed in the TR section, otherwise the TC
section.

tlb_may_purge_dtc_entries(rid, vaddr,
size)

May locally purge DTC entries that match the specified virtual address (vaddr),
region identifier (rid) and page size (size). May also invalidate entries that partially
overlap the parameters. The extent of purging is implementation dependent. If the
purge size is not supported, an implementation may generate a machine check abort
or over purge the translation cache up to and including removal of all entries from the
translation cache.

tlb_may_purge_itc_entries(rid, vaddr,
size)

May locally purge ITC entries that match the specified virtual address (vaddr),
region identifier (rid) and page size (size). May also invalidate entries that partially
overlap the parameters. The extent of purging is implementation dependent. If the
purge size is not supported, an implementation may generate a machine check abort
or over purge the translation cache up to and including removal of all entries from the
translation cache.

3:266

Volume 3: Pseudo-Code Functions

Table 3-1. Pseudo-code Functions (Continued)

Function

Operation

tlb_must_purge_dtc_entries(rid, vaddr,
size)

Purges all local, possibly overlapping, DTC entries matching the specified region
identifier (rid), virtual address (vaddr) and page size (size).vaddr{63:61}
(VRN) is ignored in the purge, i.e all entries that match vaddr{60:0} must be purged
regardless of the VRN bits. If the purge size is not supported, an implementation may
generate a machine check abort or over purge the translation cache up to and
including removal of all entries from the translation cache. If the specified purge
values overlap with an existing DTR translation, an implementation may generate a
machine check abort.

tlb_must_purge_itc_entries(rid, vaddr,
size)

Purges all local, possibly overlapping, ITC entry matching the specified region
identifier (rid), virtual address (vaddr) and page size (size). vaddr{63:61}
(VRN) is ignored in the purge, i.e all entries that match vaddr{60:0} must be purged
regardless of the VRN bits. If the purge size is not supported, an implementation may
generate a machine check abort or over purge the translation cache up to and
including removal of all entries from the translation cache. If the specified purge
values overlap with an existing ITR translation, an implementation may generate a
machine check abort.

tlb_must_purge_dtr_entries(rid, vaddr,
size)

Purges all local, possibly overlapping, DTR entries matching the specified region
identifier (rid), virtual address (vaddr) and page size (size).vaddr{63:61}
(VRN) is ignored in the purge, i.e all entries that match vaddr{60:0} must be purged
regardless of the VRN bits. If the purge size is not supported, an implementation may
generate a machine check abort or over purge the translation cache up to and
including removal of all entries from the translation cache.

tlb_must_purge_itr_entries(rid, vaddr,
size)

Purges all local, possibly overlapping, ITR entry matching the specified region
identifier (rid), virtual address (vaddr) and page size (size). vaddr{63:61}
(VRN) is ignored in the purge, i.e all entries that match vaddr{60:0} must be purged
regardless of the VRN bits. If the purge size is not supported, an implementation may
generate a machine check abort or over purge the translation cache up to and
including removal of all entries from the translation cache.

tlb_purge_translation_cache(loop)

Removes 1 to N translations from the local processor’s ITC and DTC. The number of
entries removed is implementation specific. The parameter 1oop is used to generate
an implementation-specific purge parameter.

tlb_replacement_algorithm(tlb)

Returns the next ITC or DTC slot number to replace. Replacement algorithms are
implementation specific. t1lb specifies to perform the algorithm on the ITC or DTC.

tlb_search_pkr(key)

Searches for a valid protection key register with a matching protection key. The
search algorithm is implementation specific. Returns the PKR register slot number if
found, otherwise returns Not Found.

Volume 3: Pseudo-Code Functions

3:267

Table 3-1. Pseudo-code Functions (Continued)

Function

Operation

tlb_translate(vaddr, size, type, cpl, *attr,
*defer)

Returns the translated data physical address for the specified virtual memory address
(vaddr) when translation enabled; otherwise, returns vaddr. size specifies the
size of the access, type specifies the type of access (e.g., read, write, advance,
spec). cpl specifies the privilege level for access checking purposes. *attr returns
the mapped physical memory attribute. If any fault conditions are detected and
deferred, tlb_translate returns with *defer set. If a fault is generated but the fault is
not deferred, tlb_translate does not return. tlb_translate checks the following faults:

* Unimplemented Data Address fault

» Data Nested TLB fault

» Alternate Data TLB fault

* VHPT Data fault

» Data TLB fault

» Data Page Not Present fault

» Data NaT Page Consumption fault

» Data Key Miss fault

» Data Key Permission fault

» Data Access Rights fault

» Data Dirty Bit fault

» Data Access Bit fault

» Data Debug fault

* Unaligned Data Reference fault

» Unsupported Data Reference fault

tlb_translate_nonaccess(vaddr, type)

Returns the translated data physical address for the specified virtual memory address
(vaddr). type specifies the type of access (e.g., FC, TPA). If a fault is generated,
tlb_translate_nonaccess does not return. The following faults are checked:

* Unimplemented Data Address fault

» Virtualization fault (tpa only)

» Data Nested TLB fault

» Alternate Data TLB fault

* VHPT Data fault

» Data TLB fault

» Data Page Not Present fault

» Data NaT Page Consumption fault

» Data Access Rights fault (£c only)

tlb_vhpt_hash(vrn, vaddr61, rid, size)

Generates a VHPT entry address for the specified virtual region number (vrn) and
61-bit virtual offset (vaddré1), region identifier (rid) and page size (size).
Tlb_vhpt_hash hashes vaddr, ridand size parameters to produce a hash index.
The hash index is then masked based on PTA.size and concatenated with PTA.base
to generate the VHPT entry address. The long format hash is implementation
specific.

tlb_vhpt_tag(vaddr, rid, size)

Generates a VHPT tag identifier for the specified virtual address (vaddr), region
identifier (rid) and page size (size). Tlb_vhpt_tag hashes the vaddr, rid and
size parameters to produce translation identifier. The tag in conjunction with the
hash index is used to uniquely identify translations in the VHPT. Tag generation is
implementation specific. All processor models tag function must guarantee that bit 63
of the generated tag is zero (ti bit).

unimplemented_physical_address(paddr)

Return TRUE if the presented physical address is unimplemented on this processor
model; FALSE otherwise. This function is model specific.

undefined()

Returns an undefined 64-bit value.

undefined_behavior()

Causes undefined processor behavior. Extent of undefined behavior is described in
Section 3.5, “Undefined Behavior” on page 1:41 in SDM.

3:268

Volume 3: Pseudo-Code Functions

ftp://download.intel.com/design/Itanium/manuals/245317.pdf

Table 3-1. Pseudo-code Functions (Continued)

Function Operation
unimplemented_virtual_address(vaddr, Return TRUE if the presented virtual address is unimplemented on this processor
vm) model; FALSE otherwise. If vm is 1, one additional bit of virtual address is treated as

unimplemented. This function is model specific.
fp_update_fpsr(sf, tmp_fp_env) Copies a floating-point instruction’s local state into the global FPSR.
fp_update_psr(dest_freg) Conditionally sets PSR.mfl or PSR.mfh based on dest_freg.
vm_disabled() Returns TRUE if the processor implements the PSR.vm bit and the vmsw instruction

is disabled. See Section 3.4, “Processor Virtualization” on page 2:38 in SDM and
“PAL_PROC_GET_FEATURES - Get Processor Dependent Features (17)” on
page 2:429 for details.

zero_ext(value, pos) Returns a 64 bit unsigned number with bits pos-1 through 0 taken from value and
zeroes in bit positions pos through 63. If pos is greater than or equal to 64, value
is returned.

Volume 3: Pseudo-Code Functions 3:269

ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf

3:270 Volume 3: Pseudo-Code Functions

Instruction Formats 4

Each Itanium instruction is categorized into one of six types; each instruction type may be executed
on one or more execution unit types. Table 4-1 liststhe instruction types and the execution unit type
on which they are executed:

Table 4-1. Relationship between Instruction Type and Execution Unit Type

Insflr;l;:;lon Description Execution Unit Type
A Integer ALU l-unit or M-unit
| Non-ALU integer l-unit
M Memory M-unit
F Floating-point F-unit
B Branch B-unit
L+X Extended I-unit/B-unit?

a. L+X Major Opcodes 0 - 7 execute on an Il-unit. L+X Major Opcodes 8 - F execute on a B-unit.

Three instructions are grouped together into 128-bit sized and aligned containers called bundles.
Each bundle contains three 41-bit instruction slots and a 5-bit template field. The format of a
bundleis depicted in Figure 4-1.

Figure 4-1. Bundle Format

127 87 86 46 45 5 4 0
instruction slot 2 instruction slot 1 instruction slot 0 ‘ template ‘
41 41 41

The template field specifies two properties. stops within the current bundle, and the mapping of
instruction slots to execution unit types. Not all combinations of these two properties are allowed -
Table 4-2 indicates the defined combinations. The three rightmost columns correspond to the three
instruction slotsin abundle; listed within each column is the execution unit type controlled by that
instruction slot for each encoding of the template field. A double line to the right of an instruction
dlot indicates that a stop occurs at that point within the current bundle. See “Instruction Encoding
Overview” on page 1:34 for the definition of a stop. Within abundle, execution order proceeds
from dlot 0 to slot 2. Unused template values (appearing as empty rowsin Table 4-2) are reserved
and cause an |llegal Operation fault.

Extended instructions, used for long immediate integer and long branch instructions, occupy two
instruction slots. Depending on the major opcode, extended instructions execute on a B-unit (long
branch/call) or an I-unit (all other L+X instructions).

Volume 3: Instruction Formats 3:271

ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf

Table 4-2. Template Field Encoding and Instruction Slot Mapping

4.1

3:272

Template Slot 0 Slot 1 Slot 2
00 M-unit l-unit l-unit
01 M-unit l-unit l-unit ||
02 M-unit I-unit I-unit |
03 M-unit l-unit l-unit
04 M-unit
05 M-unit
06
07
08
09 M-unit M-unit I-unit ||
0A M-unit M-unit I-unit ‘
0B M-unit M-unit l-unit ||
oC
oD
OE
OF
10
11
12
13
14
15
16
17
18
19
1A
1B
1Cc
1D
1E
1F

a. The MLX template was formerly called MLI, and for compatibility, the X slot may encode break.i and nop.i in
addition to any X-unit instruction.

Format Summary

All instructions in the instruction set are 41 bits in length. The leftmost 4 bits (40:37) of each
instruction are the major opcode. Table 4-3 shows the major opcode assignments for each of the 5
instruction types— ALU (A), Integer (1), Memory (M), Floating-point (F), and Branch (B). Bundle
template bits are used to distinguish among the 4 columns, so the same major op values can be
reused in each column.

Unused major ops (appearing as blank entries in Table 4-3) behave in one of four ways:

Volume 3: Instruction Formats

* Ignored major ops (white entries in Table 4-3) execute asnop instructions.

» Reserved major ops (light gray in the gray scale version of Table 4-3, brown in the color
version) cause an lllegal Operation fault.

* Reserved if PR[gp] is 1 major ops (dark gray in the gray scale version of Table 4-3, purplein
the color version) cause an lllegal Operation fault if the predicate register specified by the gp
field of the instruction (bits 5:0) is 1 and execute as anop instruction if 0.

» Reserved if PR[gp] is 1 B-unit major ops (medium gray in the gray scale version of Table 4-3,
cyan in the color version) cause an Illegal Operation fault if the predicate register specified by
the gp field of the instruction (bits 5:0) is 1 and execute as anop instruction if 0. These differ
from the Reserved if PR[gp] is 1 major ops (purple) only in their RAW dependency behavior
(see “RAW Dependency Table” on page 3:356).

Table 4-3. Major Opcode Assighments

Major Instruction Type

Op
(Bits IIA M/A F B L+X
40:37)

0 Misc 0] sysi/MemMgmt °| FPMisc © Misc O

1 Sys/Mem Mgmt | FPMisc I

2

3 3

4 Deposit 4| IntLd +Reg/getf “| FP Compare #

5 Shift/Test Bit °| IntLd/St+Imm °| FPClass °

6 FP Ld/St +Reg/setf ° 6 movl ©

7 MM Mpy/Shift 7| FP Ld/St +Imm *

8 fma g

9 fma ¥

A fms A

B fms E

C fama ©

D fima P

E fselect/xma E

F

Table 4-4 on page 3:274 summarizes al the instruction formats. The instruction fields are
color-coded for ease of identification, as described in Table 4-5 on page 3:276. A color version of
this chapter is available for those heavily involved in working with the instruction encodings.

Theinstruction field names, used throughout this chapter, are described in Table 4-6 on page 3:276.
The set of special notations (such as whether an instruction is privileged) are listed in Table 4-7 on
page 3:277. These notations appear in the “Instruction” column of the opcode tables.

Most instruction containing immediates encode those immediates in more than one instruction
field. For example, the 14-bit immediate in the Add Imm, 4 instruction (format A4) isformed from
the immyy,, immggy, and sfields. Table 4-74 on page 3:349 shows how the immediates are formed
from the instruction fields for each instruction which has an immediate.

Volume 3: Instruction Formats 3:273

Table 4-4. Instruction Format Summary
403938373635343332313029282726252423222120191817161514131211109 8 7 6 54 3 2 1 0

ALU Al 8 X2 Ve X4 Xop Ifs) ry r
Shift L and Add A2 8 Xoa Vel Xg4 |Clyg rs ry ry
ALU Immg A3 8 S| Xoa V| X4 Xop r3 immzy, r
Add Immy4 A4 8 S| Xoqa [Ve immegg r3 immyy,
Add Immy, A5 9 S immgy imms, rs immyy,
Compare A6 C-E [ty| X [tg r3 ry C
Compare to Zero A7| C-E |ty| X5 [t3 ra 0 c
Compare Immg A8l C-E |s| x|ty rs immyy, [
MM ALU A9 8 Zal Xoa [Zb] Xz Xoh r3 ry
MM Shiftand Add A10 8 Za Xoa |Zn] X4 [Clyg r3 r
MM Multiply Shift 11 ﬂmﬁﬁw X2 I3 T 1
MM Mpy/Mix/Pack 12 7 |Zal X2a [Zp|Ve| Xoc | Xop rs r ry
MM Mux1 13 7 Za X2a |Zp|Ve| Xoc¢ | Xop ry r
MM Mux2 14 7 Zal X2 [Zp\Ve| Xoc | X2p ry
Shift R Variable 15 7 |Zal X2a [Zp|Ve| Xoc | Xop r
MM Shift R Fixed 16 7 Zal X2 [ZbVe| Xoc | Xop countsy,
Shift L Variable 17 7 Zal X2a [ZbVe| Xoc | Xop rs
MM Shift L Fixed 18 7 |za Xoa ccountgg
Bit Strings 19 7 Za X2a
Shift Right Pair 110 LSS Xo
Extract 111 5 Xo
Dep.Z 112 5 Xp
Dep.Z Immg 113 5 S| Xp
Deposit Immq 114 5 s| X
Deposit 115 4 CpOSgy
Test Bit 116 S tb Xo
Test NaT 117 5 tp| Xo
Nop/Hint 118 0 I
Break 119 0 I
Int Spec Check 120 0 S
Move to BR 121 0
Move from BR 122 0
Move to Pred 123 0 s
Move to Pred Immy, 124 0 S
Move from Pred/IP 125 0
Move to AR 126 0
Move to AR Immg 127 0 S
Move from AR 128 0
Sxt/Zxt/Czx 129 0
Test Feature 130)] X2 [t
Int Load M1 4 m
Int Load +Reg M2 4 m
Int Load +Imm M3 5 s i |
Int Store M4 4 m
Int Store +Imm M5 5 s i |
FP Load M6 6 |m
FP Load +Reg M7 6 m
FP Load +Imm M8 7 s i |
FP Store M9 6 |m
FP Store +Imm M10 7 S i |
FP Load Pair M11 6 m
FP Load Pair +lmm M12| 6 |m
Line Prefetch M13T 6 m
Line Prefetch +Reg M14 6 m
Line Prefetch +imm M15/ 7 S a
(Cmp & Exchg ~ M16[Z |m
Fetch & Add M17 4 m
Set FR M18 5 m Xg
Get FR M19 4 m Xg

403938373635343332313029282726252423222120191817161514131211109 8 7 6 54 3 2 1 0

3:274 Volume 3: Instruction Formats

Table 4-4. Instruction Format Summary (Continued)

Int Spec Check
FP Spec Check
Int ALAT Check
FP ALAT Check
Sync/Srlz/ALAT
RSE Control
Int ALAT Inval
FP ALAT Inval
Flush Cache
Move to AR
Move to AR Immg
Move from AR
Move to CR
Move from CR
Alloc
Move to PSR
Move from PSR
Break
Probe
Probe Imm,
Probe Fault Imm,
TC Insert
Mv to Ind/TR Ins
Mv from Ind
Set/Reset Mask
Translation Purge
Translation Access
TC Entry Purge
Nop/Hint
IP-Relative Branch
Counted Branch
IP-Relative Call
Indirect Branch
Indirect Call
IP-Relative Predict
Indirect Predict
Misc
Break/Nop/Hint
FP Arithmetic
Fixed Multiply Add
FP Select
FP Compare
FP Class
FP Recip Approx
FP Recip Sqrt App
FP Min/Max/Pcmp
FP Merge/Logical
Convert FP to Fixed
Convert Fixed to FP
FP Set Controls
FP Clear Flags
FP Check Flags
Break
Nop/Hint
Break
Move Immg,
Long Branch

Volume 3: Instruction Formats

M20
M21
M22
M23
M24
M25
M26
M27
M28
M29
M30
M31
M32
M33
M34
M35
M36
M37
M38
M39
M40
M41
M42
M43
M44
M45
M46
M47
M48
B1
B2
B3
B4
B5
B6
B7
B8
B9
F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
F11
F12
F13
F14
F15
F16
X1
X2
X3

403938373635343332313029282726252423222120191817161514131211109 8 7 6 543 2 1 0

1 s| X3 immy 3¢ ry immz,
1 S| X3 immy 3. fo immy4
0 S X3 imm20b
0 S| X3 immyqp
0 X3 X Xq4
0 X3 | Xo X4
0 X3 Xo X4
0 X3 X Xq4
1 X| X3 Xg
1 X3 Xg arg ry
0 s| X3 | % X4 arg immzp
1 X3 Xg ry
1 X3 X6)
1 X3 X r
1 X3 sor sof ry
1 X3 X)
1 X3 X r
0 il x3 [X] x4 immzo£l
1 X3 X) ry
1 X3 Xg i2h r
1 X3 X6 i2p
1 X3 X)
1 X3 X Iy
1 X3 X6 r
0 i X3 i2d X4 imm21a
1 X3 X I
1 X3 X6 r
1 X3 Xg
0 | X3 X | Xq 1IMMypa
4 s IMM5op pe
4 S immyqp btype
5 S imm20b b1
0 Xg b, btype
1 b, by
7 sfifi tye immogp, timmz,
2 tze X6 | b2 t|mm7a
0 X
0/2 i Xg | imm20a
8-D [X| ST in T iz
E X| Xo f4 f3 f2
E X f4 f3 f2
4 ry| sf |ry f3 73 ty
5 | fea fclass7¢ fo ta
0-1 |[q] sf [x f3 fo
0-1 |[qf sf [x fa
0-1 sf [x Xg f3 f2
0-1 X X f3 f2
0-1 sf [x Xg fy
0 X X6 f2
0 sf [x Xg omaskz¢ amask;p
0 sf [x Xg
0 s| sf [x Xg immyp,
0 i X Xg immyg,
0 T X X5 Y TMM20
0 1| X3 X6 TMM0a MMy,
6 i immgq immse i V¢l immoy, ry immyq
C i immyq, | btype immgg

403938373635343332313029282726252423222120191817161514131211109 8 7 6 54 3 2 1 0

Table 4-4. Instruction Format Summary (Continued)
403938373635343332313029282726252423222120191817161514131211109 8 7 6 54 3 2 1 0

Long Call X4 immoqp b,
Nop/Hint X5 0 i X3 Xg 1y imMoga immy,

403938373635343332313029282726252423222120191817161514131211109 8 7 6 54 3 2 1 0

Table 4-5. Instruction Field Color Key

Integer Instruction
Memory Instruction

Floating-point Instruction
Integer Source

Floating-point Source
Branch Source

Ignored Field/Instruction

Field & Color
Opcode Extension

Integer Destination

Special Register Destination

Branch Destination
Branch Tag Immediate

Table 4-6. Instruction Field Names
Field Name Description
arg application register source/target
by, by branch register source/target
btype branch type opcode extension
c complement compare relation opcode extension
ccounts, multimedia shift left complemented shift count immediate
countgy, countgy multimedia shift right/shift right pair shift count immediate
CpoSy deposit complemented bit position immediate
cra control register source/target
Ctyy multimedia multiply shift/shift and add shift count immediate
d branch cache deallocation hint opcode extension
fi floating-point register source/target
fcy, fclassy, floating-point class immediate
hint memory reference hint opcode extension
i, igps ing, iIMmMy immediate of length 1, 2, or x
ih branch importance hint opcode extension
lenyg, lengg extract/deposit length immediate
m memory reference post-modify opcode extension
masky predicate immediate mask
mbtye, mhtge multimedia mux1/mux2 immediate
p sequential prefetch hint opcode extension
p1. P2 predicate register target

3:276

Volume 3: Instruction Formats

Table 4-6. Instruction Field Names (Continued)

Field Name Description
posgp test bit/extract bit position immediate
q floating-point reciprocal/reciprocal square-root opcode extension
ap qualifying predicate register source
M general register source/target
S immediate sign bit
sf floating-point status field opcode extension
sof, sol, sor alloc size of frame, size of locals, size of rotating immediates
ta tp compare type opcode extension
tre, timmy branch predict tag immediate
Vy reserved opcode extension field
wh branch whether hint opcode extension
X, X opcode extension of length 1 or n
y extract/deposit/test bit/test NaT/hint opcode extension
Za Zp multimedia operand size opcode extension

Table 4-7. Special Instruction Notations

Notation

Description

-5 - -

instruction ends an instruction group when taken, or for Reserved if PR[gp] is 1 (cyan)
encodings and non-branch instructions with a qualifying predicate, when its PR[gp] is
1, or for Reserved (brown) encodings, unconditionally

instruction must be the first instruction in an instruction group and must either be in
instruction slot 0 or in instruction slot 1 of a template having a stop after slot 0

instruction is allowed in the | slot of an MLI template
instruction must be the last in an instruction group
privileged instruction

instruction is only allowed in instruction slot 2

The remaining sections of this chapter present the detailed encodings of all instructions. The

“A-Unit Instruction encodings” are presented first, followed by the “1-Unit Instruction Encodings’
on page 3:288, “M-Unit Instruction Encodings’ on page 3:302, “B-Unit Instruction Encodings’ on
page 3:330, “F-Unit Instruction Encodings’ on page 3:337, and “ X-Unit Instruction Encodings’ on

page 3:346.

Within each section, the instructions are grouped by function, and appear with their instruction
format in the same order as in Table 4-4, “Instruction Format Summary” on page 3:274. The
opcode extension fields are briefly described and tables present the opcode extension assignments.
Unused instruction encodings (appearing as blank entries in the opcode extensions tables) behave

in one of four ways:

« Ignored instructions (white color entries in the tables) execute as nop instructions.

» Reserved instructions (light gray color in the gray scale version of the tables, brown color in
the color version) cause an Illegal Operation fault.

* Reserved if PR[gp] is 1 instructions (dark gray in the gray scale version of the tables, purplein
the color version) cause an Illegal Operation fault if the predicate register specified by the qp
field of the instruction (bits 5:0) is 1 and execute as anop instruction if 0.

* Reserved if PR[gp] is 1 B-unit instructions (medium gray in the gray scale version of the
tables, cyan in the color version) cause an Illegal Operation fault if the predicate register

Volume 3: Instruction Formats

3:277

4.2

4.2.1

3:278

specified by the gp field of the instruction (bits 5:0) is 1 and execute as anop instruction if 0.
These differ from the Reserved if PR[gp] is 1 instructions (purple) only in their RAW
dependency behavior (see “RAW Dependency Table” on page 3:356).

Some processors may implement the Reserved if PR[qp] is 1 (purple) and Reserved if PR[qgp] is 1
B-unit (cyan) encodingsin the L+X opcode space as Reserved (brown). These encodings appear in
the L+X column of Table 4-3 on page 3:273, and in Table 4-69 on page 3:347, Table 4-70 on

page 3:347, Table 4-71 on page 3:348, and Table 4-72 on page 3:348. On processors which
implement these encodings as Reserved (brown), the operating system is required to provide an
I1legal Operation fault handler which emulates them as Reserved if PR[gp] is 1 (cyan/purple) by
decoding the reserved opcodes, checking the qualifying predicate, and returning to the next
instruction if PR[gp] isO.

Congtant 0 fieldsin instructions must be 0 or undefined operation results. The undefined operation
may include checking that the constant field is 0 and causing an lllegal Operation fault if itisnot. If
an instruction having a constant 0 field also has a qualifying predicate (qp field), the fault or other
undefined operation must not occur if PR[qp] is 0. For constant O fields in instruction bits 5:0
(normally used for gp), the fault or other undefined operation may or may not depend on the PR
addressed by those hits.

Ignored (white space) fields in instructions should be coded as 0. Although ignored in this revision
of the architecture, future architecture revisions may define these fields as hint extensions. These
hint extensions will be defined such that the 0 value in each field corresponds to the default hint. It
is expected that assemblers will automatically set these fields to zero by default.

Unused opcode hint extension values (white color entries in Hint Completer tables) should not be
used by software. Processors must perform the architected functional behavior of the instruction
independent of the hint extension value (whether defined or unused), but different processor
models may interpret unused opcode hint extension valuesin different ways, resulting in
undesirable performance effects.

A-Unit Instruction Encodings

Integer ALU

All integer ALU instructions are encoded within major opcode 8 using a 2-bit opcode extension
field in bits 35:34 (x,,) and most have a second 2-bit opcode extension field in bits 28:27 (x,), a
4-bit opcode extension field in bits 32:29 (x4), and a 1-bit reserved opcode extension field in bit 33
(ve). Table 4-8 shows the 2-bit x,, and 1-bit v, assignments, Table 4-9 shows the integer ALU
4-bit+2-bit assignments, and Table 4-12 on page 3:284 shows the multimedia ALU 1-bit+2-bit
assignments (which also share major opcode 8).

Volume 3: Instruction Formats

Table 4-8. Integer ALU 2-bit+1-bit Opcode Extensions

Opcode | Xoq Ve
Bits Bits Bit 33
40:37 | 35:34 0 1

Table 4-9. Integer ALU 4-bit+2-bit Opcode Extensions

Opcode | Xpy | Vg Xa ~Xap
Bits Bits | Bit | Bits Bits 28:27
40:37 | 35:34 | 33

42.1.1 Integer ALU — Register-Register

40 373635343332 29282726 2019 1312 6 5 0
At 8] ead x| " n
4 1 2 1 4 2 7 7 7
. Extension
Instruction Operands Opcode
X2a Ve Xq X2b
rq="ror1 0
add 177273 0
1=ry1r31 1
rq=ror 1
sub 177273 1
r1=ry1r31 0
addp4 8 0 0 2 0
and 0
andcm r1="ro, Iz 3 1
or 2
xor 3

Volume 3: Instruction Formats 3:279

4.2.1.2 Shift Left and Add
40 373635343332 29282726 2019 1312 6 5 0
a2 [0 Doapd xa fotad s 2 n [
2 7 7 7 6
Extension
Instruction Operands Opcode
X2a Ve Xq
shladd 4
rp=ro Countz, rs 8 0 0
shladdp4 6
42.1.3 Integer ALU — Immediateg-Register
40 373635343332 29282726 2019 1312 6 5 0
3 L8 Dol me P 6w | s | o (G
2 7 7 6
Extension
Instruction Operands Opcode
X2a Ve Xq X2b
sub 9 1
and 0
andcm rq=immg, r 8 0 0 5 1
or 2
xor 3
4.2.1.4 Add Immediate 4
40 373635343332 2726 2019 1312 6 5 0
a8 Dohabd e || wme | o
4 1 2 6 7 7 7 6
) Extension
Instruction Operands Opcode
X2a Ve
adds rq=immgg, r 8 2 0
addp4 1= 1473 3
4215 Add Immediate,,
40 373635 2726 22212019 1312 6 5 0
ps |8l mg [me o] wme | o [
1 5 2 7 7 6
Instruction Operands Opcode
addl rq=immpy, r3 9
3:280 Volume 3: Instruction Formats

4.2.2 Integer Compare

Theinteger compare instructions are encoded within major opcodes C - E using a 2-bit opcode
extension field (x,) in bits 35:34 and three 1-bit opcode extension fields in bits 33 (t,), 36 (ty), and
12 (c), as shown in Table 4-10. The integer compare immediate instructions are encoded within
major opcodes C - E using a 2-bit opcode extension field (x,) in bits 35:34 and two 1-bit opcode
extension fields in bits 33 (t,) and 12 (c), as shown in Table 4-11.

Table 4-10. Integer Compare Opcode Extensions

Xo | th | 14 c Qpcode
Bits | Bit| Bit | Bit Bits 40:37
35:34 36| 33 |12 c D E
0
0
1
0
0
1
1
0
0
0
1
1
0
1
1
0
0
1
0
0
1
1
1
0
0
1
1
0
1
1
Table 4-11. Integer Compare Immediate Opcode Extensions
Xo ta c Qpcode
Bits | Bit| Bit Bits 40:37
35:34 | 33| 12 c D E
0
2
1
0
3

Volume 3: Instruction Formats 3:281

42.2.1 Integer Compare — Register-Register

40 373635343332 2726 2019 131211 6 5 0

A6 [C-E Julx |l v [e [
4 6

1 2 1 6 7 7 1 6

Extension

Instruction Operands Opcode
X2 tb ta Cc

cmp.It
cmp.ltu
cmp.eq

cmp.lt.unc
cmp.ltu.unc
cmp.eq.unc
cmp.eg.and
cmp.eq.or

cmp.eg.or.andcm

cmp.ne.and
cmp.ne.or
cmp.ne.or.andcm
cmp4.It

cmp4.ltu
cmp4.eq

P P2=T2 I3

cmp4.lt.unc
cmp4.ltu.unc
cmp4.eg.unc
cmp4.eqg.and
cmp4.eq.or
cmp4.eq.or.andcm

cmp4.ne.and
cmp4.ne.or

m o OoOmoOoOomOoOOoOmoOomoOoOoOom©oOOoOomoOoOomoaOo

cmp4.ne.or.andcm

3:282 Volume 3: Instruction Formats

4.2.2.2 Integer Compare to Zero — Register
40 373635343332 2726 2019 131211 6 5 0

A7 [CE u]xe [l 0| o[e
4 1 2 1 6 7 1 6

6

~N| O

) Extension
Instruction Operands Opcode

X2 tb ta Cc

cmp.gt.and
cmp.gt.or
cmp.gt.or.andcm

cmp.le.and
cmp.le.or
cmp.le.or.andcm
cmp.ge.and
cmp.ge.or

cmp.ge.or.andcm

cmp.lt.and
cmp.lt.or
cmp.lt.or.andcm
cmp4.gt.and
cmp4.gt.or
cmp4.gt.or.andcm

P1. P2=10,T3

cmp4.le.and
cmp4.le.or
cmp4.le.or.andcm
cmp4.ge.and
cmp4.ge.or
cmp4.ge.or.andcm

cmp4.lt.and
cmp4.lt.or

m o oOomooOomOoomoOomooOomoOomoOomOoaOo

cmp4.lt.orandcm

Volume 3: Instruction Formats 3:283

42.2.3

40 373635343332

2726

2019

Integer Compare — Immediate-Register

131211

‘ immzp

A8 [C-E [s|xy g
4 7

1 2 1 6

7 1

6

6 5 0

G
6

Instruction

Operands

Opcode

Extension

X2

t c

cmp.It
cmp.ltu
cmp.eq

cmp.lt.unc
cmp.ltu.unc
cmp.eq.unc

cmp.eg.and
cmp.eq.or
cmp.eg.or.andcm

cmp.ne.and
cmp.ne.or
cmp.ne.or.andcm

cmp4.It
cmp4.ltu
cmp4.eq

cmp4.lt.unc
cmp4.ltu.unc
cmp4.eg.unc

cmp4.eqg.and
cmp4.eq.or
cmp4.eq.or.andcm

cmp4.ne.and
cmp4.ne.or

cmp4.ne.or.andcm

Py, P2 =immg, r3

m o Oo/moOooOomooOomoOomooOomoOoOomoOomoaOo

423 Multimedia

All multimedia ALU instructions are encoded within major opcode 8 using two 1-bit opcode
extension fields in bits 36 (z) and 33 (z;,) and a 2-bit opcode extension field in bits 35:34 (x,,) as
shown in Table 4-12. The multimedia ALU instructions also have a4-bit opcode extension field in
bits 32:29 (x4), and a 2-bit opcode extension field in bits 28:27 (x,y,) as shown in Table 4-13 on

page 3:285.
Table 4-12. Multimedia ALU 2-bit+1-bit Opcode Extensions
Opcode X2a Za z;
Bits 40:37 | Bits 35:34 | Bit 36 | Bit 33
0 0 Multimedia ALU Size 1 (Table 4-13)
8 1 1 Multimedia ALU Size 2 (Table 4-14)
1 0 Multimedia ALU Size 4 (Table 4-15)
-

3:284

Volume 3: Instruction Formats

Table 4-13. Multimedia ALU Size 1 4-bit+2-bit Opcode Extensions

X2n
Bits 28:27

Opcode | Xpq Zy zy X4
Bits Bits | Bit | Bit Bits
40:37 |35:34| 36 33 :
8 1 0 0

Table 4-14. Multimedia ALU Size 2 4-bit+2-bit Opcode Extensions

X2b
Bits 28:27

Opcode | Xpq Zy | Zp X4
Bits Bits | Bit | Bit Bits
40:37 |35:34| 36 | 33 :
8 1 0 1

Volume 3: Instruction Formats

3:285

Table 4-15. Multimedia ALU Size 4 4-bit+2-bit Opcode Extensions

3:286

X2b

Bits 28:27

Opcode | Xpa | Za | Zp | Xa
Bits Bits | Bit | Bit | Bits
40:37 |35:34| 36 | 33 :
8 1 1|0

Volume 3: Instruction Formats

423.1 Multimedia ALU

40 373635343332 29282726 2019 1312 6 5 0
po [8] | n 2 o« e
1 1 2 7 7 7
) Extension
Instruction Operands Opcode
X2a Za Zp X4 X2b
paddl 0 0
padd2 1 0
padd4 1 0
paddl.sss 0
0 1
padd2.sss 1 0
paddl.uuu 0
0 2
padd2.uuu 1
paddl.uus 0
0 3
padd2.uus 1
psubl 0 0
psub2 1 0
psub4 1 0
psubl.sss 0
0 1
psub2.sss 1 1
psubl.uuu 0
r=rprs 1 0 2
psub2.uuu 1
psubl.uus 0
0 3
psub2.uus 1
avgl 0
pavg 0 2
pavg2 1)
avgl.raz 0
pavg 0 3
pavg2.raz 1
avgsubl 0
pave 0 3 2
pavgsub2 1
pcmpl.eq 0 0
pcmp2.eq 1 0
pcmp4.eq 1 0 9
pcmpl.gt 0 0
pcmp2.gt 1 1
pcmp4.gt 1 0
4.2.3.2 Multimedia Shift and Add
40 373635343332 29282726 2019 1312 6 5 0
A10 ‘ 8 ‘Za‘ X2a ‘Zb‘ Xq ‘CtZd‘ f3 ra r _
4 1 2 1 4 2 7 7 7
) Extension
Instruction Operands Opcode
X2a Za Zp X4
pshladd2 4
=1y COUntz, s 8 1 0 1
pshradd2 6
Volume 3: Instruction Formats 3:287

4.3

4.3.1

I-Unit Instruction Encodings

Multimedia and Variable Shifts

All multimedia multiply/shift/max/min/mix/mux/pack/unpack and variable shift instructions are
encoded within major opcode 7 using two 1-bit opcode extension fieldsin bits 36 (z,) and 33 (z,)
and a 1-bit reserved opcode extension in bit 32 (v,) as shown in Table 4-16. They also have a 2-bit
opcode extension field in bits 35:34 (X,,) and a 2-bit field in bits 29:28 (X,y,) and most have a 2-bit
field in bits 31:30 (x,c) as shown in Table 4-17.

Table 4-16. Multimedia and Variable Shift 1-bit Opcode Extensions

Opcode | z, | z, Ve
Bits Bit | Bit Bit 32
40:37 36 33 0
0 0 Multimedia Size 1 (Table 4-17)
. 1 Multimedia Size 2 (Table 4-18)
1 0 Multimedia Size 4 (Table 4-19)
1 Variable Shift (Table 4-20)

Table 4-17. Multimedia Opcode 7 Size 1 2-bit Opcode Extensions

3:288

Opcode | z; |2z, | Ve X2a Xop Xac
Bits Bit | Bit | Bit| Bits Bits Bits 31:30
40:37 36 | 33|32 35:34
0
1
7 0 0|0

:

3

Volume 3: Instruction Formats

Table 4-18. Multimedia Opcode 7 Size 2 2-bit Opcode Extensions

Opcode | z, | zy | Ve | X2a Xop X2c
Bits | Bit | Bit | Bit | Bits | Bits Bits 31:30
40:37 |36 | 33 | 32 |35:34| 29:28 0 1 3
pshr2.u —var 15 pshl2 —var 17
pmpyshr2.u 11
0 pshr2 —var 15
pmpyshr2 11
,
pshr2 — fixed 16
7 o|1]|0 n
)
pack2.sss 12 unpack2.| 12
pmin2 12 pmax2 12
;

Table 4-19. Multimedia Opcode 7 Size 4 2-bit Opcode Extensions

Opcode | z, | zp | Ve | Xo2a Xop - X2c
Bits |Bit | Bit | Bit | Bits | Bits Bits 31:30
40:37 |36 | 33|32 |35:34| 29:28 0 1 2 3
pshr4.u —var 15 pshl4 — var 17
0
pshr4 — var 15
1 pshrd.u — fixed 16
pshr4 — fixed 16
7 1/0|0 -
unpackd. 12
2 .
pack4.sss 12 unpack4.l 12 mix4.1 12
3 pshl4 — fixed 18

Volume 3: Instruction Formats

3:289

Table 4-20. Variable Shift Opcode 7 2-bit Opcode Extensions

Opcode | z5 | Zp | Ve | X2a X2p X

Bits | Bit | Bit | Bit | Bits | Bits Bits 31:30

40:37 | 36 | 33 | 32 | 35:34| 29:28 0 1 > 3

shr.u —var 15 shl —var 17

0
1

7 1 1 0
2
3

43.1.1 Multimedia Multiply and Shift

40 373635343332313029282726 2019 1312 6 5 0
11 ‘ 7 ‘Za‘ X2a ‘Zb‘ve. XZb‘ ‘ 3 r2 1
2 11 2 2 1 7 7 7
. Extension
Instruction Operands Opcode
Za Zp Ve X2a X2b
mpyshr2 3
pmpy rl = r2, r3, COUntz 7 0 1 0 0
pmpyshr2.u 1

3:290 Volume 3: Instruction Formats

4.3.1.2 Multimedia Multiply/Mix/Pack/Unpack

40 373635343332313029282726 2019 1312 6 5 0
2 [7 pelpdecbal [s [w n [
4 1 2 11 2 2 1 7 7 7 6
) Extension
Instruction Operands Opcode
Za Zp Ve X2a X2b X2c
mpy2.r 1
pmpy 0 1 3
pmpy2.1 3
mix1.r 0 0
mix2.r 0 1 0
mix4.r 1 0)
mix1.| 0 0
mix2.| 0 1 2
mix4.| 1 0
pack2.uss 0 1 0
pack2.sss 0 1 5 0
pack4.sss 1 0
ri=rprs 7 0 2
unpackl.h 0 0
unpack2.h 0 1 0
unpack4.h 1 0 1
unpackl.| 0 0
unpack2.l 0 1 2
unpack4.| 1 0
pminl.u 0
0 0 1
pmaxl.u 1
min2 0
P 0 1 3
pmax2 1
psadl 0 0 3 2

43.1.3 Multimedia Mux1

40 3736353433323130292827 2423 2019 1312 6 5 0
B [7 Edmebdulw o] o o
4 12 11 2 2 4 4 7 7 6
. Extension
Instruction Operands Opcode
Za Zp Ve X2a X2b X2c
mux1 rq=ry, mbtype, 7 0 0 0 3 2 2

4314 Multimedia Mux2

40 3736353433323130292827 2019 1312 6 5 0
4 L7 e v [e 2 A
4 1 2 11 2 2 8 7 7 6
. Extension
Instruction Operands Opcode
Za Zp Ve X2a X2b X2¢
mux2 ry="ro, mhtypeg 7 0 1 0 3 2 2

Volume 3: Instruction Formats 3:291

43.1.5

4.3.1.6

4.3.1.7

4.3.1.8

3:292

15

16

17

18

Shift Right — Variable

40 373635343332313029282726 2019 1312 5
ERANENAPENENE n [

4 1 2 11 2 2 1 7 7 7

. Extension
Instruction Operands Opcode
Za Zp Ve X2a X2b X2c
pshr2 0 1
pshr4 1 0 2
shr rq=rar 7 ! ! 0 0 0
pshr2.u 17772 0 1
pshr4d.u 1 0 0
shr.u 1 1
Multimedia Shift Right — Fixed

40 3736353433323130292827 26 201918 141312 5

|7 el xea v oo oo | [N [oo | v RN
4 12 11 2 21 7 1 5 1 7
) Extension
Instruction Operands Opcode
Za Zp Ve X2a X2b X2¢
pshr2 0 1 3
pshr4 1 0
1 =Tr3, countg 7 0 1 0
pshr2.u 0 1 1
pshr4.u 1 0
Shift Left — Variable
40 373635343332313029282726 2019 1312 5
|7 [ealxan e oo s
4 12 11 2 21 7 7 7
) Extension
Instruction Operands Opcode
Za Zp Ve X2a X2b X2¢
pshi2 0
pshl4 r1="ro I3 7 0 0 0 1
shi 1 1
Multimedia Shift Left — Fixed
40 3736353433323130292827 2524 2019 1312 5
7 e | oo
4 12 11 2 2 7 7
. Extension
Instruction Operands Opcode
Za Zp Ve X2a X2b X2c
pshi2 0
1 =Ty, countg 7 0 3 1 1
pshl4 1

Volume 3: Instruction Formats

4.3.1.9 Bit Strings

40 373635343332313029282726 2019 1312 6 5 0
o 7] [1 n [
1 1 7 7 7 6
) Extension
Instruction Operands Opcode
Za Zp Ve X2a X2b X2c¢
popcnt rp=rs 7 0 1 0 1 1 2

4.3.2 Integer Shifts

Theinteger shift, test bit, and test NaT instructions are encoded within major opcode 5 using a 2-bit
opcode extension field in bits 35:34 (x,) and a 1-bit opcode extension field in bit 33 (x). The extract
and test bit instructions also have a 1-bit opcode extension field in bit 13 (y). Table 4-21 shows the
test bit, extract, and shift right pair assignments.

Table 4-21. Integer Shift/Test Bit/Test NaT 2-bit Opcode Extensions

y
Opcode Xo X Bit 13
Bits 40:37 | Bits 35:34 | Bit 33
0 1
0 Test Bit (Table 4-23) Test NaT/Test Feature (Table 4-23)
1 extr.u 111 extr 111
5 0
2
3 shrp 110

Most deposit instructions also have a 1-bit opcode extension field in bit 26 (y). Table 4-22 shows
these assignments.

Table 4-22. Deposit Opcode Extensions

Opcode Xo X BityZG
Bits 40:37 | Bits 35:34 | Bit 33
0 1
0 Test Bit/Test NaT/Test Feature (Table 4-23)
5 1 1 dep.z 112 dep.z —immg 113
2
3 dep —imm, 114
4.3.2.1 Shift Right Pair
40 373635343332 2726 2019 1312 6 5 0
0[5 [L x| couni
4 1 2 1 6 7 7 7 6
Extension
Instruction Operands Opcode
X2
shrp r1="rp, I'3, countg 5 3

Volume 3: Instruction Formats 3:293

4.3.2.2

4.3.2.3

4324

4.3.2.5

4.3.2.6

3:294

Extract

40 373635343332 2726 2019 141312 6 5 0
1 s | [elx[enes (NG s [y [
4 1 2 1 6 7 6 1 6
Extension
Instruction Operands Opcode
Xo X y
extru rq="ra, poSg len 5 1 0 0
extr 1=3 POSs 1€ 1
Zero and Deposit
40 373635343332 272625 2019 1312 6 5 0
2[5 Dl e v] oo
1 6 7 6
Extension
Instruction Operands Opcode
Xo X y
dep.z r{=ro, posg leng 5 1 1 0
Zero and Deposit Immediateg
40 373635343332 272625 2019 1312 6 5 0
113 ‘ 5 ‘s‘xz‘x‘ lengg M CPOSec immyy, r _
4 2 1 6 1 6 7 7 6
) Extension
Instruction Operands Opcode
X5 X y
dep.z r1 = immg, posg, leng 5 1 1 1
Deposit Immediate;
40 373635343332 2726 2019 141312 6 5 0
e L5 el] 6 [ewe o [
4 1 2 1 7 6 7 6
) Extension
Instruction Operands Opcode
X2
dep rq=immy, ra, Posg, leng 5 3
Deposit
40 3736 3130 2726 2019 1312 6 5 0
s | 4 [Tenose [Tlemaa| v
4 6 4 7 7 7 6
Instruction Operands Opcode
dep r{=rp, I's, POSg, len, 4

Volume 3: Instruction Formats

4.3.3 Test Bit

All test bit instructions are encoded within major opcode 5 using a 2-bit opcode extension field in
bits 35:34 (x,) plus five 1-bit opcode extension fields in bits 33 (t), 36 (ty,), 12 (c), 13 (y) and 19
(). Table 4-23 summarizes these assignments.

Table 4-23. Test Bit Opcode Extensions

Bits 40:37 35:34 Bit 33 | Bit 36 | Bit 12 | Bit 13 0 ‘ 1
0 0 tbit.z 116
0 1 tnat.z 117 | tf.z 130
0 thit.z.unc 116
0 ! 1 tnat.z.unc 117 ‘ tf.z.unc 130
0 tbit.z.and 116
1 0 1 tnat.z.and 117 ‘ tf.z.and 130
: 0 tbit.nz.and 116
5 0 1 tnat.nz.and 117 ‘ tf.nz.and 130
0 0 thit.z.or 116
1 tnat.z.or 117 ‘ tf.z.or 130
0 0 tbit.nz.or 116
1 ! 1 that.nz.or 117 ‘ tf.nz.or 130
0 0 thit.z.or.andcm 116
1 1 tnat.z.or.andcm 117 ‘ tf.z.or.andcm 130
1 0 tbit.nz.or.andcm 116
1 tnat.nz.or.andcm 117 ‘ tf.nz.or.andcm 130
4.3.3.1 Test Bit
40 373635343332 2726 2019 14131211 6 5 0
116 | 5 |b x|t P r3 pose, |vlc] m [@]
4 1 2 1 6 7 6 11 6 6
Extension
Instruction Operands Opcode
Xo ta tp y c
thit.z 0
tbit.z.unc 0 1
tbit.z.and 0 0
tbit.nz.and ! 1
thit.z.or P1. P2= T3 POS > 0 0 0
thit.nz.or 0 1
thit.z.or.andcm ! 1 0
tbit.nz.or.andcm 1
Volume 3: Instruction Formats 3:295

4.3.3.2 Test NaT

40 373635343332 2726 201918 14131211 6 5 0

7[5 fuleld o X vie[e [Te T
4 1 2 1 6 7 1 5 11 6 6
. Extension
Instruction Operands Opcode

Xo ta ty y X c

tnat.z 0
0

tnat.z.unc 0 1
tnat.z.and 1 0
tnat.nz.and oy 5 0 1 0 1
tnat.z.or P1. P2=T3 0 0
tnat.nz.or 1 1
tnat.z.or.andcm : 0
tnat.nz.or.andcm 1

4.3.4 Miscellaneous I-Unit Instructions

The miscellaneous I -unit instructions are encoded in major opcode 0 using a 3-hit opcode extension
field (x3) in bits 35:33. Some a so have a 6-bit opcode extension field (Xg) in bits 32:27. Table 4-24
shows the 3-hit assignments and Table 4-25 summarizes the 6-bit assignments.

Table 4-24. Misc |-Unit 3-bit Opcode Extensions

Opcode X3
Bits 40:37 Bits 35:33
0 6-bit Ext (Table 4-25)
1 chk.s.i —int 120
2 mov to pr.rot — immy, 124
0 3 mov to pr 123

4
5
6
7 mov to b 121

3:296 Volume 3: Instruction Formats

Table 4-25. Misc I-Unit 6-bit Opcode Extensions

Zxt4 129

sxtl 129
Sxt2 129
sxt4 129

czx1.l129
czx2.1129
czx1.r 129
czx2.r 129

mov.i to ar — immg 127

434.1 Nop/Hint (I-Unit)

Opcode | x3 %s
Bits Bits | Bits Bits 32:31
40:37 |35:33|30:27 0 1 3
break.i 119 zxtl 129 mov from ip 125
1-bit Ext (Table 4-26) zxt2 129 mov from b 122

mov.i to ar 126

mov.i from ar 128

mov from pr 125

[-unit nop and hint instructions are encoded within major opcode 0 using a 3-bit opcode extension
field in bits 35:33 (x3), a 6-bit opcode extension field in bits 32:27 (xg), and a 1-bit opcode

extension field in bit 26 (y), as shown in Table 4-26.

Table 4-26. Misc I-Unit 1-bit Opcode Extensions

Opcode X3 Xg y
Bits 40:37 Bits 35:33 Bits 32:27 Bit 26
0 nop.i
0 0 01 - p-
1 hint.i
40 373635 3332 272625 6 5 0
as [0 [iL% [I] e
4 1 3 6 1 20 6
. Extension
Instruction Operands Opcode
X3 X6 y
nop.' im 0 0 01 0
hint. M1 1

Volume 3: Instruction Formats

3:297

4.3.4.2 Break (I-Unit)

40 373635 3332 272625 6 5 0
no [0 [l % | | | e
4 1 3 6 1 20 6
. Extension
Instruction Operands Opcode
X3 X6
break.i immyq 0 0 00

4.3.4.3 Integer Speculation Check (I-Unit)

40 373635 3332 2019 1312 6 5 0
2o [0 Bla] mme | n | o
4 1 3 13 7 7 6
) Extension
Instruction Operands Opcode
X3
chk.s.i Iy, targetz5 0 1

3:298 Volume 3: Instruction Formats

4.3.5 GR/BR Moves

The GR/BR move instructions are encoded in major opcode 0. See “Miscellaneous I-Unit
Instructions” on page 3:296 for a summary of the opcode extensions. The mov to BR instruction
uses a 2-hit “whether” prediction hint field in bits 21:20 (wh) as shown in Table 4-27.

Table 4-27. Move to BR Whether Hint Completer

wh
Bits 21:20

0

1
2
3

mwh

The mov to BR instruction also uses a 1-bit opcode extension field (x) in bit 22 to distinguish the
return form from the normal form, and a 1-bit hint extension in bit 23 (ih) (see Table 4-56 on

page 3:335).
4.3.5.1 Move to BR
40 373635 3332 242322212019 1312 9 8 6 5 0
o [0 | [] o | | o R
4 1 3 9 11 2 7 4 3 6
Extension
Instruction Operands Opcode -
X3 X ih wh
mov.mwh.ih 0 - -
bl =1yt agys 0 7 See Talblesfl3 ?5’2 See Table3.42 SZ);
mov.ret.mwh.ih 1 on page 3. on page 3.
4.3.5.2 Move from BR
40 373635 3332 2726 1615 1312 6 5 0
22 o [[| oo TSR
4 1 3 6 11 3 7 6
. Extension
Instruction Operands Opcode
X3 Xe
mov ry=by 0 0 31

Volume 3: Instruction Formats

3:299

4.3.6

4.3.6.1

4.3.6.2

4.3.6.3

4.3.7

3:300

GR/Predicate/IP Moves

The GR/Predicate/lP move instructions are encoded in major opcode 0. See “Miscellaneous I-Unit

Instructions” on page 3:296 for a summary of the opcode extensions.

Move to Predicates — Register

40 373635 333231 2423 2019 1312 6 5
er Lo sl | | mek || oo me, [
4 1 3 1 8 4 7 7 6
Extension
Instruction Operands Opcode
X3
mov pr =, Masky7 0 3
Move to Predicates — Immediate,,
40 373635 3332 6 5
o [0 I8 e
4 1 3 27 6
) Extension
Instruction Operands Opcode
X3
mov pr.rot = iMMy, 0 2
Move from Predicates/IP
40 373635 3332 2726 1312 6 5
s [0 [e] n [
4 1 3 6 14 7 6
) Extension
Instruction Operands Opcode
X3 X6
r=i 30
mov 1=® 0 0
rqy=pr 33

GR/AR Moves (I-Unit)

The I-Unit GR/AR move instructions are encoded in major opcode 0. (Some ARs are accessed

using system/memory management instructions on the M-unit. See “GR/AR Moves (M-Unit)” on

page 3:322.) See “Miscellaneous I-Unit Instructions’ on page 3:296 for a summary of the I-Unit
GR/AR opcode extensions.

Volume 3: Instruction Formats

4.3.7.1 Move to AR — Register (I-Unit)
40 373635 3332 2726 2019 1312 6 5 0
e [0 [[BlImn] = . e
4 1 3 6 7 7 7 6
Extension
Instruction Operands Opcode
X3 XG
mov.i arzg=ro, 0 0 2A
4.3.7.2 Move to AR — Immediateg (I-Unit)
40 373635 3332 2726 2019 1312 6 5 0
o7 [0 Plal e | | mm o
4 1 3 6 7 7 7 6
Extension
Instruction Operands Opcode
X3 X6
mov.i arz=immg 0 0 0A
4.3.7.3 Move from AR (I-Unit)
40 373635 3332 2726 2019 1312 6 5 0
s [0 [[e] n [
4 1 3 6 7 7 7 6
. Extension
Instruction Operands Opcode
X3 Xe
mov.i rp=arg 0 0 32
4.3.8 Sign/Zero Extend/Compute Zero Index
40 373635 3332 2726 2019 1312 6 5 0
e Lo ([] | .
4 1 3 6 7 7 7 6
Extension
Instruction Operands Opcode
X3 X6
zxtl 10
zxt2 11
zxt4 12
Sxtl 14
Sxt2 Fo=r 0 0 15
sxtd 1='s3 16
czx1.l 18
czx2.l 19
czxl.r 1C
czx2.r 1D

Volume 3: Instruction Formats

3:301

4.3.9 Test Feature

40 373635343332 2726 201918 14131211 6 5 0
30 [5 [uleld o [x[immgy [y[e] T TGP
4 1 2 1 6 7 1 5 11 6 6
) Extension
Instruction Operands Opcode
Xo ta th y X c
tf.z 0
0
tf.z.unc 1
0
tf.z.and 1 0
tf.nz.and —im 5 0 1 1 1
tf.z.or P1. P2 =1MMs 0 0
tf.nz.or 1 1
tf.z.or.andcm 1 0
tf.nz.or.andcm 1

4.4 M-Unit Instruction Encodings

441 Loads and Stores

All load and store instructions are encoded within major opcodes 4, 5, 6, and 7 using a 6-bit opcode
extension field in bits 35:30 (xg). Instructionsin major opcode 4 (integer load/store, semaphores,
and get FR) use two 1-bit opcode extension fieldsin bit 36 (m) and bit 27 (x) as shownin

Table 4-28. Instructions in major opcode 6 (floating-point load/store, load pair, and set FR) use two
1-bit opcode extension fieldsin bit 36 (m) and bit 27 (x) as shown in Table 4-29.

Table 4-28. Integer Load/Store/Semaphore/Get FR 1-bit Opcode Extensions

Opcode m X
Bits 40:37 Bit 36 Bit 27
0 0 Load/Store (Table 4-30)
4 0 1 Semaphore/get FR (Table 4-33)
1 0 Load +Reg (Table 4-31)
1 T

Table 4-29. Floating-point Load/Store/Load Pair/Set FR 1-bit Opcode Extensions

Opcode m X
Bits 40:37 Bit 36 Bit 27
0 0 FP Load/Store (Table 4-34)
5 0 1 FP Load Pair/set FR (Table 4-37)
1 0 FP Load +Reg (Table 4-35)
1 1 FP Load Pair +Imm (Table 4-38)

The integer |oad/store opcode extensions are summarized in Table 4-30 on page 3:303, Table 4-31
on page 3:303, and Table 4-32 on page 3:304, and the semaphore and get FR opcode extensionsin
Table 4-33 on page 3:304. The floating-point |oad/store opcode extensions are summarized in

3:302 Volume 3: Instruction Formats

Table 4-34 on page 3:305, Table 4-35 on page 3:305, and Table 4-36 on page 3:306, the
floating-point load pair and set FR opcode extensions in Table 4-37 on page 3:306 and Table 4-38
on page 3:307.

Table 4-30. Integer Load/Store Opcode Extensions

Opcode | m | x X6
Bits Bit | Bit | Bits Bits 31:30
40:37 | 36 | 27 | 35:32 0 1 2 3

0 ld1 M1 1d2 M1 ld4 M1 1d8 M1
1 ld1l.s M1 ld2.s M1 ld4.s M1 1d8.s M1
2 ldl.a M1 ld2.a M1 ld4.a M1 1d8.a M1
3 ldl.sa M1 Id2.sa M1 Id4.sa M1 1d8.sa M1
4 Id1.bias M1 Id2.bias M1 Id4.bias M1 1d8.bias M1
5 ldl.acq M1 ld2.acq M1 ld4.acq M1 ld8.acq M1

4 0|0 !
8 ld1.c.clr M1 ld2.c.clr M1 Id4.c.clr M1 1d8.c.clr M1
9 Idl.c.nc M1 Id2.c.nc M1 Id4.c.nc M1 1d8.c.nc M1
A ld1.c.clracqg M1 |d2.c.clr.acqg M1 ld4.c.clr.acqg M1 ld8.c.clr.acqg M1

o [R N
C stl M4 st2 M4 st4 M4 st8 M4
D stl.rel M4 st2.rel M4 std.rel M4 st8.rel M4
E st8.spill M4
F
Table 4-31. Integer Load +Reg Opcode Extensions
Opcode | m | x X6
Bits | Bit | Bit | Bits Bits 31:30
40:37 | 36 | 27 | 35:32 0 1 2 3

0 Id1 M2 1d2 M2 1d4 M2 1d8 M2
1 Id1.s M2 ld2.s M2 Id4.s M2 1d8.s M2
2 ld1.a M2 1d2.a M2 Id4.a M2 |d8.a M2
3 Id1.sa M2 1d2.sa M2 Id4.sa M2 1d8.sa M2
4 Id1.bias M2 1d2.bias M2 |d4.bias M2 1d8.bias M2
5 ld1l.acq M2 Id2.acq M2 ld4.acq M2 ld8.acq M2

4 1 0 !
8 Id1.c.clr M2 1d2.c.clr M2 Id4.c.clr M2 1d8.c.clr M2
9 Id1.c.nc M2 1d2.c.nc M2 Id4.c.nc M2 1d8.c.nc M2
A Id1.c.clracq M2 Id2.c.clr.acq M2 Id4.c.clr.acq M2 1d8.c.clr.acqg M2
B
C
D
E
F

Volume 3: Instruction Formats

3:303

Table 4-32. Integer Load/Store +Imm Opcode Extensions

Table 4-33. Sema

phore/Get FR/16-Byte Opcode Extensions

Opcode X6

Bits Bits Bits 31:30

40:37 35:32 0 1 2 3
0 I1d1 M3 1d2 M3 Id4 M3 |d8 M3
1 Id1.s M3 1d2.s M3 Id4.s M3 |d8.s M3
2 Idl.a M3 Id2.a M3 Id4.a M3 1d8.a M3
3 Id1.sa M3 Id2.sa M3 |d4.sa M3 1d8.sa M3
4 Id1.bias M3 1d2.bias M3 Id4.bias M3 1d8.bias M3
5 ldl.acq M3 ld2.acq M3 ld4.acq M3 ld8.acq M3
6 1d8.fill M3
7

> 8 Id1.c.clr M3 ld2.c.clr M3 Id4.c.clr M3 1d8.c.clr M3

9 Id1l.c.nc M3 Id2.c.nc M3 Id4.c.nc M3 1d8.c.nc M3
A Id1.c.clr.acqg M3 Id2.c.clr.acqg M3 ld4.c.clr.acqg M3 Id8.c.clr.acqg M3
B
C stl M5 st2 M5 st4 M5 st8 M5
D stl.rel M5 st2.rel M5 st4.rel M5 st8.rel M5
F

3:304

Opcode | m | x X6
Bits | Bit | Bit | Bits Bits 31:30
40:37 | 36 | 27 | 35:32 0 1 2 3
0 cmpxchgl.acq cmpxchg2.acq cmpxchg4.acq cmpxchg8.acq M16
M16 M16 M16
1 | cmpxchgl.rel M16 | cmpxchg2.rel M16 | cmpxchg4.rel M16 | cmpxchg8.rel M16
2 xchgl M16 xchg2 M16 xchg4 M16 xchg8 M16
fetchadd4.acq fetchadd8.acq M17
M17
fetchadd4.rel M17 | fetchadd8.rel M17
4 ol 1 getf.sig M19 getf.exp M19 getf.s M19 getf.d M19
8 cmp8xchgl6.acq
M16
9 cmp8xchgl6.rel
M16
A |d16 M1
B ld16.acq M1
C st16 M4
D st16.rel M4
E
F

Volume 3: Instruction Formats

Table 4-34. Floating-point Load/Store/Lfetch Opcode Extensions

stf.spill M9

Opcode | m | x Xe
Bits | Bit | Bit| Bits Bits 31:30
40:37 | 36 | 27 | 35:32 0 1 2 3

0 Idfe M6 1df8 M6 |dfs M6 |dfd M6
1 Idfe.s M6 1df8.s M6 Idfs.s M6 |dfd.s M6
2 Idfe.a M6 1df8.a M6 ldfs.a M6 |dfd.a M6
3 Idfe.sa M6 |df8.sa M6 Idfs.sa M6 Idfd.sa M6
4
5
0

6 0|0 !
8 Idfe.c.clr M6 1df8.c.clr M6 ldfs.c.clr M6 Idfd.c.clr M6
9 Idfe.c.nc M6 1df8.c.nc M6 Idfs.c.nc M6 Idfd.c.nc M6
A
B Ifetch M13 Ifetch.excl M13 Ifetch.fault M13 | Ifetch.fault.excl M13
C stfe M9 stf8 M9 stfs M9 stfd M9
D
E
F

Table 4-35. Floating-point Load/Lfetch +Reg Opcode Extensions

Opcode | m | x X6
Bits Bit | Bit | Bits Bits 31:30
40:37 | 36 | 27 | 35:32 0 1 2 3
Idfe M7 1df8 M7 Idfs M7 Idfd M7
Idfe.s M7 1df8.s M7 Idfs.s M7 Idfd.s M7
Idfe.a M7 Idf8.a M7 Idfs.a M7 Idfd.a M7
Idfe.sa M7 1df8.sa M7 Idfs.sa M7 Idfd.sa M7

Idf.fill M7

Idfe.c.clr M7 1df8.c.clr M7 Idfs.c.clr M7 Idfd.c.clr M7
Idfe.c.nc M7 1df8.c.nc M7 Idfs.c.nc M7 Idfd.c.nc M7

Ifetch M14 Ifetch.excl M14 Ifetch.fault M14 Ifetch.fault.excl M14

MM oOololw >l o No gl b~ w| N RO

Volume 3: Instruction Formats 3:305

Table 4-36. Floating-point Load/Store/Lfetch +Imm Opcode Extensions

Table 4-37. Floating-point Load Pair/Set FR Opcode Extensions

Opcode X6
Bits Bits Bits 31:30
40:37 35:32 0 1 2 3

0 |dfe M8 |dfg8 M8 Idfs M8 Idfd M8
1 Idfe.s M8 |df8.s M8 Idfs.s M8 Idfd.s M8
2 Idfe.a M8 |df8.a M8 Idfs.a M8 Idfd.a M8
3 Idfe.sa M8 1df8.sa M8 Idfs.sa M8 Idfd.sa M8
4
5
6
7

! 8 Idfe.c.clr M8 1df8.c.clr M8 Idfs.c.clr M8 Idfd.c.clr M8
9 Idfe.c.nc M8 1df8.c.nc M8 Idfs.c.nc M8 Idfd.c.nc M8
A
B Ifetch M15 Ifetch.excl M15 Ifetch.fault M15 Ifetch.fault.excl M15
C stfe M10 stf8 M10 stfs M10 stfd M10
D
:
F

Opcode
Bits
40:37

m | X
Bit | Bit
36 | 27

Xe
Bits Bits 31:30
: 1 2 3
|dfp8 M11 Idfps M11 Idfpd M11
|dfp8.s M11 Idfps.s M11 |dfpd.s M11
Idfp8.a M11 ldfps.a M11 |dfpd.a M11
Idfp8.sa M11 ldfps.sa M11 Idfpd.sa M11

setf.exp M18 setf.s M18

setf.d M18

|dfp8.c.clr M11 Idfps.c.clr M11

Idfpd.c.clr M11

3:306

|dfp8.c.nc M11 Idfps.c.nc M11

Idfpd.c.nc M11

Volume 3: Instruction Formats

Table 4-38. Floating-point Load Pair +Imm Opcode Extensions

Opcode | m | x

Bits | Bit | Bit | Bits

40:37 | 36 | 27

Idfp8.c.clr M12

X6
Bits 31:30
1 2 3
Idfp8 M12 ldfps M12 Idfpd M12
Idfp8.s M12 Idfps.s M12 Idfpd.s M12
Idfp8.a M12 ldfps.a M12 Idfpd.a M12
Idfp8.sa M12 |dfps.sa M12 Idfpd.sa M12

Idfps.c.clr M12

Idfpd.c.clr M12

Idfp8.c.nc M12

Idfps.c.nc M12

Idfpd.c.nc M12

Theload and store instructions all have a 2-bit cache locality opcode hint extension field in bits
29:28 (hint). Table 4-39 and Table 4-40 summarize these assignments.

Table 4-39. Load Hint Completer

hint
Bits 29:28

Idhint

Table 4-40. Store Hint Completer

hint

Bits 29:28 sthint

o
s —

Volume 3: Instruction Formats

3:307

44.1.1 Integer Load

40 373635 3029282726 2019 1312 6 5 0
mio A fml n [
4 1 6 2 1 7 7 7 6
Extension
Instruction Operands Opcode
m X Xg hint

Id1.Idhint 00
Id2.1dhint 01
Id4.1dhint 02
Id8.1dhint 03
Id1.s.Idhint 04
Id2.s.Idhint 05
Id4.s.Idhint 06
Id8.s.Idhint 07
Id1.a.ldhint 08
Id2.a.ldhint 09
Id4.a.ldhint 0A
Id8.a.ldhint 0B
Id1.sa.ldhint oc
|d2.sa.ldhint oD
Id4.sa.ldhint OE
Id8.sa.ldhint OF
Id1.bias.ldhint 10
Id2.bias.Idhint 11
Id4.bias.Idhint ro=[ra 0 0 12

\d8. bias. dhint 4 13 iieplzk;'esgg?
Id1.acq.Idhint 14
Id2.acq.Idhint 15
Id4.acq.Idhint 16
Id8.acq.Idhint 17
Id8.fill.Idhint 1B
Id1.c.clr.ldhint 20
Id2.c.clr.Idhint 21
Id4.c.clr.Idhint 22
Id8.c.clr.Idhint 23
Id1.c.nc.Idhint 24
Id2.c.nc.ldhint 25
Id4.c.nc.ldhint 26
Id8.c.nc.Idhint 27
Id1.c.clr.acq.ldhint 28
Id2.c.clr.acq.ldhint 29
Id4.c.clr.acq.ldhint 2A
Id8.c.clr.acq.ldhint 2B
Id16.Idhint 28

rq, arcsd=[rg 0 1 oc

Id16.acq.ldhint

3:308 Volume 3: Instruction Formats

4.4.1.2 Integer Load — Increment by Register

40 373635 3029282726 2019 1312 6 5 0
vz A 2 o [
4 1 6 2 1 7 7 7 6
Extension
Instruction Operands Opcode
m X Xg hint
Id1.1dhint 00
1d2.I1dhint 01
Id4.Idhint 02
1d8.Idhint 03
Id1.s.ldhint 04
1d2.s.1dhint 05
1d4.s.1dhint 06
1d8.s.1dhint 07
Id1.a.Idhint 08
|d2.a.Idhint 09
Id4.a.Idhint 0A
1d8.a.ldhint 0B
Id1.sa.ldhint ocC
Id2.sa.ldhint oD
ld4.sa.ldhint OE
1d8.sa.ldhint OF
Id1.bias.Idhint 10
1d2.bias.ldhint 11
Id4.bias.Idhint r1=[ra ry 4 1 0o | 12 iieplzt;'zggf
|d8.bias.Idhint 13
ld1.acq.ldhint 14
Id2.acq.ldhint 15
Id4.acq.ldhint 16
1d8.acq.ldhint 17
1d8.fill.Idhint 1B
Id1.c.clr.Idhint 20
Id2.c.clr.Idhint 21
Id4.c.clr.Idhint 22
1d8.c.clr.Idhint 23
Id1.c.nc.ldhint 24
1d2.c.nc.Idhint 25
Id4.c.nc.ldhint 26
1d8.c.nc.ldhint 27
Id1.c.clr.acq.ldhint 28
Id2.c.clr.acq.ldhint 29
ld4.c.clr.acq.ldhint 2A
1d8.c.clr.acq.Idhint 2B

Volume 3: Instruction Formats 3:309

44.1.3 Integer Load — Increment by Immediate

40 373635 3029282726 2019 1312 6 5 0
we s sl v [N v . G
4 1 6 2 1 7 7 7 6
Extension
Instruction Operands Opcode
Xg hint
Id1.1dhint 00
Id2.1dhint 01
Id4.1dhint 02
Id8.1dhint 03
Id1.s.Idhint 04
Id2.s.Idhint 05
Id4.s.Idhint 06
Id8.s.Idhint 07
Id1.a.ldhint 08
Id2.a.ldhint 09
Id4.a.ldhint 0A
ld8.a.ldhint oB
Id1.sa.ldhint oc
Id2.sa.ldhint 0D
Id4.sa.ldhint OE
Id8.sa.ldhint OF
Id1.bias.Idhint 10
Id2.bias.Idhint 11
\d4.bias. dhint ry=[rg), immg 5 12 Seep;zt;'zgg? on
Id8.bias.Idhint 13
Id1.acq.ldhint 14
Id2.acq.ldhint 15
Id4.acq.ldhint 16
Id8.acq.Idhint 17
1d8.fill.Idhint 1B
Id1.c.clr.Idhint 20
Id2.c.clr.Idhint 21
Id4.c.clr.Idhint 22
Id8.c.clr.Idhint 23
Id1.c.nc.Idhint 24
Id2.c.nc.Idhint 25
Id4.c.nc.Idhint 26
Id8.c.nc.Idhint 27
Id1.c.clr.acq.ldhint 28
Id2.c.clr.acq.Idhint 29
Id4.c.clr.acq.ldhint 2A
Id8.c.clr.acq.ldhint 2B

3:310 Volume 3: Instruction Formats

4414 Integer Store

40 373635 3029282726 2019 1312 6 5 0
ma e fml 2 o
4 1 6 2 1 7 7 7 6
Extension
Instruction Operands Opcode -
m X Xg hint
stl.sthint 30
st2.sthint 31
st4.sthint 32
st8.sthint 33
stl.rel.sthint [Fal=Tr>o 0 0 34
) See Table 4-40
st2.rel.sthint 4 35 on page 3:307
std.rel.sthint 36
st8.rel.sthint 37
st8.spill.sthint 3B
st16.sthint 30
. [F3] =T, ar.csd 0 1
st16.rel.sthint 34
4415 Integer Store — Increment by Immediate
40 373635 3029282726 2019 1312 6 5 0
ws 5 sl 0% o om,
6 7 7 7 6
‘ Extension
Instruction Operands Opcode -
Xg hint
stl.sthint 30
st2.sthint 31
st4.sthint 32
st8.sthint 33
- L See Table 4-40 on
stl.rel.sthint [F3]=To, IMMy 5 34 page 3:307
st2.rel.sthint 35
st4.rel.sthint 36
st8.rel.sthint 37
st8.spill.sthint 3B

Volume 3: Instruction Formats

3:311

4.4.1.6 Floating-point Load

40 373635 3029282726 2019 1312 6 5 0
me [6 Iml % []
4 1 6 2 1 7 7 7 6
Extension
Instruction Operands Opcode
m X Xg hint
Idfs.ldhint 02
Idfd.Idhint 03
Idf8.Idhint 01
Idfe.Idhint 00
Idfs.s.Idhint 06
Idfd.s.Idhint 07
|df8.s.Idhint 05
Idfe.s.Idhint 04
Idfs.a.ldhint 0A
Idfd.a.ldhint 0B
Idf8.a.ldhint 09
Idfe.a.ldhint 08
\dfs.sa.ldhint fi=[rq 6 0 0 OE iieplzz";gg’?
Idfd.sa.ldhint OF
|df8.sa.ldhint 0D
Idfe.sa.ldhint ocC
Idf fill.Idhint 1B
Idfs.c.clr.Idhint 22
Idfd.c.clr.Idhint 23
Idf8.c.clr.Idhint 21
Idfe.c.clr.Idhint 20
Idfs.c.nc.ldhint 26
Idfd.c.nc.Idhint 27
Idf8.c.nc.Idhint 25
Idfe.c.nc.Idhint 24

3:312 Volume 3: Instruction Formats

4.4.1.7 Floating-point Load — Increment by Register

40 373635 3029282726 2019 1312 6 5 0
M7 e fml = | oo e
4 1 6 2 1 7 7 7 6
Extension
Instruction Operands Opcode
m X Xg hint

Idfs.ldhint 02
Idfd.Idhint 03
1df8.Idhint 01
Idfe.ldhint 00
Idfs.s.Idhint 06
Idfd.s.Idhint 07
1df8.s.Idhint 05
Idfe.s.Idhint 04
Idfs.a.ldhint 0A
Idfd.a.ldhint 0B
1df8.a.ldhint 09
Idfe.a.ldhint 08

Idfs.sa.Idhint fy=[rg 6 1 0 OF Seep;zt:‘;:‘ggéa on
Idfd.sa.ldhint OoF
1df8.sa.ldhint 0D
Idfe.sa.ldhint oC
Idf.fill.|dhint 1B
Idfs.c.clr.Idhint 22
Idfd.c.clr.Idhint 23
1df8.c.clr.Idhint 21
Idfe.c.clr.Idhint 20
Idfs.c.nc.ldhint 26
Idfd.c.nc.Idhint 27
1df8.c.nc.Idhint 25
Idfe.c.nc.Idhint 24

Volume 3: Instruction Formats 3:313

4418

44.1.9

3:314

Floating-point Load — Increment by Immediate

40 373635 3029282726 2019 1312 5 0
ve | 7 sl % W
4 1 6 2 1 7 7 6
Extension
Instruction Operands Opcode
Xg hint
Idfs.Idhint 02
Idfd.Idhint 03
Idf8.Idhint 01
Idfe.Idhint 00
Idfs.s.Idhint 06
Idfd.s.Idhint 07
|df8.s.Idhint 05
Idfe.s.Idhint 04
Idfs.a.ldhint 0A
Idfd.a.ldhint 0B
Idf8.a.ldhint 09
Idfe.a.ldhint 08
\dfs.sa.ldhint fy = [rgl, immg OF Seep;z*:‘;gg’? on
Idfd.sa.ldhint OF
|df8.sa.ldhint oD
Idfe.sa.ldhint ocC
Idf fill.Idhint 1B
Idfs.c.clr.Idhint 22
Idfd.c.clr.Idhint 23
Idf8.c.clr.Idhint 21
Idfe.c.clr.Idhint 20
Idfs.c.nc.ldhint 26
Idfd.c.nc.Idhint 27
Idf8.c.nc.Idhint 25
Idfe.c.nc.Idhint 24
Floating-point Store
40 373635 3029282726 2019 1312 5 0
mo e [f e
4 1 6 2 1 7 7 7 6
Extension
Instruction Operands Opcode
m X Xg hint
stfs.sthint 32
stfd.sthint 33
stfg. sthint ra=f, 6 0 0 31 Seep;zgzggg on
stfe.sthint 30
stf.spill.sthint 3B

Volume 3: Instruction Formats

4.4.1.10

Floating-point Store — Increment by Immediate

40 373635 3029282726 2019 1312 6 5 0
mio 7 s o | e [
4 6 7 6
Extension
Instruction Operands Opcode
Xg hint
stfs.sthint 32
stfd.sthint 33
stfg.sthint [r4] = f, immg 7 3 Seep;zk;'esf‘s'g? on
stfe.sthint 30
stf.spill.sthint 3B
44111 Floating-point Load Pair
40 373635 3029282726 2019 1312 6 5 0
Mt |6 ml %
4 1 6 2 1 7 7 6
Extension
Instruction Operands Opcode -
m X Xg hint
Idfps.Idhint 02
Idfpd.Idhint 03
|dfp8.Idhint 01
Idfps.s.ldhint 06
|dfpd.s.Idhint 07
1dfp8.s.Idhint 05
Idfps.a.ldhint 0A
|dfpd.a.Idhint 0B
Idfp8.a.|dhir.1t f1, f2 -Irg 6 0 1 09 See Table .4.39
Idfps.sa.ldhint OE on page 3:307
Idfpd.sa.ldhint OoF
Idfp8.sa.ldhint 0D
Idfps.c.clr.Idhint 22
Idfpd.c.clr.Idhint 23
Idfp8.c.clr.Idhint 21
Idfps.c.nc.Idhint 26
Idfpd.c.nc.Idhint 27
|dfp8.c.nc.Idhint 25

Volume 3: Instruction Formats

3:315

44.1.12

4.4.2

Floating-point Load Pair — Increment by Immediate

M12 |

40 373635 3029282726 2019 1312 6 5 0
6 ‘m‘ Xg
4 1 6 2 1 7 6
Extension
Instruction Operands Opcode -
X Xg hint
Idfps.Idhint f, fo=1ral, 8 02
Idfpd.Idhint 03
P . fl’ f2 =[rq], 16
Idfp8.Idhint 01
dfps.s.Idhint fi.fo=1rgl. 8 06
Idfpd.s.ldhint 07
P . fl' fz = [r3], 16
|dfp8.s.Idhint 05
Idfps.a.ldhint f, fo=1ral, 8 0A
|dfpd.a.ldhint 0B
P X fl’ f2 =[rql, 16
Idfp8.a.ldhint 6 1 09 See Table 4-39
Idfps.sa.ldhint fl.fo=1rgl. 8 OE | onpage 3:307
|dfpd.sa.ldhint OF
P . fl' fz =[rq], 16
Idfp8.sa.ldhint oD
dfps.c.clr.Idhint f, fo=1ral, 8 22
Idfpd.c.clr.Idhint 23
. fl' f2 =[rq], 16
Idfp8.c.clr.Idhint 21
ldfps.c.nc.Idhint f, fo=1rgl, 8 26
Idfpd.c.nc.ldhint 27
. fl' fz = [I'3], 16
Idfp8.c.nc.ldhint 25

Line Prefetch

The line prefetch instructions are encoded in major opcodes 6 and 7 along with the floating-point
load/store instructions. See “Loads and Stores’ on page 3:302 for a summary of the opcode
extensions.

The line prefetch instructions all have a 2-bit cache locality opcode hint extension field in bits
29:28 (hint) as shown in Table 4-41.

Table 4-41. Line Prefetch Hint Completer

3:316

hint
Bits 29:28

Ifhint

Volume 3: Instruction Formats

442.1 Line Prefetch

40 373635 3029282726 2019 6 5 0
vis [6 [m[e
4 1 6 2 1 7 14 6
Extension
Instruction Operands Opcode -
m X Xg hint
Ifetch.Ifhint 2C
Ifetch.excl.Ithint 2D -
. Ira] 6 0 0 See Table 4 41on
Ifetch.fault.Ifhint 2E page 3:316
Ifetch.fault.excl.Ifhint 2F
4.4.2.2 Line Prefetch — Increment by Register
40 373635 3029282726 2019 1312 6 5 0
wie (6l : e
4 1 6 2 1 7 7 7 6
. Extension
Instruction Operands Opcode -
m X Xg hint
Ifetch.Ifhint 2C
Ifetch.excl.Ithint 2D -
' 3 o 6 1 0 See Table 4 41 0n
Ifetch.fault.I fhint 2E page 3:316
Ifetch.fault.excl.Ifhint 2F
4.4.2.3 Line Prefetch — Increment by Immediate
40 373635 3029282726 2019 1312 6 5 0
wis (7 [s| e
4 6 2 1 7 7 7 6
. Extension
Instruction Operands Opcode -
Xg hint
Ifetch.Ifhint 2C
Ifetch.excl.Ifhint . 2D -
. [, immg 7 See Table.4 41 on
Ifetch.fault.Ifhint 2E page 3:316
Ifetch.fault.excl.Ifhint 2F

Volume 3: Instruction Formats

3:317

4.4.3 Semaphores

The semaphore instructions are encoded in major opcode 4 along with the integer load/store
instructions. See“L oads and Stores” on page 3:302 for a summary of the opcode extensions. These
instructions have the same cache locality opcode hint extension field in bits 29:28 (hint) as load

instructions. See Table 4-39, “Load Hint Completer” on page 3:307.

4431 Exchange/Compare and Exchange

40 373635 3029282726 2019 1312 6 5 0
mie |4 m[% 2 n [
4 1 6 2 1 7 7 7 6
Extension
Instruction Operands Opcode -
m X Xg hint
cmpxchgl.acq.ldhint 00
cmpxchg?2.acq.ldhint 01
cmpxchg4.acq.ldhint 02
cmpxchg8.acq.ldhint 03
- r1=[rg, ry, ar.ccv
cmpxchgl.rel.ldhint 04
cmpxchg?2.rel.ldhint 05
cmpxchg4.rel.ldhint 06 See
) 4 0 1 Table 4-39 on
cmpxchg8.rel.ldhint o7 page 3:307
cmp8xchgl6.acq.ldhint 20
) I =1[rgl, rp, ar.csd, ar.ccv
cmp8xchgl6.rel.ldhint 24
xchgl.Idhint 08
xchg2.Idhint 09
. rp=[ral rp
xchg4.1dhint 0A
xchg8.Idhint 0B
4.4.3.2 Fetch and Add — Immediate
40 373635 3029282726 2019 1615141312 6 5 0
vz 4 m % sltw] n
4 1 6 2 1 7 4 1 2 7 6
Extension
Instruction Operands Opcode -
m X Xg hint
fetchadd4.acq.ldhint 12
fetchadd8.acq.ldhint . 13 -
q . ry=Irgl incs 4 0 1 See Table_4 39
fetchadd4.rel.ldhint 16 on page 3:307
fetchadd8.rel.Idhint 17

3:318 Volume 3: Instruction Formats

4.4.4

4441

4.4.4.2

Set/Get FR

The set FR instructions are encoded in major opcode 6 along with the floating-point load/store

instructions. The get FR instructions are encoded in major opcode 4 along with the integer
load/store instructions. See “L oads and Stores’ on page 3:302 for a summary of the opcode

extensions.
Set FR
40 373635 3029282726 2019 1312 6 5 0
mis 6 [T X 2 W e T
4 1 6 2 7 7
) Extension
Instruction Operands Opcode
m X Xg
setf.sig 1C
setf.ex 1D
P fi=ro 6 0 1
setf.s 1E
setf.d 1F
Get FR
40 373635 3029282726 2019 1312 6 5 0
mio 4 [T T X f n [
4 1 6 2 1 7 7
) Extension
Instruction Operands Opcode
m X Xg
getf.sig 1C
etf.ex 1D
9 P ry=fo 4 0 1
getf.s 1E
getf.d 1F

Volume 3: Instruction Formats

3:319

4.4.5

4451

4452

4453

4454

3:320

Speculation and Advanced Load Checks

The speculation and advanced load check instructions are encoded in major opcodes 0 and 1 along
with the system/memory management instructions. See “ System/Memory Management” on
page 3:325 for a summary of the opcode extensions.

Integer Speculation Check (M-Unit)

40 373635 3332 2019 1312 6 5 0
wo [3 Js[% e | o
4 1 3 13 7 7 6
Extension
Instruction Operands Opcode
X3
chk.s.m ro, targetyg 1 1
Floating-point Speculation Check
40 373635 3332 2019 1312 6 5 0
v 1 [l % e |6, R
4 1 3 13 7 7 6
) Extension
Instruction Operands Opcode
X3
chk.s f2, target25 1 3
Integer Advanced Load Check
40 373635 3332 1312 6 5 0
mzz [0 [s[a] immagy, n e
4 1 3 20 7 6
Extension
Instruction Operands Opcode
X3
chk.a.nc 4
rq, target 0
chk.a.clr 1 925 5
Floating-point Advanced Load Check
40 373635 3332 1312 6 5 0
m2s [0 Js[x] immo, ho e
4 1 3 20 7 6
Extension
Instruction Operands Opcode
X3
chk.a.nc
fq, target 0
chk.a.clr 1 925

Volume 3: Instruction Formats

4.4.6

4.4.6.1

4.4.6.2

4.4.6.3

Cache/Synchronization/RSE/ALAT

The cache/synchronization/RSE/ALAT instructions are encoded in major opcode 0 along with the
memory management instructions. See “ System/Memory Management” on page 3:325 for a

summary of the opcode extensions.

Sync/Fence/Serialize/ALAT Control

40 373635 33323130 2726

Volume 3: Instruction Formats

m2a [0] [Pl x| o
4 1 3 2 4 21 6
. Extension
Instruction Opcode
X3 Xq X2
invala 0 1
fwb 0
mf 2 2
mf.a 0 0 3
srlz.d 0
srlz.i 1 3
sync.i 3
RSE Control
40 373635 33323130 2726 6 5 0
mzs [0 | [e e [o]
4 1 3 2 4 21 6
) Extension
Instruction Opcode
X3 Xa X2
flushrs f C
f 0 0 0
loadrs A
Integer ALAT Entry Invalidate
40 373635 33323130 2726 6 5 0
m2e [0 | [Txa e k] no e
4 1 3 2 4 14 7 6
) Extension
Instruction Operands Opcode
X3 Xg X2
invala.e r 0 0 2 1
3:321

4.4.6.4

4.4.6.5

4.4.7

44.7.1

4.4.7.2

3:322

Floating-point ALAT Entry Invalidate

40 373635 33323130 2726 1312 6 5 0
mzz [0] [De el x] n e
4 2 4 14 7 6
. Extension
Instruction Operands Opcode
X3 Xq X2
invala.e f1 0 0 3 1
Flush Cache
40 373635 3332 2726 2019 6 5 0
mzs [x| e
4 1 3 6 7 14 6
) Extension
Instruction Operands Opcode
X3 Xe X
fc 0
) rs 1 0 30
fc.i

GR/AR Moves (M-Unit)

The M-Unit GR/AR moveinstructions are encoded in major opcode 0 along with the

system/memory management instructions. (Some ARs are accessed using system control
instructions on the I-unit. See “GR/AR Moves (I-Unit)” on page 3:300.) See “ System/Memory
Management” on page 3:325 for a summary of the M-Unit GR/AR opcode extensions.

Move to AR — Register (M-Unit)

M29

M30

40 373635 3332 2726 2019 1312 6 5 0
ENRE R T e]
4 1 3 6 7 7 7 6
) Extension
Instruction Operands Opcode
X3 X6
mov.m arg=ro, 1 0 2A
Move to AR — Immediateg (M-Unit)
40 373635 33323130 2726 2019 1312 6 5 0
o Plm el k| w | mm e
4 1 3 2 4 7 7 7 6
. Extension
Instruction Operands Opcode
X3 Xy Xo
mov.m arz=immg 0 0 8 2

Volume 3: Instruction Formats

4.4.7.3

4.4.8

4.48.1

4.4.8.2

M31

M32

Move from AR (M-Unit)

40 373635 3332 2726 2019 1312 6 5 0
IES A R N n [
4 1 3 6 7 7 7 6
) Extension
Instruction Operands Opcode
X3 X6
mov.m rp=arg 1 0 22

GR/CR Moves

The GR/CR move instructions are encoded in major opcode 0 along with the system/memory
management instructions. See“ System/Memory Management” on page 3:325 for asummary of the

Volume 3: Instruction Formats

opcode extensions.
Move to CR
40 373635 3332 2726 2019 1312 6 5 0
(1 (el e o . e
4 1 3 6 7 7 7 6
. Extension
Instruction Operands Opcode
X3 Xe
mov P Cra=ro 1 0 2C
Move from CR
40 373635 3332 2726 2019 1312 6 5 0
YEOR R B o
4 1 3 6 7 7 7 6
. Extension
Instruction Operands Opcode
X3 X6
mov P ry=crg 1 0 24
3:323

4.4.9 Miscellaneous M-Unit Instructions

The miscellaneous M-unit instructions are encoded in major opcode 0 along with the
system/memory management instructions. See “ System/Memory Management” on page 3:325 for
asummary of the opcode extensions.

4.49.1 Allocate Register Stack Frame

40 373635 33323130 2726 2019 1312 6 5 0
wae 3| [%]| || o
4 1 3 2 4 7 7 7 6
. Extension
Instruction Operands Opcode
X3
alloc ri=arpfs,i,l,or 1 6

Note: Thethree immediatesin the instruction encoding are formed from the operands as fol -

lows:

sof =i+l +0
sol =i +1
sor=r>>3

4.49.2 Move to PSR

40 373635 3332 2726 2019 1312 6 5 0
mss [] [Del 2 [e]
4 1 3 6 7 7 7 6
) Extension
Instruction Operands Opcode
X3 X6
mov P sr.l=r 2D
psri=Ta 1 0
mov psrum =T, 29

4.49.3 Move from PSR

40 373635 3332 2726 1312 6 5 0
me [([l % n [EE
4 1 3 6 14 7 6
) Extension
Instruction Operands Opcode
X3 Xe
mov P rq=psr 25
1=p 1 0
mov 1 =psrum 21

3:324 Volume 3: Instruction Formats

4.49.4 Break (M-Unit)

40 373635 33323130 272625

w37 [0 TG Pel T | mMs0e e
4 1 3 2 4 1 20
) Extension
Instruction Operands Opcode
X3 Xq X2
break.m immy, 0 0 0 0

4.4.10 System/Memory Management

All system/memory management instructions are encoded within major opcodes 0 and 1 using a

3-bit opcode extension field (x3) in bits 35:33. Some instructions also have a 4-bit opcode

extension field (x4) in bits 30:27, or a 6-bit opcode extension field (Xg) in bits 32:27. Most of the
instructions having a 4-bit opcode extension field also have a 2-bit extension field (x,) in bits
32:31. Table 4-42 shows the 3-bit assignmentsfor opcode 0, Table 4-43 summarizes the 4-bit+2-bit
assignments for opcode 0, Table 4-44 shows the 3-bit assignments for opcode 1, and Table 4-45
summarizes the 6-bit assignments for opcode 1.

Table 4-42. Opcode 0 System/Memory Management 3-bit Opcode Extensions

Opcode X3
Bits 40:37 Bits 35:33
0 System/Memory Management 4-bit+2-bit Ext
(Table 4-43)
1
2
0 3
4 chk.a.nc — int M22
5 chk.a.clr — int M22
6 chk.a.nc — fp M23
7 chk.a.clr — fp M23

Volume 3: Instruction Formats

3:325

Table 4-43. Opcode 0 System/Memory Management 4-bit+2-bit Opcode Extensions

Opcode | x3 X4 X2
Bits | Bits | Bits Bits 32:31
40:37 |35:33|30:27 0 1 2 3
0 break.m M37 invala M24 fwb M24 sriz.d M24
1 1-bit Ext srlz.i M24
(Table 4-46)

invala.e — int M26

mf M24

invala.e — fp M27

mf.a M24

sync.i M24

sum M44

rum M44

ssm M44

flushrs M25

loadrs M25

rsm M44

mov.m to ar — immg M30

Table 4-44. Opcode 1 System/Memory Management 3-bit Opcode Extensions

3:326

opcose |

Bits 40:37 35:33
0 System/Memory Management 6-bit Ext (Table 4-45)
1 chk.s.m — int M20
2

R

4
5
0
7

Volume 3: Instruction Formats

Table 4-45. Opcode 1 System/Memory Management 6-bit Opcode Extensions

Opcode | x3 %6
Bits Bits Bits Bits 32:31
40:37 |35:33| 30:27 0 1 3
0 mov to rr M42 mov from rr M43
1 mov to dbr M42 mov from dbr M43 mov from psr.um probe.rw.fault —
M36 imm, M40
5 mov to ibr M42 mov from ibr M43 mov.m from ar M31 | probe.r.fault —
imm, M40
3 mov to pkr M42 mov from pkr M43 probe.w.fault —
imm, M40
4 mov to pmc M42 | mov from pmc M43 mov from cr M33 ptc.e M47
5 mov to pmd M42 | mov from pmd M43 mov from psr M36
1 0 6
7 mov from cpuid M43
8 probe.r —imm, M39 probe.r M38
9 ptc.I M45 probe.w —imm, M39 | mov to psr.um M35 probe.w M38
A ptc.g M45 thash M46 mov.m to ar M29
B ptc.ga M45 ttag M46
C ptr.d M45 mov to cr M32
D ptr.i M45 mov to psr.l M35
E itr.d M42 tpa M46 itc.d M41
F itr.i M42 tak M46 itc.i M41
4.410.1 Probe — Register
40 373635 3332 2726 2019 1312 6 5 0
mes [1 [[e] % 2 n [
4 1 3 6 7 7 7 6
. Extension
Instruction Operands Opcode
X3 Xe
probe.r 38
r= r3, s 1 0
probe.w 39
4.4.10.2 Probe — Immediate,
40 373635 3332 2726 2019 15141312 6 5 0
meo [t | [% [i o [
4 1 3 6 7 5 2 7 6
. Extension
Instruction Operands Opcode
X3 Xe
probe.r = Taim 1 0 18
probe.w 1=l 1My 19

Volume 3: Instruction Formats

3:327

4.4.10.3 Probe Fault — Immediate,
40 373635 3332 2726 2019 15141312 6 5
mao [t | ek [iz e
4 1 3 6 7 6
Extension
Instruction Operands Opcode
X3 Xe
probe.rw.fault 31
probe.r.fault rs immy 1 0 32
probe.w.fault 33
4.4.10.4 Translation Cache Insert
40 373635 3332 2726 2019 1312 6 5
mar [T[]] 2 e
4 1 3 6 7 7 6
Extension
Instruction Operands Opcode
X3 X6
itc.d'P . L o 2E
itc.i'P 2 2F
4.4.10.5 Move to Indirect Register/Translation Register Insert
40 373635 3332 2726 2019 1312 6 5
maz [] [2| e
4 1 3 6 7 7 6
Extension
Instruction Operands Opcode
X3 X6
rrgl=ro 00
dbr[rg] =ro 01
ibr[rg] =ro 02
mov P pkr{rg] =Ty 03
pme[rg] =TI 1 0 04
pmd[rg]=ro 05
itr.d P dtr[rg] =ro OE
itr.i P itr[fF 3] = o OF
3:328 Volume 3: Instruction Formats

4.410.6 Move from Indirect Register

40 373635 3332 2726 2019 1312 6 5 0
mas [] [De] n [
4 1 3 6 7 7 7 6
Extension
Instruction Operands Opcode
X3 Xg
rp=rmrq 10
rq=dbrirg 11
rq=ibrfr 12
mov r1 k[[r3] 13
= pkr
1= pilrg] 1 0
r1=pmc[rg 14
rq =pmd[r 15
mov 1=p _[3]
I1 = cpuid[rg] 17
4.4.10.7 Set/Reset User/System Mask
40 373635 33323130 2726 6 5 0
was [0 (1% lul | e
4 1 3 2 4 21 6
Extension
Instruction Operands Opcode
X3 Xq
sum 4
um imi 0 0 >
ssmP o4 6
rsmP 7
4.4.10.8 Translation Purge
40 373635 3332 2726 2019 1312 6 5 0
mas [] e e NG - e
4 1 3 6 7 7 7 6
Extension
Instruction Operands Opcode
X3 X6
ptc.IP 09
ptc.g'P 0A
ptc.ga'P raro 1 0 0B
ptr.dP oc
ptr.iP 0D

Volume 3: Instruction Formats

3:329

4.4.10.9 Translation Access
40 373635 3332 2726 2019 1312 6 5
mae [1 [l % .
4 1 3 6 7 7 7 6
Extension
Instruction Operands Opcode
X3 Xe
thash 1A
ttag — : 0 1B
tpa P 1=7'3 1E
tak P 1F
4.4.10.10 Purge Translation Cache Entry
40 373635 3332 2726 2019 6 5
maz [] e e
4 1 3 6 7 14 6
Extension
Instruction Operands Opcode
X3 Xe
ptc.eP rs 1 0 34

4411

Nop/Hint (M-Unit)

M-unit nop and hint instructions are encoded within major opcode 0 using a 3-bit opcode extension
field in bits 35:33 (x3), a 2-bit opcode extension field in bits 32:31 (x,), a 4-bit opcode extension
field in bits 30:27 (x,), and a 1-bit opcode extension field in bit 26 (y), as shown in Table 4-46.

Table 4-46. Misc M-Unit 1-bit Opcode Extensions

Opcode X3 X4 Xo y
Bits 40:37 Bits 35:33 | Bits 30:27 | Bits 32:31 Bit 26
0 nop.m
0 0 1 0 -
1 hint.m
40 373635 33323130 272625 6 5 0
was o il %l s Dy e
4] 2 4 1 20 6
Extension
Instruction Operands Opcode
X3 Xg Xo
nop-m im 0 0 1 0
hint.m M1

4.5

B-Unit Instruction Encodings

The branch-unit includes branch, predict, and miscellaneous instructions.

3:330 Volume 3: Instruction Formats

451 Branches

Opcode O isused for indirect branch, opcode 1 for indirect call, opcode 4 for |1P-relative branch, and

opcode 5 for IP-relative call.

The IP-relative branch instructions encoded within major opcode 4 use a 3-bit opcode extension
field in bits 8:6 (btype) to distinguish the branch types as shown in Table 4-47.

Table 4-47. IP-Relative Branch Types

Opcode btype
Bits 40:37 Bits 8:6
0
1
2
3
4
4
5
6
7

Theindirect branch, indirect return, and miscellaneous branch-unit instructions are encoded within
major opcode 0 using a6-bit opcode extension field in bits 32:27 (xg). Table 4-48 summarizesthese

assignments.

Table 4-48. Indirect/Miscellaneous Branch Opcode Extensions

X
3320400?37 Bits Bits 32:31
30:27
0
1
2
3
4
5
6
0 7
8
9
A
B
c
D
E
F

The indirect branch instructions encoded within major opcodes 0 use a 3-bit opcode extension field
in bits 8:6 (btype) to distinguish the branch types as shown in Table 4-49.

Volume 3: Instruction Formats

3:331

Table 4-49. Indirect Branch Types

Opcode Xg btype
Bits 40:37 Bits 32:27 Bits 8:6
0
1
2
3
0 20
4
5
6
7

Theindirect return branch instructions encoded within major opcodes 0 use a 3-bit opcode
extension field in bits 8:6 (btype) to distinguish the branch types as shown in Table 4-50.

Table 4-50. Indirect Return Branch Types

Opcode Xg btype
Bits 40:37 Bits 32:27 Bits 8:6
0
1
2
3
0 21
4
5
6
7

All of the branch instructions have a 1-bit sequential prefetch opcode hint extension field, p, in bit
12. Table 4-51 summarizes these assignments.

Table 4-51. Sequential Prefetch Hint Completer

p

Bit 12 ph

The IP-relative and indirect branch instructions all have a 2-bit branch prediction “whether” opcode
hint extension field in bits 34:33 (wh) as shown in Table 4-52. Indirect call instructions have a 3-bit
“whether” opcode hint extension field in bits 34:32 (wh) as shown in Table 4-53.

Table 4-52. Branch Whether Hint Completer

wh
Bits 34:33

0

bwh

1
2
3

3:332 Volume 3: Instruction Formats

Table 4-53. Indirect Call Whether Hint Completer

wh
Bits 34:32

0

bwh

~N|[olg| b~ WIN|

The branch instructions also have a 1-bit branch cache deall ocation opcode hint extension field in
bit 35 (d) as shown in Table 4-54.

Table 4-54. Branch Cache Deallocation Hint Completer

d
Bit 35 dh
0
1
45.1.1 IP-Relative Branch
40 373635343332 131211 9 8 6 5 0
B1 mmags | EEY
4 11 2 20 1 3 3 6
Extension
Instruction Operands | Opcode
btype p wh d
br.cond.bwh.ph.dh © 0 See See See
br.wexit.owh.ph.dh®t | target,s 4 2 Table 4-51 0n | Table 4-52 on | Table 4-54 0n
br.wtop.bwh.ph.dh et 3 page 3:332 page 3:332 page 3:333
4.5.1.2 IP-Relative Counted Branch
40 373635343332 131211 9 8 6 5 0
B2 mmagp B [ovr- O
4 11 2 20 1 3 3 6
Extension
Instruction Operands | Opcode
btype p wh d
br.cloop.bwh.ph.dh ©* 5 See See See
br.cexit.bwh.ph.dn®t | target,s 4 6 Table 4-510n | Table 4-52 on | Table 4-54 on
br.ctop.bwh.ph.dh et 7 page 3:332 page 3:332 page 3:333

Volume 3: Instruction Formats 3:333

4513 IP-Relative Call

40 373635343332 131211 9 8 6 5 0
B3 [5 [/ MM B -
4 11 2 20 1 3 3 6
) Extension
Instruction Operands Opcode
p wh d

See Table 4-51 | See Table 4-52 | See Table 4-54

e —
br.call.bwh.ph.dh bl = targetys 5 on page 3:332 | on page 3:332 | on page 3:333

4514 Indirect Branch

40 373635343332 2726 1615 131211 98 6 5 0
Be [0 N oo Bl [owee [T
4 11 2 6 1 3 1 3 3 6
. Extension
Instruction Operands | Opcode
Xg | btype p wh d
br.cond.bwh.ph.dh € 0 See See See
b 0 20 Table 4-51 | Table 4-52 | Table 4-54
br.ia.bwh.ph.dh e 2 1 on on on
br.ret.bwh.ph.dh ® 21 2 page 3:332 | page 3:332 | page 3:333
45.15 Indirect Call
40 37363534 3231 1615 131211 9 8 6 5 0
B e B | o [N
4 11 3 16 3 1 3 3 6
Extension
Instruction Operands | Opcode
p wh d
See Table 4-51 | See Table 4-53 | See Table 4-54
e —
br.call.bwh.ph.dh by = by ! on page 3:332 on page 3:333 on page 3:333

45.2 Branch Predict/Nop/Hint

The branch predict, nop, and hint instructions are encoded in major opcodes 2 (Indirect
Predict/Nop/Hint) and 7 (IP-relative Predict). Theindirect predict, nop, and hint instructionsin
major opcode 2 use a 6-bit opcode extension field in bits 32:27 (xg). Table 4-55 summarizes these
assignments.

3:334 Volume 3: Instruction Formats

Table 4-55. Indirect Predict/Nop/Hint Opcode Extensions

Opcode X6
Bits Bits Bits 32:31
40:37 30:27 0 1

0 nop.b B9 brp B7
1 hint.b B9 brp.ret B7
2
3
4
5
6

2 7
8
9
A
B
c
D
E
F

The branch predict instructions all have a 1-bit branch importance opcode hint extension field in bit
35 (ih). The mov to BR instruction (page 3:299) also hasthis hint in bit 23. Table 4-56 shows these
assignments.

Table 4-56. Branch Importance Hint Completer

ih

Bit 23 or

Bit 35

0

1

The IP-relative branch predict instructions have a 2-bit branch prediction “whether” opcode hint

extension field in bits 4:3 (wh) as shown in Table 4-57. Note that the combination of the.loop
or.exit whether hint completer with the none importance hint completer is undefined.

Table 4-57. IP-Relative Predict Whether Hint Completer

wh
Bits 4:3

0

1
2
3

The indirect branch predict instructions have a 2-bit branch prediction “whether” opcode hint

extension field in bits 4:3 (wh) as shown in Table 4-58.

Volume 3: Instruction Formats

3:335

Table 4-58. Indirect Predict Whether Hint Completer

4521

45.2.2

4.5.3

3:336

B6

B7

wh .
Bits 4:3 indwh
0
1
2
3
IP-Relative Predict
40 373635343332 1312 6543 2 0
‘ 7 ‘sl tre ‘ immyqp timmy, ‘ -
4 11 2 20 7 1 2 3
) Extension
Instruction Operands Opcode -
ih wh
. . See Table 4-56 on See Table 4-57 on
brp.ipwh.ih targetys, tagss ! page 3:335 page 3:335
Indirect Predict
40 373635343332 2726 1615 1312 6543 2 0
R I oo |, | [
4 11 2 6 1 3 7 1 2 3
Extension
Instruction Operands Opcode -
Xg ih wh
brp.indwh.ih 10 See Table 4-56 on | See Table 4-58 on
b, tagy3 2 3:335 3:336
brp.ret.indwh.ih 11 page s page s

Miscellaneous B-Unit Instructions

The miscellaneous branch-unit instructions include a number of instructions encoded within major
opcode 0 using a 6-bit opcode extension field in bits 32:27 (xg) as described in Table 4-48 on
page 3:331.

Volume 3: |

nstruction Formats

45.3.1 Miscellaneous (B-Unit)

40 3736 3332 2726 6 5 o
= e
4 4 6 21 o

Instruction Opcode Extension
Xe
cover' o
clrrrb! o
clrrrb.pr! 05
el 0 08
bsw.0'P e
bsw.1'P o
epe 10
vmsw.0 P . I
vmsw.1 P 1

45.3.2 Break/Nop/Hint (B-Unit)

40 373635 3332 272625 6 5 0
g0 [LBELL | 0| e
4 1 3 6 1 20 6
Extension
Instruction Operands Opcode
X6
break.b € 0
. 00
nop.b mmyq 2
hint.b 01
4.6 F-Unit Instruction Encodings

The floating-point instructions are encoded in major opcodes 8 — E for floating-point and
fixed-point arithmetic, opcode 4 for floating-point compare, opcode 5 for floating-point class, and
opcodes 0 and 1 for miscellaneous floating-point instructions.

The miscellaneous and reciprocal approximation floating-point instructions are encoded within
major opcodes 0 and 1 using a 1-bit opcode extension field (x) in bit 33 and either a second 1-bit
extension field in bit 36 (g) or a 6-bit opcode extension field (xg) in bits 32:27. Table 4-59 shows
the 1-bit x assignments, Table 4-62 shows the additional 1-bit g assignments for the reciprocal
approximation instructions; Table 4-60 and Table 4-61 summarize the 6-bit x5 assignments.

Table 4-59. Miscellaneous Floating-point 1-bit Opcode Extensions

Opcode X
Bits 40:37 Bit 33
0 0 6-bit Ext (Table 4-60)
1 Reciprocal Approximation (Table 4-62)
1 0 6-bit Ext (Table 4-61)
1 Reciprocal Approximation (Table 4-62)

Volume 3: Instruction Formats 3:337

Table 4-60. Opcode 0 Miscellaneous Floating-point 6-bit Opcode Extensions

Opcode | x X6
Bits Bit | Bits Bits 32:31
40:37 33
0 0

Table 4-61. Opcode 1 Miscellaneous Floating-point 6-bit Opcode Extensions

3:338

Opcode| x X6
Bits Bit | Bits Bits 32:31
40:37 33 .
1 0

Volume 3: Instruction Formats

Table 4-62. Reciprocal Approximation 1-bit Opcode Extensions

Opcode X q
Bits 40:37 Bit 33 Bit 36
0 0 frcpa F6
1 1 frsqrta F7
1 0 fprcpa F6
1 fprsqrta F7

Most floating-point instructions have a 2-bit opcode extension field in bits 35:34 (sf) which
encodes the FPSR status field to be used. Table 4-63 summarizes these assignments.

Table 4-63. Floating-point Status Field Completer

sf

Bits 35:34 o
0 .s0
1 .s1
2 .s2
3 .83

Volume 3: Instruction Formats

3:339

4.6.1

Arithmetic

The floating-point arithmetic instructions are encoded within major opcodes 8 — D using a 1-bit
opcode extension field (x) in bit 36 and a2-bit opcode extension field (sf) in bits 35:34. The opcode
and x assignments are shown in Table 4-64.

Table 4-64. Floating-point Arithmetic 1-bit Opcode Extensions

Opcode
X Bits 40:37
Bit 36
8 9 A B C D
fma F1 fma.d F1 fms F1 fms.d F1 fnrma F1 fnrma.d F1
fma.s F1 fpma F1 fms.s F1 fpms F1 fnma.s F1 fpnma F1

The fixed-point arithmetic and parallel floating-point select instructions are encoded within major
opcode E using a 1-bit opcode extension field (x) in bit 36. The fixed-point arithmetic instructions
also have a 2-bit opcode extension field (x,) in bits 35:34. These assignments are shown in

Table 4-65.

Table 4-65. Fixed-point Multiply Add and Select Opcode Extensions

X2
Opcode X Bits 35:34
Bits 40:37 Bit 36
0 | 1 | 2 3
£ fselect F3
xma.l F2 _ xma.hu F2 xma.h F2
46.1.1 Floating-point Multiply Add
40 3736353433 2726 2019 1312 5 0
o [s | z A
4 1 2 7 7 7 7 6
Extension
Instruction Operands Opcode
X sf

fma.sf 8 0
fma.s.sf 1
fma.d.sf 9 0
fpma.sf 1
fms.sf 0

A
fms.s.sf fofa f, f 1 See Table 4-63 on

1=13 1412 .

fms.d.sf B 0 page 3:339
fpms.sf 1
fnma.sf 0

C
fnma.s.sf 1
fnma.d.sf 0

D
fpnma.sf 1

3:340

Volume 3: Instruction Formats

4.6.1.2 Fixed-point Multiply Add

40 3736353433 2726 2019 1312 6 5 0
2 LB blel & | % z AR
4 1 2 7 7 7 7 6
) Extension
Instruction Operands Opcode
X X2
xma.l 0
xma.h fl = f3, f4, f2 E 1
xma.hu 2

4.6.2 Parallel Floating-point Select

40 3736353433 2726 2019 1312 6 5 0
Fe LEM [6 [6 [no e
4 1 2 7 7 7 7 6
. Extension
Instruction Operands Opcode
X
fselect fi="13 14 T E 0

4.6.3 Compare and Classify

The predicate setting floating-point compare instructions are encoded within major opcode 4 using
three 1-bit opcode extension fields in bits 33 (r), 36 (ry,), and 12 (t,), and a 2-bit opcode extension
field (sf) in bits 35:34. The opcode, r, rp,, and t; assignments are shown in Table 4-66. The sf
gnments are shown in Table 4-63 on page 3:339.

The parallel floating-point compare instructions are described on page 3:343.

Table 4-66. Floating-point Compare Opcode Extensions

Opcode ta
Bits fa b Bit 12
20:37 Bit 33 Bit 36 0 1
0 fcmp.eq F4 fcmp.eq.unc F4
4 0 1 fcmp.lt F4 fcmp.It.unc F4
1 0 fcmp.le F4 fcmp.le.unc F4
1 femp.unord F4 fcmp.unord.unc F4

The floating-point class instructions are encoded within major opcode 5 using a 1-bit opcode
extension field in bit 12 (t;) as shown in Table 4-67.

Table 4-67. Floating-point Class 1-bit Opcode Extensions

Opcode ta
Bits 40:37 Bit 12
5 0 fclass.m F5
1 fclass.m.unc F5

Volume 3: Instruction Formats 3:341

4.6.3.1 Floating-point Compare

40 373635343332 2726 2019 131211 6 5 0
Fa 4l f b o e G
1 2 1 7 7 1 6 6
Extension
Instruction Operands Opcode
Ia s ty sf
fcmp.eq.sf 0 0
femp.It.sf 1 0
fcmp.le.sf 1 0
femp.unord. sf 1 See Table 4-63
P P2=12 3 4 3:339
femp.eq.unc.sf 0 0 on page 3:
femp.lt.unc.sf 1 1
fcmp.le.unc.sf : 0
femp.unord.unc.sf 1
4.6.3.2 Floating-point Class
373635343332 2726 2019 131211 6 5 0
S L s | 6 m . G
7 7 1 6 6
Extension
Instruction Operands Opcode :
a
fclass.m -, fcl 5 0
fclass.m.unc P P2=12 9 1

4.6.4 Approximation

46.4.1 Floating-point Reciprocal Approximation

There are two Reciproca Approximation instructions. Thefirst, in major op 0, encodes the full
regisxer variant The second, in major op 1, encodes the parallel variant.

373635343332 2726 2019 1312 6 5 0
Fe [TOTfals f e | n [ITe
7 7 7 6
) Extension
Instruction Operands Opcode
X q sf
frepa.sf 0 See Table 4-63 on
f1, po=fp f3 1 0 page 3:339

fprepa.sf 1

3:342 Volume 3: Instruction Formats

4.6.4.2 Floating-point Reciprocal Square Root Approximation

There are two Reciprocal Square Root Approximation instructions. The first, in major op 0,
encodes the full register variant. The second, in major op 1, encodes the parallel variant.

40 373635343332 2726 2019 1312 6 5 0
er Lot ol st IR o w
4 1 2 1 6 7 7 7 6
Extension
Instruction Operands Opcode
X q sf
frsqrta.sf 0 See Table 4-63 on
fLp2=1f3 1 1 .
forsqrta.sf 1 page 3:339
4.6.5 Minimum/Maximum and Parallel Compare

There are two groups of Minimum/Maximum instructions. The first group, in major op 0, encodes
the full register variants. The second group, in mgjor op 1, encodes the parallel variants. The
parallel compare instructions are all encoded in major op 1.

40 373635343332 2726 2019 1312 6 5 0
re [on | [sil 2 z A
4 1 2 1 6 7 7 7 6
Instruction Operands Opcode Extension
X Xg sf

fmin.sf 14

fmax.sf 15

famin.sf 0 16

famax.sf 17

fpmin.sf 14

fpmax.sf 15

fpamin.sf 16

fpamax.sf foof, f 0 17 See Table 4-63 on

1=1213 .

fpecmp.eq.sf 30 page 3:339
fpcmp.lt.sf 31

fpcmp.le.sf ! 32

fpcmp.unord.sf 33

fpcmp.neq.sf 34

fpcmp.nlt.sf 35

fpecmp.nle.sf 36

fpcmp.ord.sf 37

Volume 3: Instruction Formats 3:343

4.6.6 Merge and Logical

40 3736 343332 2726 2019 1312 6 5 0
o Lo W] A
4 3 1 6 7 7 7 6
Extension
Instruction Operands Opcode

X Xg
fmerge.s 10
fmerge.ns 11
fmerge.se 12
fmix.Ir 39
fmix.r 3A
fmix.| 3B
fsxt.r 3C
fsxt.| 3D
fpack 0 28
fswap fl = f2, f3 0 34
fswap.nl 35
fswap.nr 36
fand 2C
fandcm 2D
for 2E
fxor 2F
fpmerge.s 10
fpmerge.ns 1 11
fpmerge.se 12

4.6.7 Conversion

4.6.7.1 Convert Floating-point to Fixed-point

40 373635343332 2726 2019 1312 6 5 0
Fo [oea] [sth] e] e [R
4 1 2 1 6 7 7 7 6
. Extension
Instruction Operands Opcode
X Xg sf
fevt.fx.sf 18
fevt.fxu.sf 0 19
fevt.fx.trunc.sf 1A
fevt.fxu.trunc.sf 1B See Table 4-63 on
fl = f2 0 .

fpevt.fx.sf 18 page 3:339
fpevt.fxu.sf 1 19
fpevt.fx.trunc.sf 1A
fpevt.fxu.trunc.sf 1B

3:344 Volume 3: Instruction Formats

4.6.7.2 Convert Fixed-point to Floating-point
40 3736 343332 2726 2019 1312 6 5 0
Fn 0] M e e e
4 3 1 6 7 7 6
Extension
Instruction Operands Opcode
X X6
fevt.xf fi="> 0 1C
4.6.8 Status Field Manipulation
4.6.8.1 Floating-point Set Controls
40 373635343332 2726 2019 1312 6 5 0
Fi2 [0 | [sth x| oma | amaskn e
4 1 2 1 6 7 7 6
Extension
Instruction Operands Opcode
X Xg sf
See Table 4-63 on
fsetc.sf amask;, omasky 0 0 04 bage 3:330
4.6.8.2 Floating-point Clear Flags
40 373635343332 2726 6 5 0
Fis o [[stx] e]
4 1 2 1 6 21 6
Extension
Instruction Opcode
X Xg sf
fclrf.sf 0 0 05 See Table 4-63 on page 3:339
4.6.8.3 Floating-point Check Flags
40 373635343332 272625 6 5 0
Fia (000 Js]st [IR | e
4 1 2 1 6 1 20 6
Extension
Instruction Operands Opcode
X Xg sf
See Table 4-63 on
fchkf.sf targetyg 0 0 08 bage 3:339
Volume 3: Instruction Formats 3:345

4.6.9

4.6.9.1

4.6.9.2

Miscellaneous F-Unit Instructions

Break (F-Unit)

F15

40 373635343332 272625 6 5
[0] K = e
4 1 2 1 6 1 20 6
) Extension
Instruction Operands Opcode
X Xe
break.f immyy 0 0 00

Nop/Hint (F-Unit)

F-unit nop and hint instructions are encoded within major opcode 0 using a 3-bit opcode extension
field in bits 35:33 (x3), a 6-bit opcode extension field in bits 32:27 (xg), and a 1-bit opcode
extension field in bit 26 (y), as shown in Table 4-46.

Table 4-68. Misc F-Unit 1-bit Opcode Extensions

4.7

4.7.1

3:346

F16

Opcode X Xg y
Bits 40:37 Bit:33 Bits 32:27 Bit 26
nop.f
0 0 01 .p
1 hint.f
40 373635343332 272625 6 5
To [W%y e
4 1 2 1 6 1 20 6
) Extension
Instruction Operands Opcode
Xe y
nop.f im 0 0 01 0
hint.f M1 1

X-Unit Instruction Encodings

The X-unit instructions occupy two instruction slots, L+X. The major opcode, opcode extensions
and hints, gp, and small immediate fields occupy the X instruction slot. For movl, break.x, and
nop.x, the immy, field occupies the L instruction slot. For brl, the immgg field and a 2-bit Ignored
field occupy the L instruction slot.

Miscellaneous X-Unit Instructions

The miscellaneous X-unit instructions are encoded in major opcode 0 using a 3-bit opcode
extension field (x3) in bits 35:33 and a 6-bit opcode extension field (xg) in bits 32:27. Table 4-69
shows the 3-bit assignments and Table 4-70 summarizes the 6-bit assignments. These instructions
are executed by an |-unit.

Volume 3: Instruction Formats

Table 4-69. Misc X-Unit 3-bit Opcode Extensions

Table 4-70. Misc X-Unit 6-bit Opcode Extensions

Opcode X3
Bits 40:37 Bits 35:33
0 6-bit Ext (Table 4-70)
1
2
3
0

4
5
6
7

Opcode X3 Xg
Bits Bits Bits Bits 32:31
40:37 35:33 | 30:27 0
0 break.x X1
1 1-bit Ext
(Table 4-73)
0 0
47.1.1 Break (X-Unit)
40 373635 3332 272625 6 040 0
xt [0 [il% | %]
4 1 3 6 1 20 6 41
Extension
Instruction Operands Opcode
X3 Xe
break.x immg, 0 0 00
4.7.2 Move Long Immediateg,

The move long immediate instruction is encoded within major opcode 6 using a 1-bit reserved
opcode extension in bit 20 (v¢) as shown in Table 4-71. Thisinstruction is executed by an I-unit.

Volume 3: Instruction Formats

3:347

Table 4-71. Move Long 1-bit Opcode Extensions

4.7.3

Opcode Ve
Bits 40:37 Bit 20
0 movl X2
6
1
40 373635 2726 22212019 1312 6 5 0 |40 0
B ™ 0 X S B
4 1 9 5 11 7 6 41
. Extension
Instruction Operands Opcode
VC
movl' rq=immg, 6 0

Long Branches

Long branches are executed by a B-unit. Opcode C is used for long branch and opcode D for long

call.

The long branch instructions encoded within major opcode C use a 3-bit opcode extension field in
bits 8:6 (btype) to distinguish the branch types as shown in Table 4-72.

Table 4-72. Long Branch Types

4.7.3.1

X3

3:348

Opcode btype
Bits 40:37 Bits 8:6
0
1
2
3
C
4
5
6
7

The long branch instructions have the same opcode hint fields in bit 12 (p), bits 34:33 (wh), and
bit 35 (d) asnormal 1P-relative branches. These are shown in Table 4-51 on page 3:332, Table 4-52
on page 3:332, and Table 4-54 on page 3:333.

Long Branch

40 373635343332 131211 98 65 040 210
e (i |

4 11 2 20 1 3 3 6 39 2

) Extension
Instruction Operands | Opcode
btype p wh d
el See Table 4-51 | See Table 4-52 | See Table 4-54
brl.cond.bwh.ph.dh targetey ¢ 0 on page 3:332 | on page 3:332 | on page 3:333

Volume 3: Instruction Formats

4.7.3.2 Long Call
40 373635343332 131211 9 8 6 5 0140 210
xa [IBL b
4 11 2 20 3 6 39 2
) Extension
Instruction Operands Opcode
p wh d

brl.call.bwh.ph.dh &' b, =targetgy| D

See Table 4-51
on page 3:332

See Table 4-52
on page 3:332

See Table 4-54
on page 3:333

4.7.4 Nop/Hint (X-Unit)

X-unit nop and hint instructions are encoded within major opcode 0 using a 3-bit opcode extension
field in bits 35:33 (x3), a 6-bit opcode extension field in bits 32:27 (xg), and a 1-bit opcode
extension field in bit 26 (y), as shown in Table 4-73. These instructions are executed by an I-unit.

Table 4-73. Misc X-Unit 1-bit Opcode Extensions

Opcode X3 Xg y
Bits 40:37 Bits 35:33 | Bits 32:27 Bit 26
nop.x
0 0 01 - s
1 hint.x
40 373635 3332 272625 6 5 0140 0
xs [o [l % | %
4 1 3 6 1 20 6 41
) Extension
Instruction Operands Opcode
X3 Xe y
nop-x im 0 0 01
hint.x M2

4.8

Immediate Formation

Table 4-74 shows, for each instruction format that has one or more immediates, how those

immediates are formed. In each equation, the symbol to the left of the equalsis the assembly
language name for the immediate. The symbolsto the right are the field names in the instruction

encoding.

Table 4-74. Immediate Formation

Instruction Immediate Formation
Format
A2 county = Ctog + 1
A3 A8 127 M30 immg = sign_ext(s << 7 | immy, 8)
A4 immy, = sign_ext(s << 13 | immgg << 7 | immy,, 14)
A5 immy, = sign_ext(s << 21 | immg, << 16 | immgy << 7 | immyy, 22)
A10 count, = (ctyy > 2)? reservedQP?: ctyy + 1

Volume 3: Instruction Formats

3:349

3:350

Table 4-74. Immediate Formation (Continued)

Instruction Immediate Formation
Format
11 count, = (Ctyg == 0)? 0: (Ctyg == 1)? 7: (Ctyg == 2)? 15: 16
13 mbtype, = (mbty, == 0)? @brcst: (mbty. == 8)? @mix: (mbt,, == 9)? @shuf: (mbt,, ==
0xA)? @alt: (mbt,, == 0xB)? @rev: reservedQP?
14 mhtypeg = mhtg,
16 countg = counts,
18 countg = 31 — ccountg,
110 countg = countgqy
11 leng = lengg + 1
POSg = POSgp
112 leng = lengg + 1
posg = 63 — cpoSg.
leng = lengg + 1
113 posg = 63 — cpoSg.
immg = sign_ext(s << 7 | immyy, 8)
leng = lengg + 1
114 posg = 63 — cposgy,
imm4 = sign_ext(s, 1)
115 leng = lengg + 1
posg = 63 — CpPOSgqy
116 pOSg = POSgp
118 119 M37 M48 immyy =i << 20 | immyg,
121 tagq3 = IP + (sign_ext(timmg,, 9) << 4)
123 mask,; = sign_ext(s << 16 | maskg, << 8 | mask;, << 1, 17)
124 immy,4 = sign_ext(s << 43 | immy7, << 16, 44)
130 immg = immgy, + 32
M3 M8 M15 immg = sign_ext(s << 8| i<< 7 |immyy, 9)
M5 M10 immg = sign_ext(s << 8 | i << 7 | immy,, 9)
M17 incg = sign_ext(((s)? —1: 1) * ((ipp == 3)? 1: 1 << (4 —ipy,)), 6)
120 M20 M21 targetos = IP + (sign_ext(s << 20 | immy3; << 7 | imm,, 21) << 4)
M22 M23 targetys = IP + (sign_ext(s << 20 | immyqp, 21) << 4)
il = sol
M34 o = sof — sol
r=sor<<3
M39 M40 imm, = oy,
M4a4 imm24 =i<<23 | i2d << 21 I imm21a
B1 B2 B3 targetys = IP + (sign_ext(s << 20 | immyqp, 21) << 4)
B6 targetys = IP + (sign_ext(s << 20 | immyqp, 21) << 4)
tagyz = IP + (sign_ext(tye << 7 | timmy,, 9) << 4)
B7 tagy3 = IP + (sign_ext(tye << 7 | immy,, 9) << 4)
B9 imm21 =i<<20 | immZOa
F5 fclassg = fclass,e << 2 | fc,
E12 amask; = amaskyy
omask; = omasky¢
F14 target,s = IP + (sign_ext(s << 20 | immyg,, 21) << 4)
F15 F16 immy, = i << 20 | immyg,
X1 X5 immg, = immyy << 21 |i<< 20 | immyp,

Volume 3: Instruction Formats

Table 4-74. Immediate Formation (Continued)

Instruction Immediate Formation
Format
X2 immeg, = i << 63 | immy, << 22 | i << 21 | immg << 16 | immgg << 7 | immyy,
X3 X4 targetg = IP + ((i << 59 | immgg << 20 | immyqp) << 4)

a. This encoding causes an lllegal Operation fault if the value of the qualifying predicate is 1.

Volume 3: Instruction Formats 3:351

3:352 Volume 3: Instruction Formats

Resource and Dependency Semantics 5

5.1 Reading and Writing Resources

An ltanium instruction issaid to be areader of aresourceif theinstruction’s qualifying predicateis
1 or it has no qualifying predicate or is one of the instructions that reads a resource even when its
qualifying predicate is 0, and the execution of the instruction depends on that resource.

An ltanium instruction is said to be an writer of aresource if the instruction’s qualifying predicate
is1 or it has no qualifying predicate or writes the resource even when the qualifying predicate is O,
and the execution of the instruction writes that resource.

An Itanium instruction is said to be areader or writer of aresource even if it only sometimes
depends on that resource and it cannot be determined statically whether the resource will be read or
written. For example, cover only writes CR[IFS] when PSR.ic is 0, but for purposes of
dependency, it istreated asif it always writes the resource since this condition cannot be
determined statically. On the other hand, rsm conditionally writes several bitsin the PSR
depending on amask which is encoded as an immediate in the instruction. Since the PSR bitsto be
written can be determined by examining the encoded instruction, the instruction is treated as only
writing those bits which have a corresponding mask bit set. All exceptionsto these general rulesare
described in this appendix.

5.2 Dependencies and Serialization

A RAW (Read-After-Write) dependency is a sequence of two events where thefirst isawriter of a
resource and the second is areader of the same resource. Events may be instructions, interruptions,
or other ‘uses’ of the resource such asinstruction stream fetchesand VHPT walks. Table 5-2 covers
only dependencies based on instruction readers and writers.

A WAW (Write-After-Write) dependency is a sequence of two events where both events write the
resource in question. Events may be instructions, interruptions, or other ‘updates’ of the resource.
Table 5-3 covers only dependencies based on instruction writers.

A WAR (Write-After-Read) dependency is a sequence of two instructions, where thefirstisa
reader of aresource and the second is awriter of the same resource. Such dependencies are aways
allowed except asindicated in Table 5-4 and only those related to instruction readers and writers
are included.

A RAR (Read-After-Read) dependency is a sequence of two instructions where both are readers of
the same resource. Such dependencies are always allowed.

RAW and WAW dependencies are generally not allowed without some type of seriaization event
(animplied, data, or instruction serialization after the first writing instruction. (See Section 3.2,
“Serialization” on page 2:15 for details on seriaization.) The tables and associated rulesin this
appendix provide acomprehensive list of readers and writers of resources and describe the

Volume 3: Resource and Dependency Semantics 3:353

ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf

5.3

3:354

serialization required for the dependency to be observed and possible outcomes if the required
serialization is not met. Even when targeting code for machines which do not check for particular
disallowed dependencies, such code sequences are considered architecturally undefined and may
cause code to behave differently across processors, operating systems, or even separate executions
of the code sequence during the same program run. In some cases, different serializations may yield
different, but well-defined results.

The serialization of application level (non-privileged) resourcesis alwaysimplied. This means that
if awriter of that resource and a subsequent read of that same resource are in different instruction
groups, then the reader will see the value written. In addition, for dependencies on PRs and BRs,
where the writer is a non-branch instruction and the reader is a branch instruction, the writer and
reader may be in the same instruction group.

System resources generally require explicit serialization, i.e., theuseof asrlz.i or sriz.d
instruction, between the writing and the reading of that resource. Note that RAW accessesto CRs
are not exceptional — they require explicit data or instruction serialization. However, in some cases
(other than CRs) where pairs of instructions explicitly encode the same resource, seridization is
implied.

There are cases where it is architecturally allowed to omit a serialization, and that the response
from the CPU must be atomic (act as if either the old or the new state were fully in place). The
tables in this appendix indicate dependency requirements under the assumption that the desired
result is for the dependency to always be observed. In some such cases, the programmer may not
care if the old or new state is used; such situations are allowed, but the value seen is not
deterministic.

On the other hand, if an impliedF dependency is violated, then the program isincorrectly coded and
the processor's behavior is undefined.

Resource and Dependency Table Format Notes

» The“Writers’ and “Readers’ columns of the dependency tables contain instruction class
names and instruction mnemonic prefixes as given in the format section of each instruction
page. To avoid ambiguity, instruction classes are shown in bold, while instruction mnemonic
prefixes arein regular font. For instruction mnemonic prefixes, al instructions that exactly
match the name specified or those that begin with the specified text and are followed by a*.’
and then followed by any other text will match.

» The dependency on alisted instruction isin effect no matter what values are encoded in the
instruction or what dynamic values occur in operands, unless a superscript is present or one of
the special caseinstruction rulesin Section 5.3.1 applies. Instructions listed are still subject to
rules regarding qualifying predicates.

* Instruction classes are groups of related instructions. Such names appear in boldface for clarity.
Thelist of al instruction classesis contained in Table 5-5. Note that an instruction may appear
in multipleinstruction classes, instruction classes may expand to contain other classes, and that
when fully expanded, a set of classes (e.g., the readers of some resource) may contain the same
instruction multiple times.

» The syntax ‘x\y’ where x and y are both instruction classes, indicates an unnamed instruction
classthat includes all instructions in instruction class x but that are not in instruction classy.

Volume 3: Resource and Dependency Semantics

Similarly, the notation ‘x\y\z' means all instructionsin instruction class x, but that are not in
either instruction classy or instruction class z.

Resources on separate rows of atable are independent resources. This means that there are no
serialization requirements for an event which references one of them followed by an event
which uses a different resource. In cases where resources are broken into subrows,
dependencies only apply between instructions within a subrow. Instructionsthat do not appear
in a subrow together have no dependencies (reader/writer or writer/writer dependencies) for
the resource in question, athough they may still have dependencies on some other resource.

The dependencies listed for pairs of instructions on each resource are not unique — the same
pair of instructions might also have a dependency on some other resource with a different
semantics of dependency. In cases where there are multiple resource dependencies for the same
pair of instructions, the most stringent semantics are assumed: instr overrides data which
overrides impliedF which overrides implied which overrides none.

Arrays of numbered resources are represented in asingle row of atable using the% notation as
a substitute for the number of the resource. In such cases, the semantics of the table are asiif
each numbered resource had its own row in that table and is thus an independent resource. The
range of values that the% can take are given in the “ Resource Name” column.

An asterisk ‘*’ in the “Resource Name” column indicates that this resource may not have a
physical resource associated with it, but is added to enforce special dependencies.

A pound sign ‘# in the “Resource Name” column indicates that this resourceis an array of
resources that are indexed by avaluein a GR. The number of individual elementsin the array
is described in the detailed description of each resource.

The " Semantics of Dependency” column describes the outcome given various serialization and
instruction group boundary conditions. The exact definition for each keyword is given in
Table 5-1.

Table 5-1. Semantics of Dependency Codes

Semantics of

Dependency Code Serialization Type Required Effects of Serialization Violation
instr Instruction Serialization (See “Instruction Atomic: Any attempt to read a resource after one or
Serialization” on page 2:16). more insufficiently serialized writes is either the
data Data Serialization (See “Data Serialization” on value previously in the register (before any of the
page 2:16) unserialized writes) or the value of one of any
olied | on G Break Wi Jread e unserialized writes. Which value is returned is
implie nstructlor_1 roup breax. rltesr anul rea er_must em unpredictable and multiple insufficiently serialized
Zeparate_mst(r:ucthg grou ps.”(e nSter;é'on reads may see different results. No fault will be
equencing Considerations” on page 1:36). caused by the insufficient serialization.
impliedF Instruction Group Break (same as above). An undefined value is returned, or an lllegal
stop Stop. Writer and reader must be separated by a stop. | OPeration fault may be taken. If no fault is taken,
the value returned is unpredictable, and may be
unrelated to past writes, but will not be data which
could not be accessed by the current process (e.g.,
if PSR.cpl!= 0, the undefined value to return cannot
be read from some control register).
none None N/A
specific Implementation Specific
SC Special Case Described elsewhere in book, see referenced

section in the entry.

Volume 3: Resource and Dependency Semantics 3:355

ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245317.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf

5.3.1 Special Case Instruction Rules

The following rules apply to the specified instructions when they appear in Table 5-2, Table 5-3,
Table 5-4, or Table 5-5:

Aninstruction always readsagiven resourceif its qualifying predicateis 1 and it appearsin the
“Reader” column of the table (except as noted). An instruction always writes a given resource
if itsqualifying predicateis 1 and it appears in the “Writer” column of the table (except as
noted). Aninstruction never reads or writes the specified resourceif its qualifying predicateis
0 (except as noted). These rulesinclude branches and their qualifying predicate. Instructionsin
the unpredicatable-instructions class have no qualifying predicate and thus always read or
write their resources (except as noted).

An instruction of type mov-from-PR reads all PRsif its PR[gp] istrue. If the PR[qp] isfalse,
then only the PR[qgp] is read.

An instruction of type mov-to-PR writes only those PRs as indicated by the immediate mask
encoded in the instruction.

A st8.spill only writes AR[UNATI{ X} where X equalsthe valuein bits 8:3 of the store's
data address. A 1d8.£i11 instruction only reads AR[UNAT]{ Y} where Y equalsthe valuein
bits 8:3 of the load's data address.

Instructions of type mod-sched-br s always read AR[EC] and the rotating register base
registersin CFM, and always write AR[EC], the rotating register basesin CFM, and PR[63]
even if they do not change their values or if their PR[qp] isfalse.

Instructions of type mod-sched-brs-counted always read and write AR[LC], even if they do
not change its value.

For instructions of type pr-or-writersor pr-and-writers, if their completer is or . andcm, then
only thefirst target predicate is an or-compare and the second target predicateis an
and-compare. Similarly, if their completer is and. orcm, then only the second target predicate
isan or-compare and the first target predicate is an and-compare.

rum and sum only read PSR.sp when the bit corresponding to PSR.up (bit 2) isset in the
immediate field of the instruction.

5.3.2 RAW Dependency Table

Table 5-2 architecturally defines the following information:

3:356

A list of all architecturally-defined, independently-writable resources in the Itanium
architecture. Each row represents an ‘atomic’ resource. Thus, for each row in the table,
hardware will probably require a separate write-enable control signal.

For each resource, a complete list of readers and writers.

For each instruction, a complete list of all resources read and written. Such alist can be
obtained by taking the union of all the rowsin which each instruction appears.

Volume 3: Resource and Dependency Semantics

Table 5-2. RAW Dependencies Organized by Resource

Resource Name

Writers

Readers

Semantics of

Dependency
ALAT chk.a.clr, mem-readers-alat, none
mem-readers-alat, mem-writers, chk-a,
mem-writers, invala-all invala.e
AR[BSP] br.call, brl.call, br.ret, cover, br.call, brl.call, br.ia, br.ret, cover, impliedF
mov-t0-AR-BSPSTORE, rfi flushrs, loadrs,
mov-from-AR-BSP, rfi
AR[BSPSTORE] alloc, loadrs, flushrs, alloc, br.ia, flushrs, impliedF
mov-to-AR-BSPSTORE mov-from-AR-BSPSTORE
AR[CCV] mov-to-AR-CCV br.ia, cmpxchg, impliedF
mov-from-AR-CCV
AR[CFLG] mov-to-AR-CFLG br.ia, mov-from-AR-CFLG impliedF
AR[CSD] Id16, mov-to-AR-CSD br.ia, cmp8xchg16, impliedF
mov-from-AR-CSD, st16
AR[EC] mod-sched-brs, br.ret, br.call, brl.call, br.ia, mod-sched-brs, impliedF
mov-to-AR-EC mov-from-AR-EC
AR[EFLAG] mov-to-AR-EFLAG br.ia, mov-from-AR-EFLAG impliedF
AR[FCR] mov-to-AR-FCR br.ia, mov-from-AR-FCR impliedF
AR[FDR] mov-to-AR-FDR br.ia, mov-from-AR-FDR impliedF
AR[FIR] mov-to-AR-FIR br.ia, mov-from-AR-FIR impliedF
AR[FPSR].sf0.controls mov-to-AR-FPSR, fsetc.sO br.ia, fp-arith-s0, fcmp-s0, fpcmp-s0, | impliedF
fsetc, mov-from-AR-FPSR
AR[FPSR].sfl.controls mov-to-AR-FPSR, fsetc.s1 br.ia, fp-arith-s1, fcmp-s1, fpcmp-si,
mov-from-AR-FPSR
AR[FPSR].sf2.controls mov-to-AR-FPSR, fsetc.s2 br.ia, fp-arith-s2, fcmp-s2, fpcmp-s2,
mov-from-AR-FPSR
AR[FPSR].sf3.controls mov-to-AR-FPSR, fsetc.s3 br.ia, fp-arith-s3, fcmp-s3, fpcmp-s3,
mov-from-AR-FPSR
AR[FPSR].sf0.flags fp-arith-s0, fclrf.s0, fcmp-s0, br.ia, fchkf, impliedF
fpcmp-s0, mov-to-AR-FPSR mov-from-AR-FPSR
AR[FPSR].sfl.flags fp-arith-s1, fclrf.s1, fcmp-s1, br.ia, fchkf.s1,
fpcmp-s1, mov-to-AR-FPSR mov-from-AR-FPSR
AR[FPSR].sf2.flags fp-arith-s2, fclrf.s2, fcmp-s2, br.ia, fchkf.s2,
fpcmp-s2, mov-to-AR-FPSR mov-from-AR-FPSR
AR[FPSR].sf3.flags fp-arith-s3, fclrf.s3, fcmp-s3, br.ia, fchkf.s3,
fpcmp-s3, mov-to-AR-FPSR mov-from-AR-FPSR
AR[FPSR].traps mov-to-AR-FPSR br.ia, fp-arith, fchkf, fcmp, fpcmp, impliedF
mov-from-AR-FPSR
AR[FPSR].rv mov-to-AR-FPSR br.ia, fp-arith, fchkf, fcmp, fpcmp, impliedF
mov-from-AR-FPSR
AR[FSR] mov-to-AR-FSR br.ia, mov-from-AR-FSR impliedF
AR[ITC] mov-to-AR-ITC br.ia, mov-from-AR-ITC impliedF
AR[K%], mov-to-AR-K?! br.ia, mov-from-AR-K® impliedF
%in0-7
AR[LC] mod-sched-brs-counted, br.ia, mod-sched-brs-counted, impliedF
mov-to-AR-LC mov-from-AR-LC
Volume 3: Resource and Dependency Semantics 3:357

Table 5-2. RAW Dependencies Organized by Resource (Continued)

Semantics of

Resource Name Writers Readers Dependency

AR[PFS] br.call, brl.call alloc, br.ia, br.ret, epc, impliedF
mov-from-AR-PFS

mov-to-AR-PFS alloc, br.ia, epc, impliedF
mov-from-AR-PFS
br.ret none
AR[RNAT] alloc, flushrs, loadrs, alloc, br.ia, flushrs, loadrs, impliedF
mov-to-AR-RNAT, mov-from-AR-RNAT
mov-to-AR-BSPSTORE

AR[RSC] mov-to-AR-RSC alloc, br.ia, flushrs, loadrs, impliedF
mov-from-AR-RSC,
mov-from-AR-BSPSTORE,
mov-to-AR-RNAT,
mov-from-AR-RNAT,
mov-to-AR-BSPSTORE

AR[SSD] mov-to-AR-SSD br.ia, mov-from-AR-SSD impliedF

AR[UNAT]{%}, mov-to-AR-UNAT, st8.spill br.ia, 1d8.fill, impliedF

%in0-63 mov-from-AR-UNAT

AR%, none br.ia, mov-from-AR-rvt none

% in 8-15, 20, 22-23, 31,

33-35, 37-39, 41-43, 45-47,

67-111

AR%, mov-to-AR-ig! br.ia, mov-from-AR-ig! impliedF

% in 48-63, 112-127

BR%, br.call, brl.call* indirect-brs?, indirect-brp?, impliedF

%in0-7 mov-from-BR?!

mov-to-BR? indirect-brs? none
indirect-brp?, impliedF
mov-from-BR!

CFM mod-sched-brs mod-sched-brs impliedF
cover, alloc, rfi, loadrs, br.ret, br.call, impliedF
brl.call
cfm-readers? impliedF

br.call, brl.call, br.ret, clrrrb, cover, | cfm-readers impliedF
rfi
alloc cfm-readers none

CPUID# none mov-from-IND-CPUID? specific

CR[CMCV] mov-to-CR-CMCV mov-from-CR-CMCV data

CR[DCR] mov-to-CR-DCR mov-from-CR-DCR, data
mem-readers-spec

CRI[EOI] mov-to-CR-EOQI none SC Section

5.8.3.4, “End of
External
Interrupt
Register (EOI —
CR67)" on
page 2:117

CRJ[IFA] mov-to-CR-IFA itc.i, itc.d, itr.i, itr.d implied
mov-from-CR-IFA data

3:358 Volume 3: Resource and Dependency Semantics

ftp://download.intel.com/design/Itanium/manuals/245318.pdf

Table 5-2. RAW Dependencies Organized by Resource (Continued)

Semantics of

Resource Name Writers Readers
Dependency
CRIIFS] mov-to-CR-IFS mov-from-CR-IFS data
rfi implied
cover rfi, mov-from-CR-IFS implied
CR[IHA] mov-to-CR-IHA mov-from-CR-IHA data
CR[IIM] mov-to-CR-IIM mov-from-CR-1IM data
CR[IIP] mov-to-CR-1IP mov-from-CR-IIP data
rfi implied
CRIIIPA] mov-to-CR-1IPA mov-from-CR-1IPA data
CR[IPSR] mov-to-CR-IPSR mov-from-CR-IPSR data
rfi implied
CR[IRR%)], mov-from-CR-IVR mov-from-CR-IRR! data
%in0-3
CR[ISR] mov-to-CR-ISR mov-from-CR-ISR data
CRIITIR] mov-to-CR-ITIR mov-from-CR-ITIR data
itc.i, itc.d, itr.i, itr.d implied
CR[ITM] mov-to-CR-ITM mov-from-CR-ITM data
CR[ITV] mov-to-CR-ITV mov-from-CR-ITV data
CRJIVA] mov-to-CR-IVA mov-from-CR-IVA instr
CRIIVR] none mov-from-CR-IVR SC Section
5.8.3.2,
“External
Interrupt Vector
Register (IVR —
CR65)" on
page 2:116
CRILID] mov-to-CR-LID mov-from-CR-LID SC Section
5.8.3.1, “Local
ID (LID -
CR64)" on
page 2:115
CR[LRR%)], mov-to-CR-LRR? mov-from-CR-LRR? data
%in0-1
CR[PMV] mov-to-CR-PMV mov-from-CR-PMV data
CR[PTA] mov-to-CR-PTA mov-from-CR-PTA, mem-readers, data
mem-writers, non-access, thash
CR[TPR] mov-to-CR-TPR mov-from-CR-TPR, data
mov-from-CR-IVR
mov-to-PSR-117, ssm1’ SC Section
5.8.3.3, “Task
Priority Register
(TPR — CR66)"
on page 2:117
rfi implied
CR%, none mov-from-CR-rv1 none
% in 3-7, 10-15, 18, 26-63,
75-79, 82-127

Volume 3: Resource and Dependency Semantics

3:359

ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf

Table 5-2. RAW Dependencies Organized by Resource (Continued)

Semantics of

Resource Name Writers Readers Dependency
DBR# mov-to-IND-DBR® mov-from-IND-DBR® impliedF
probe-all, Ifetch-all, data
mem-readers, mem-writers
DTC ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d, | mem-readers, mem-writers, data
itc.i, itc.d, itr.i, itr.d non-access
itc.i, itc.d, itr.i, itr.d ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d, itc.i, |impliedF
itc.d, itr.i, itr.d
ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d | ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d none
itc.i, itc.d, itr.i, itr.d impliedF
DTC_LIMIT* ptc.g, ptc.ga ptc.g, ptc.ga impliedF
DTR itr.d mem-readers, mem-writers, data
non-access
ptc.g, ptc.ga, ptc.l, ptr.d, itr.d impliedF
ptr.d mem-readers, mem-writers, data
non-access
ptc.g, ptc.ga, ptc.l, ptr.d none
itr.d, itc.d impliedF
FR%, none fr-readers?! none
%in0-1
FR%, fr-writers\ldf-cM\ldfp-ct fr-readers?! impliedF
% in 2 - 127 Idf-ct, Idfp-ct fr-readers! none
GRO none gr-readers1 none
GR%, Id-c113 gr-readers?! none
%in1-127 gr-writersi\d-c113 gr-readers?! impliedF
IBR# mov-to-IND-IBR3 mov-from-IND-IBR3 impliedF
InService* mov-to-CR-EOQI mov-from-CR-IVR data
mov-from-CR-IVR mov-from-CR-IVR impliedF
mov-to-CR-EOQI mov-to-CR-EOQI impliedF
IP all all none
ITC ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d | epc, vmsw instr
itc.i, itc.d, itr.i, itr.d impliedF
ptr.i, ptr.d, ptc.e, ptc.g, ptc.ga, ptc.| none
itc.i, itc.d, itr.i, itr.d epc, vmsw instr
itc.d, itc.i, itr.d, itr.i, ptr.d, ptr.i, ptc.g, impliedF
ptc.ga, ptc.l
ITC_LIMIT* ptc.g, ptc.ga ptc.g, ptc.ga impliedF
ITR itr.i itr.i, itc.i, ptc.g, ptc.ga, ptc.l, ptr.i impliedF
epc, vmsw instr
ptr.i itc., itr.i impliedF
ptc.g, ptc.ga, ptc.l, ptr.i none
epc, vmsw instr
memory mem-writers mem-readers none
3:360 Volume 3: Resource and Dependency Semantics

Table 5-2. RAW Dependencies Organized by Resource (Continued)

Semantics of

Resource Name Writers Readers
Dependency
PKR# mov-to-IND-PKR? mem-readers, mem-writers, data
mov-from-IND-PKR4, probe-all
mov-to-IND-PKR* none
mov-from-IND-PKR3 impliedF
mov-to-IND-PKR3 impliedF
PMC# mov-to-IND-PMC3 mov-from-IND-PMC3 impliedF
mov-from-IND-PMD?3 SC Section
7.2.1, “Generic
Performance
Counter
Registers” for
PMCI[0].fr on
page 2:148
PMD# mov-to-IND-PMD? mov-from-IND-PMD?3 impliedF
PRO pr-writers! pr-readers-brl, none
pr-readers-nobr-nomovprl,
mov-from-PR?,
mov-to-PR12
PR%, pr-writersl, pr-readers-nobr-nomovprl, impliedF
%in1-15 mov-to-PR-allreg’ mov-from-PR,
mov-to-PR1?
pr-writers-fpl pr-readers-br! impliedF
pr-writers-intt, pr-readers-br! none
mov-to-PR-allreg’
PR%, pr-writersl, pr-readers-nobr-nomovprl, impliedF
% in 16 - 62 mov-to-PR-allreg’, mov-from-PR,
mov-to-PR-rotreg mov-to-PR12
pr-writers-fp! pr-readers-br! impliedF
pr-writers-int?, pr-readers-br! none
mov-to-PR-allreg’,
mov-to-PR-rotreg
PR63 mod-sched-brs, pr-readers-nobr-nomovpr?, impliedF
pr-writersl, mov-from-PR,
mov-to-PR-allreg’, mov-to-PR'2
mov-to-PR-rotreg
pr-writers-fp?, pr-readers-br! impliedF
mod-sched-brs
pr-writers-int?, pr-readers-br! none
mov-to-PR-allreg’,
mov-to-PR-rotreg
Volume 3: Resource and Dependency Semantics 3:361

ftp://download.intel.com/design/Itanium/manuals/245318.pdf

Table 5-2. RAW Dependencies Organized by Resource (Continued)

Resource Name Writers Readers Semantics of
Dependency
PSR.ac user-mask-writers-partial”, mem-readers, mem-writers implied
mov-to-PSR-um
sys-mask-writers-partial’, mem-readers, mem-writers data
mov-to-PSR-I
user-mask-writers-partial?, mov-from-PSR, impliedF
mov-to-PSR-um, mov-from-PSR-um
sys-mask-writers-partial’,
mov-to-PSR-|
i mem-readers, mem-writers, impliedF
mov-from-PSR, mov-from-PSR-um
PSR.be user-mask-writers-partial’, mem-readers, mem-writers implied
mov-to-PSR-um
sys—mask—writers—partial7, mem-readers, mem-writers data
mov-to-PSR-I
user-mask-writers-partial”, mov-from-PSR, impliedF
mov-to-PSR-um, mov-from-PSR-um
sys-mask-writers-partial’,
mov-to-PSR-I
i mem-readers, mem-writers, impliedF
mov-from-PSR, mov-from-PSR-um
PSR.bn bsw, rfi gr-readers’®, gr-writers® impliedF
PSR.cpl epc, br.ret priv-ops, br.call, brl.call, epc, implied
mov-from-AR-ITC,
mov-to-AR-ITC,
mov-to-AR-RSC,
mov-to-AR-K,
mov-from-IND-PMD,
probe-all, mem-readers,
mem-writers, Ifetch-all
i priv-ops, br.call, brl.call, epc, impliedF
mov-from-AR-ITC,
mov-to-AR-ITC,
mov-to-AR-RSC,
mov-to-AR-K,
mov-from-IND-PMD,
probe-all, mem-readers,
mem-writers, Ifetch-all
PSR.da fi mem-readers, Ifetch-all, mem-writers, |impliedF
probe-fault
PSR.db mov-to-PSR-I Ifetch-all, mem-readers, data
mem-writers, probe-fault
mov-from-PSR impliedF
fi Ifetch-all, mem-readers, impliedF
mem-writers,
mov-from-PSR, probe-fault
PSR.dd fi Ifetch-all, mem-readers, probe-fault, |impliedF
mem-writers

3:362 Volume 3: Resource and Dependency Semantics

Table 5-2. RAW Dependencies Organized by Resource (Continued)

Semantics of

Resource Name Writers Readers
Dependency
PSR.dfh sys-mask-writers-partial’, fr-readers®, fr-writers® data
mov-to-PSR-I mov-from-PSR impliedF
rfi fr-readers®, fr-writers®, impliedF
mov-from-PSR
PSR.dfl sys-mask-writers-partial’, fr-writers®, fr-readers® data
mov-to-PSR-I mov-from-PSR impliedF
rfi fr-writers®, fr-readers®, impliedF
mov-from-PSR
PSR.di sys-mask-writers-partial”, br.ia data
mov-to-PSR-I mov-from-PSR impliedF
rfi br.ia, mov-from-PSR impliedF
PSR.dt sys—mask—writers—partial7, mem-readers, mem-writers, data
mov-to-PSR-| non-access
mov-from-PSR impliedF
rfi mem-readers, mem-writers, impliedF
non-access, mov-from-PSR
PSR.ed rfi Ifetch-all, impliedF
mem-readers-spec
PSR.i sys—mask—writers—partial7, mov-from-PSR impliedF
mov-to-PSR-l, rfi
PSR.ia rfi all none
PSR.ic sys—mask—writers—partial7, mov-from-PSR impliedF
mov-to-PSR-I cover, itc.i, itc.d, itr., itr.d, data
mov-from-interruption-CR,
mov-to-interruption-CR
rfi mov-from-PSR, cover, itc.i, itc.d, itr.i, impliedF
itr.d, mov-from-interruption-CR,
mov-to-interruption-CR
PSR.id rfi all none
PSR.is br.ia, rfi none none
PSR.it rfi branches, mov-from-PSR, chk, epc, impliedF
fchkf, vmsw
PSR.Ip mov-to-PSR-I mov-from-PSR impliedF
br.ret data
rfi mov-from-PSR, br.ret impliedF
PSR.mc rfi mov-from-PSR impliedF
PSR.mfh fr-writers®, mov-from-PSR-um, impliedF
user—mask—writers—partial7, mov-from-PSR
mov-to-PSR-um,
sys-mask-writers-partial”,
mov-to-PSR-I, rfi
PSR.mfl fr-writersg, mov-from-PSR-um, impliedF
user-mask-writers-partial7, mov-from-PSR
mov-to-PSR-um,
sys-mask-Writers-partiaI7,
mov-to-PSR-l, rfi
Volume 3: Resource and Dependency Semantics 3:363

Table 5-2. RAW Dependencies Organized by Resource (Continued)

Semantics of

Resource Name Writers Readers
Dependency
PSR.pk sys—mask—writers—partiaI7, Ifetch-all, mem-readers, data
mov-to-PSR-| mem-writers, probe-all
mov-from-PSR impliedF
fi Ifetch-all, mem-readers, impliedF
mem-writers, mov-from-PSR,
probe-all
PSR.pp sys—mask—writers—partial7, mov-from-PSR impliedF
mov-to-PSR-I, rfi
PSR.ri rfi all none
PSR.rt mov-to-PSR-I mov-from-PSR impliedF
alloc, flushrs, loadrs data
i mov-from-PSR, alloc, flushrs, loadrs impliedF
PSR.si sys-mask-writers-partiaI7, mov-from-PSR impliedF
mov-to-PSR-| mov-from-AR-ITC data
fi mov-from-AR-ITC, mov-from-PSR impliedF
PSR.sp sys—mask—writers—partiaI7, mov-from-PSR impliedF
mov-to-PSR-| mov-from-IND-PMD, data
mov-to-PSR-um, rum, sum
i mov-from-IND-PMD, mov-from-PSR, |impliedF
mov-to-PSR-um, rum, sum
PSR.ss i all impliedF
PSR.th mov-to-PSR-I branches, chk, fchkf data
mov-from-PSR impliedF
fi branches, chk, fchkf, mov-from-PSR impliedF
PSR.up user-mask-writers-partial’, mov-from-PSR-um, impliedF
mov-to-PSR-um, mov-from-PSR
sys-mask-writers-partial”,
mov-to-PSR-I, rfi
PSR.vm vmsw mem-readers, mem-writers, implied
mov-from-AR-ITC,
mov-from-IND-CPUID,
mov-to-AR-ITC, priv-ops\vmsw, cover,
thash, ttag
i mem-readers, mem-writers, impliedF
mov-from-AR-ITC,
mov-from-IND-CPUID,
mov-to-AR-ITC, priv-ops\vmsw, cover,
thash, ttag
RR# mov-to-IND-RR® mem-readers, mem-writers, itc.i, itc.d, |data
itr.i, itr.d, non-access, ptc.g, ptc.ga,
ptc.l, ptr.i, ptr.d, thash, ttag
mov-from-IND-RR® impliedF
RSE rse-writers# rse-readers* impliedF
3:364 Volume 3: Resource and Dependency Semantics

5.3.3 WAW Dependency Table

General rules specific to the WAW table:

« All resources require at most an instruction group break to provide sequentia behavior.
» Some resources require no instruction group break to provide sequential behavior.

e There are afew specia casesthat are described in greater detail elsewhere in the manual and
are indicated with an SC (specia case) result.

 Each sub-row of writers represents a group of instructions that when taken in pairsin any
combination has the dependency result indicated. If the column is split in sub-columns, then
the dependency semantics apply to any pair of instructions where one is chosen from left
sub-column and one is chosen from the right sub-column.

Table 5-3. WAW Dependencies Organized by Resource

Resource Name

Writers

Semantics of

Dependency
ALAT mem-readers-alat, mem-writers, chk.a.clr, none
invala-all
AR[BSP] br.call, brl.call, br.ret, cover, mov-to-AR-BSPSTORE, rfi impliedF
AR[BSPSTORE] alloc, loadrs, flushrs, mov-to-AR-BSPSTORE impliedF
AR[CCV] mov-to-AR-CCV impliedF
AR[CFLG] mov-to-AR-CFLG impliedF
AR[CSD] Id16, mov-to-AR-CSD impliedF
AR[EC] br.ret, mod-sched-brs, mov-to-AR-EC impliedF
AR[EFLAG] mov-to-AR-EFLAG impliedF
AR[FCR] mov-to-AR-FCR impliedF
AR[FDR] mov-to-AR-FDR impliedF
AR[FIR] mov-to-AR-FIR impliedF
AR[FPSR].sf0.controls mov-to-AR-FPSR, fsetc.sO impliedF
AR[FPSR].sfl.controls mov-to-AR-FPSR, fsetc.s1 impliedF
AR[FPSR].sf2.controls mov-to-AR-FPSR, fsetc.s2 impliedF
AR[FPSR].sf3.controls mov-to-AR-FPSR, fsetc.s3 impliedF
AR[FPSR].sf0.flags fp-arith-s0, fcmp-s0, fpcmp-s0 none
fclrf.s0, fcmp-s0, fp-arith-s0, fclrf.s0, mov-to-AR-FPSR impliedF
fpcmp-s0O, mov-to-AR-FPSR
AR[FPSR].sfl.flags fp-arith-s1, fcmp-s1, fpcmp-si1 none
fclrf.s1, fcmp-s1, fp-arith-s1, fclrf.s1, mov-to-AR-FPSR impliedF
fpcmp-s1, mov-to-AR-FPSR
AR[FPSR].sf2.flags fp-arith-s2, fcmp-s2, fpcmp-s2 none
fclrf.s2, fcmp-s2, fp-arith-s2, fclrf.s2, mov-to-AR-FPSR impliedF
fpcmp-s2, mov-to-AR-FPSR
AR[FPSR].sf3.flags fp-arith-s3, fcmp-s3, fpcmp-s3 none
fclrf.s3, fcmp-s3, fp-arith-s3, fclrf.s3, mov-to-AR-FPSR impliedF
fpcmp-s3, mov-to-AR-FPSR
AR[FPSR].rv mov-to-AR-FPSR impliedF
AR[FPSR].traps mov-to-AR-FPSR impliedF
AR[FSR] mov-to-AR-FSR impliedF
AR[ITC] mov-to-AR-ITC impliedF
Volume 3: Resource and Dependency Semantics 3:365

Table 5-3. WAW Dependencies Organized by Resource (Continued)

Resource Name

Writers

Semantics of

Dependency
AR[K%], mov-to-AR-K! impliedF
%in0-7
AR[LC] mod-sched-brs-counted, mov-to-AR-LC impliedF
AR[PFS] br.call, brl.call none
br.call, brl.call mov-to-AR-PFS impliedF
AR[RNAT] alloc, flushrs, loadrs, impliedF
mov-to-AR-RNAT,
mov-to-AR-BSPSTORE
AR[RSC] mov-to-AR-RSC impliedF
AR[SSD] mov-to-AR-SSD impliedF
AR[UNAT{%}, mov-to-AR-UNAT, st8.spill impliedF
%in0-63
AR%, none none
% in 8-15, 20, 22-23, 31,
33-35, 37-39, 41-43, 45-47,
67-111
AR%, mov-to-AR-igl impliedF
% in 48 - 63, 112-127
BR%, br.callt, brl.callt mov-to-BR! impliedF
%in0-7 mov-to-BR? impliedF
br.call, brl.call* none
CFM mod-sched-brs, br.call, brl.call, br.ret, alloc, clrrrb, cover, rfi impliedF
CPUID# none none
CR[CMCV] mov-to-CR-CMCV impliedF
CR[DCR] mov-to-CR-DCR impliedF
CRI[EOI] mov-to-CR-EOI SC Section
5.8.3.4, “End of
External Interrupt
Register (EOI —
CR67)" on
page 2:117
CR[IFA] mov-to-CR-IFA impliedF
CRJ[IFS] mov-to-CR-IFS, cover impliedF
CR[IHA] mov-to-CR-IHA impliedF
CRI[lIM] mov-to-CR-1IM impliedF
CRJIIP] mov-to-CR-IIP impliedF
CRJIIPA] mov-to-CR-1IPA impliedF
CR[IPSR] mov-to-CR-IPSR impliedF
CR[IRR%], mov-from-CR-IVR impliedF
%in0-3
CRJISR] mov-to-CR-ISR impliedF
CRI[ITIR] mov-to-CR-ITIR impliedF
CR[ITM] mov-to-CR-ITM impliedF
CR[ITV] mov-to-CR-ITV impliedF
CR[IVA] mov-to-CR-IVA impliedF
CRJ[IVR] none SC
CRILID] mov-to-CR-LID SC
3:366 Volume 3: Resource and Dependency Semantics

ftp://download.intel.com/design/Itanium/manuals/245318.pdf

Table 5-3. WAW Dependencies Organized by Resource (Continued)

Resource Name Writers %ir;ggélgﬁc(;f
CR[LRR%)], mov-to-CR-LRR? impliedF
%in0-1
CR[PMV] mov-to-CR-PMV impliedF
CR[PTA] mov-to-CR-PTA impliedF
CR[TPR] mov-to-CR-TPR impliedF
CR%, none none
% in 3-7, 10-15, 18, 26-63,

75-79, 82-127
DBR# mov-to-IND-DBR3 impliedF
DTC ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d none
ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d, itc.i, itc.d, itr.i, itr.d impliedF
itc.i, itc.d, itr.i, itr.d
DTC_LIMIT* ptc.g, ptc.ga impliedF
DTR itr.d impliedF
itr.d ptr.d impliedF
ptr.d none
FR%, none none
%in0-1
FR%, fr-writers?®, ldf-ct, Idfp-ct impliedF
%in2-127
GRO none none
GR%, Id-c1, gr-writers® impliedF
%in1-127
IBR# mov-to-IND-IBR® impliedF
InService* mov-to-CR-EOI, mov-from-CR-IVR SC
P all none
ITC ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d none
ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d, itc.i, itc.d, itr.i, itr.d impliedF
itc.i, itc.d, itr.i, itr.d
ITR itr.i itr.i, ptr.i impliedF
ptr.i none
memory mem-writers none
PKR# mov-to-IND-PKR® mov-to-IND-PKR* none
mov-to-IND-PKR? impliedF
PMC# mov-to-IND-PMC3 impliedF
PMD# mov-to-IND-PMD3 impliedF
PRO pr-writers! none
PR%, pr—and—writers1 none
%inl-15 pr-or-writers® none
pr-unc-writers-fpl, pr-unc-writers-fp?, impliedF
pr-unc-writers-intt, pr-unc-writers-intt,
pr-norm-writers-fp?, pr-norm-writers-fp?,
pr-norm-writers-intl, pr-norm-writers-int?,
pr-and-writers?, pr-or-writers®,
mov-to-PR-allreg’ mov-to-PR-allreg”
Volume 3: Resource and Dependency Semantics 3:367

Table 5-3. WAW Dependencies Organized by Resource (Continued)

Resource Name Writers SDeenr;:rngrS\c(;f
PR%, pr—and—writers1 none
% in 16 - 62 pr-or-writers? none
pr-unc-writers-fpt, pr-unc-writers-fp?, impliedF
pr-unc-writers-int?, pr-unc-writers-int,
pr-norm-writers-fp?, pr-norm-writers-fp?,
pr-norm-writers-int?, pr-norm-writers-int?,
pr-and-writers?, pr-or-writers?,
mov-to-PR-allreg”, mov-to-PR-allreg”,
mov-to-PR-rotreg mov-to-PR-rotreg
PR63 pr-and-writers® none
pr-or-writers® none
mod-sched-brs, mod-sched-brs, impliedF
pr-unc-writers-fp?, pr-unc-writers-fp?,
pr-unc-writers-intt, pr-unc-writers-int?,
pr-norm-writers-fp?, pr-norm-writers-fp?,
pr-norm-writers-int, pr-norm-writers-int,
pr-and-writers?, pr-or-writers?,
mov-to-PR-allreg’, mov-to-PR-allreg’,
mov-to-PR-rotreg mov-to-PR-rotreg
PSR.ac user—mask—writers—partial7, mov-to-PSR-um, impliedF
sys-mask-writers-partial’, mov-to-PSR-I, rfi
PSR.be user—mask—writers—partial7, mov-to-PSR-um, impliedF
sys-mask-writers-partial’, mov-to-PSR-I, rfi
PSR.bn bsw, rfi impliedF
PSR.cpl epc, br.ret, rfi impliedF
PSR.da i impliedF
PSR.db mov-to-PSR-l, rfi impliedF
PSR.dd rfi impliedF
PSR.dfh sys-mask-writers-partial’, mov-to-PSR-I, rfi impliedF
PSR.dfl sys—mask—Writers—partiaI7, mov-to-PSR-I, rfi impliedF
PSR.di sys-mask-Writers-partiaI7, mov-to-PSR-I, rfi impliedF
PSR.dt sys-mask-Writers-partiaI7, mov-to-PSR-I, rfi impliedF
PSR.ed rfi impliedF
PSR.i sys-mask-writers-partial’, mov-to-PSR-I, rfi impliedF
PSR.ia rfi impliedF
PSR.ic sys—mask—writers—partial7, mov-to-PSR-I, rfi impliedF
PSR.id rfi impliedF
PSR.is br.ia, rfi impliedF
PSR.it rfi impliedF
PSR.Ip mov-to-PSR-I, rfi impliedF
PSR.mc fi impliedF
PSR.mfh fr-writers® none
user-mask-writers-partial7, user-mask-writers-partiaI7, impliedF
mov-to-PSR-um, fr-writers®, mov-to-PSR-um,
sys-mask-writers-partial’, sys-mask-writers-partial”,
mov-to-PSR-l, rfi mov-to-PSR-I, rfi
3:368 Volume 3: Resource and Dependency Semantics

Table 5-3. WAW Dependencies Organized by Resource (Continued)

Resource Name Semantics of
Dependency
PSR.mfl fr-writers® none
user-mask-writers-partial7, user-mask-writers-partial7, impliedF
mov-to-PSR-um, fr-writers®, mov-to-PSR-um,
sys-mask-writers-partial’, sys-mask-writers-partial’,
mov-to-PSR-I, rfi mov-to-PSR-I, rfi
PSR.pk sys-mask-writers-partial”’, mov-to-PSR-I, rfi impliedF
PSR.pp sys-mask-writers-partial’, mov-to-PSR-I, rfi impliedF
PSR.ri rfi impliedF
PSR.rt mov-to-PSR-I, rfi impliedF
PSR.si sys-mask-writers-partial7, mov-to-PSR-I, rfi impliedF
PSR.sp sys-mask-writers-partial7, mov-to-PSR-l, rfi impliedF
PSR.ss rfi impliedF
PSR.th mov-to-PSR-I, rfi impliedF
PSR.up user—mask—writers—partial7, mov-to-PSR-um, impliedF
sys-mask-writers-partial”’, mov-to-PSR-I, rfi
PSR.vm rfi, vmsw impliedF
RR# mov-to-IND-RR® impliedF
RSE rse-writers14 impliedF
5.34 WAR Dependency Table

A general rule specific to the WAR table;

1. WAR dependencies are always allowed within instruction groups except for the entry in
Table 5-4 below. The readers and subsequent writers specified must be separated by astopin
order to have defined behavior.

Table 5-4. WAR Dependencies Organized by Resource

Resource Name Readers Writers Semantics of Dependency
PR63 pr-readers-br! mod-sched-brs stop
5.35 Listing of Rules Referenced in Dependency Tables

The following rules restrict the specific instances in which some of the instructionsin the tables
cause adependency and must be applied where referenced to correctly interpret those entries. Rules
only apply to the instance of the instruction class, or instruction mnemonic prefix where theruleis
referenced as a superscript. If theruleisreferenced in Table 5-5 where instruction classes are
defined, then it appliesto al instances of the instruction class.

Rulel. Theseinstructions only write aregister when that register’s number is explicitly encoded
as atarget of theinstruction and is only read when it is encoded as a source of the
instruction (or encoded asits PR[gp]).

Rule 2. Theseinstructions only read CFM when they access arotating GR, FR, or PR.
mov-to-PR and mov-from-PR only access CFM when their qualifying predicateisin the
rotating region.

Volume 3: Resource and Dependency Semantics 3:369

Rule 3. These instructions use a general register value to determine the specific indirect register
accessed. These instructions only access the register resource specified by the valuein bits
{7:0} of the dynamic value of the index register.

Rule4. Theseinstructions only read the given resource when bits{ 7:0} of theindirect index
register value does not match the register number of the resource.

Rule5. All rules are implementation specific.

Rule 6. Thereisadependency only when both the index specified by the reader and the index
specified by the writer have the same value in bits { 63:61} .

Rule 7. These instructions access the specified resource only when the corresponding mask bit is
Set.

Rule 8. PSR.dfhisonly read when these instructions reference FR32-127. PSR.dfl is only read
when these instructions reference FR2-31.

Rule9. PSR.mfl isonly written when these instructions write FR2-31. PSR.mfh is only written
when these instructions write FR32-127.

Rule 10. The PSR.bn bit is only accessed when one of GR16-31 is specified in the instruction.

Rule 11. The target predicates are written independently of PR[qp], but source registers are only
read if PR[qp] istrue.

Rule 12. Thisinstruction only reads the specified predicate register when that register isthe
PR[qp].

Rule 13. Thisreference to Id-c only applies to the GR whose value is loaded with data returned
from memory, not the post-incremented address register. Thus, astop is till required
between a post-incrementing ld-c and a consumer that reads the post-incremented GR.

Rule 14. The RSE resource includes implementation-specific internal state. At least one (and
possibly more) of these resources are read by each instruction listed in the rse-reader s
class. At least one (and possibly more) of these resources are written by each instruction
listed in the rse-writers class. To determine exactly which instructions read or write each
individual resource, see the corresponding instruction pages.

Rule 15. Thisclass represents all instructions marked as Reserved if PR[qp] is 1 B-typeinstructions
as described in “ Format Summary” on page 3:272.

Rule 16. This class represents all instructions marked as Reserved if PR[qgp] is 1 instructions as
described in “Format Summary” on page 3:272.

Rule 17. CR[TPR] has a RAW dependency only between mov-to-CR-TPR and mov-to-PSR-| or
ssm instructions that set PSR.i, PSR,pp or PSR.up.

3:370 Volume 3: Resource and Dependency Semantics

54 Support Tables

Table 5-5. Instruction Classes

Class

Events/Instructions

all

predicatable-instructions, unpredicatable-instructions

branches

indirect-brs, ip-rel-brs

cfm-readers

fr-readers, fr-writers, gr-readers, gr-writers, mod-sched-brs,
predicatable-instructions, pr-writers, alloc, br.call, brl.call, br.ret, cover, loadrs, rfi, chk-a,
invala.e

chk-a chk.a.clr, chk.a.nc

cmpxchg cmpxchgl, cmpxchg2, cmpxchg4, cmpxchg8, cmp8xchgl16

czx czx1, czx2

fcmp-s0 fcmp[Field(sf)==s0]

fcmp-s1 femp[Field(sf)==s1]

fcmp-s2 femp[Field(sf)==s2]

fcmp-s3 fcmp[Field(sf)==s3]

fetchadd fetchadd4, fetchadd8

fp-arith fadd, famax, famin, fcvt.fx, fevt.fxu, fevt.xuf, fma, fmax, fmin, fmpy, fms, fnma, fnmpy, fnorm,
fpamax, fpamin, fpcvt.fx, fpevt.fxu, fpma, fpmax, fpmin, fpmpy, fpms, fpnma, fpnmpy, fprepa,
fprsqrta, frcpa, frsqrta, fsub

fp-arith-s0 fp-arith[Field(sf)==s0]

fp-arith-s1 fp-arith[Field(sf)==s1]

fp-arith-s2 fp-arith[Field(sf)==s2]

fp-arith-s3 fp-arith[Field(sf)==s3]

fp-non-arith fabs, fand, fandcm, fclass, fevt.xf, fmerge, fmix, fneg, fnegabs, for, fpabs, fpmerge, fpack,
fpneg, fpnegabs, fselect, fswap, fsxt, fxor, xma

fpcmp-s0 fpemp[Field(sf)==s0]

fpcmp-s1 fpemp[Field(sf)==s1]

fpecmp-s2 fpecmp(Field(sf)==s2]

fpcmp-s3 fpcmp[Field(sf)==s3]

fr-readers fp-arith, fp-non-arith, mem-writers-fp, pr-writers-fp, chk.s[Format in {M21}], getf

fr-writers fp-arith, fp-non-arith\fclass, mem-readers-fp, setf

gr-readers gr-readers-writers, mem-readers, mem-writers, chk.s, cmp, cmp4, fc, itc.i, itc.d, itr.i, itr.d,

mov-to-AR-gr, mov-to-BR, mov-to-CR, mov-to-IND, mov-from-IND, mov-to-PR-allreg,
mov-to-PSR-I, mov-to-PSR-um, probe-all, ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d, setf, thit,
tnat

gr-readers-writers

mov-from-IND, add, addl, addp4, adds, and, andcm, czx, dep\dep[Format in {I13}], extr,
mem-readers-int, Id-all-postinc, Ifetch-postinc, mix, mux, or, pack, padd, pavg,
pavgsub, pcmp, pmax, pmin, pmpy, pmpyshr, popcnt, probe-nofault, psad, pshl,
pshladd, pshr, pshradd, psub, shl, shladd, shladdp4, shr, shrp, st-postinc, sub, sxt, tak,
thash, tpa, ttag, unpack, xor, zxt

gr-writers alloc, dep, getf, gr-readers-writers, mem-readers-int, mov-from-AR, mov-from-BR,
mov-from-CR, mov-from-PR, mov-from-PSR, mov-from-PSR-um, mov-ip, movl

indirect-brp brp[Format in {B7}]

indirect-brs br.call[Format in {B5}], br.cond[Format in {B4}], br.ia, br.ret

invala-all invala[Format in {M24}], invala.e

ip-rel-brs mod-sched-brs, br.call[Format in {B3}], brl.call, brl.cond, br.cond[Format in {B1}], br.cloop

Id Id1, 1d2, Id4, 1d8, Id8fill, 1d16

Id-a Id1.a, 1d2.a, Id4.a, 1d8.a

Volume 3: Resource and Dependency Semantics 3:371

Table 5-5. Instruction Classes (Continued)

Class Events/Instructions
Id-all-postinc Id[Format in {M2 M3}], Idfp[Format in {M12}], Idf[Format in {M7 M8}]
Id-c Id-c-nc, Id-c-clr
Id-c-clIr Id1.c.clr, Id2.c.clr, Id4.c.clr, Id8.c.clr, Id-c-clr-acq
Id-c-clr-acq ld1.c.clr.acq, Id2.c.clr.acq, Id4.c.clr.acq, Id8.c.clr.acq
Id-c-nc ld1.c.nc, Id2.c.nc, ld4.c.nc, 1d8.c.nc
Id-s Id1.s, 1d2.s, Id4.s, 1d8.s
Id-sa ld1.sa, Id2.sa, lId4.sa, Id8.sa
Idf Idfs, Idfd, Idfe, 1df8, Idf.fill
Idf-a ldfs.a, Idfd.a, Idfe.a, Idf8.a
ldf-c Idf-c-nc, Idf-c-clr
Idf-c-clr ldfs.c.clr, Idfd.c.clr, Idfe.c.clr, Idf8.c.clr
ldf-c-nc Idfs.c.nc, Idfd.c.nc, Idfe.c.nc, 1df8.c.nc
Idf-s ldfs.s, Idfd.s, Idfe.s, Idf8.s
Idf-sa ldfs.sa, Idfd.sa, Idfe.sa, Idf8.sa
Idfp Idfps, Idfpd, Idfp8
Idfp-a Idfps.a, Idfpd.a, Idfp8.a
Idfp-c Idfp-c-nc, Idfp-c-clr
Idfp-c-clr Idfps.c.clr, Idfpd.c.clr, Idfp8.c.clr
Idfp-c-nc Idfps.c.nc, Idfpd.c.nc, Idfp8.c.nc
Idfp-s Idfps.s, Idfpd.s, Idfp8.s
Idfp-sa Idfps.sa, Idfpd.sa, ldfp8.sa
Ifetch-all Ifetch
Ifetch-fault Ifetch[Field(lftype)==fault]
Ifetch-nofault Ifetch[Field(Iftype)==

Ifetch-postinc

Ifetch[Format in {M14 M15}]

mem-readers

mem-readers-fp, mem-readers-int

mem-readers-alat

Id-a, Idf-a, Idfp-a, Id-sa, Idf-sa, Idfp-sa, Id-c, Idf-c, Idfp-c

mem-readers-fp

df, Idfp

mem-readers-int

cmpxchg, fetchadd, xchg, Id

mem-readers-spec

Id-s, Id-sa, |df-s, Idf-sa, Idfp-s, |dfp-sa

mem-writers

mem-writers-fp, mem-writers-int

mem-writers-fp

stf

mem-writers-int

cmpxchg, fetchadd, xchg, st

mix

mix1, mix2, mix4

mod-sched-brs

br.cexit, br.ctop, br.wexit, br.wtop

mod-sched-brs-counted

br.cexit, br.cloop, br.ctop

mov-from-AR

mov-from-AR-M, mov-from-AR-l, mov-from-AR-IM

mov-from-AR-BSP

mov-from-AR-M[Field(ar3) == BSP]

mov-from-AR-BSPSTORE

mov-from-AR-M[Field(ar3) == BSPSTORE]

mov-from-AR-CCV

mov-from-AR-M[Field(ar3) == CCV]

mov-from-AR-CFLG

mov-from-AR-M[Field(ar3) == CFLG]

mov-from-AR-CSD

mov-from-AR-M[Field(ar3) == CSD]

mov-from-AR-EC

mov-from-AR-I[Field(ar3) == EC]

mov-from-AR-EFLAG

mov-from-AR-M[Field(ar3) == EFLAG]

mov-from-AR-FCR

mov-from-AR-M[Field(ar3) == FCR]

3:372

Volume 3: Resource and Dependency Semantics

Table 5-5. Instruction Classes (Continued)

Class

Events/Instructions

mov-from-AR-FDR

mov-from-AR-M[Field(ar3) == FDR]

mov-from-AR-FIR

mov-from-AR-M[Field(ar3) == FIR]

mov-from-AR-FPSR

mov-from-AR-M[Field(ar3) == FPSR]

mov-from-AR-FSR

mov-from-AR-M[Field(ar3) == FSR]

mov-from-AR-I

mov_ar[Format in {I28}]

mov-from-AR-ig

mov-from-AR-IM[Field(ar3) in {48-63 112-127}]

mov-from-AR-IM

mov_ar[Format in {I28 M31}]

mov-from-AR-ITC

mov-from-AR-M[Field(ar3) == ITC]

mov-from-AR-K

mov-from-AR-M[Field(ar3) in {KO K1 K2 K3 K4 K5 K6 K7}]

mov-from-AR-LC

mov-from-AR-I[Field(ar3) == LC]

mov-from-AR-M

mov_ar[Format in {M31}]

mov-from-AR-PFS

mov-from-AR-I[Field(ar3) == PFS]

mov-from-AR-RNAT

mov-from-AR-M[Field(ar3) == RNAT]

mov-from-AR-RSC

mov-from-AR-M[Field(ar3) == RSC]

mov-from-AR-rv

none

mov-from-AR-SSD

mov-from-AR-M[Field(ar3) == SSD]

mov-from-AR-UNAT

mov-from-AR-M[Field(ar3) == UNAT]

mov-from-BR

mov_br[Format in {I22}]

mov-from-CR

mov_cr[Format in {M33}]

mov-from-CR-CMCV

mov-from-CR[Field(cr3) == CMCV]

mov-from-CR-DCR

mov-from-CR[Field(cr3) == DCR]

mov-from-CR-EOI

mov-from-CR[Field(cr3) == EOI]

mov-from-CR-IFA

mov-from-CR[Field(cr3) == IFA]

mov-from-CR-IFS

mov-from-CR[Field(cr3) == IFS]

mov-from-CR-IHA

mov-from-CR[Field(cr3) == IHA]

mov-from-CR-1IM

mov-from-CR[Field(cr3) == lIM]

mov-from-CR-IIP

mov-from-CR[Field(cr3) == IIP]

mov-from-CR-IIPA

mov-from-CR[Field(cr3) == lIPA]

mov-from-CR-IPSR

mov-from-CR[Field(cr3) == IPSR]

mov-from-CR-IRR

mov-from-CR[Field(cr3) in {IRRO IRR1 IRR2 IRR3}]

mov-from-CR-ISR

mov-from-CR[Field(cr3) == ISR]

mov-from-CR-ITIR

mov-from-CR[Field(cr3) == ITIR]

mov-from-CR-ITM

mov-from-CR[Field(cr3) == ITM]

mov-from-CR-ITV

mov-from-CR[Field(cr3) == ITV]

mov-from-CR-IVA

mov-from-CR[Field(cr3) == IVA]

mov-from-CR-IVR

mov-from-CR[Field(cr3) == IVR]

mov-from-CR-LID

mov-from-CR[Field(cr3) == LID]

mov-from-CR-LRR

mov-from-CR[Field(cr3) in {LRRO LRR1}]

mov-from-CR-PMV

mov-from-CR[Field(cr3) == PMV]

mov-from-CR-PTA

mov-from-CR[Field(cr3) == PTA]

mov-from-CR-rv

none

mov-from-CR-TPR

mov-from-CR[Field(cr3) == TPR]

mov-from-IND

mov_indirect[Format in {M43}]

mov-from-IND-CPUID

mov-from-IND[Field(ireg) == cpuid]

mov-from-IND-DBR

mov-from-IND[Field(ireg) == dbr]

Volume 3: Resource and Dependency Semantics

3:373

Table 5-5. Instruction Classes (Continued)

Class

Events/Instructions

mov-from-IND-IBR

mov-from-IND[Field(ireg) == ibr]

mov-from-IND-PKR

mov-from-IND[Field(ireg) == pkr]

mov-from-IND-PMC

mov-from-IND[Field(ireg) == pmc]

mov-from-IND-PMD

mov-from-IND[Field(ireg) == pmd]

mov-from-IND-priv

mov-from-IND[Field(ireg) in {dbr ibr pkr pmc rr}]

mov-from-IND-RR

mov-from-IND[Field(ireg) == rr]

mov-from-interruption-CR

mov-from-CR-ITIR, mov-from-CR-IFS, mov-from-CR-IIM, mov-from-CR-IIP,
mov-from-CR-IPSR, mov-from-CR-ISR, mov-from-CR-IFA, mov-from-CR-IHA,
mov-from-CR-IIPA

mov-from-PR

mov_pr[Format in {I25}]

mov-from-PSR

mov_psr[Format in {M36}]

mov-from-PSR-um

mov_um[Format in {M36}]

mov-ip

mov_ip[Format in {I25}]

mov-to-AR

mov-to-AR-M, mov-to-AR-I

mov-to-AR-BSP

mov-to-AR-M[Field(ar3) == BSP]

mov-to-AR-BSPSTORE

mov-to-AR-M[Field(ar3) == BSPSTORE]

mov-to-AR-CCV

mov-to-AR-M[Field(ar3) == CCV]

mov-to-AR-CFLG

mov-to-AR-M[Field(ar3) == CFLG]

mov-to-AR-CSD

mov-to-AR-M[Field(ar3) == CSD]

mov-to-AR-EC

mov-to-AR-I[Field(ar3) == EC]

mov-to-AR-EFLAG

mov-to-AR-M[Field(ar3) == EFLAG]

mov-to-AR-FCR

mov-to-AR-M[Field(ar3) == FCR]

mov-to-AR-FDR

mov-to-AR-M[Field(ar3) == FDR]

mov-to-AR-FIR

mov-to-AR-M[Field(ar3) == FIR]

mov-to-AR-FPSR

mov-to-AR-M[Field(ar3) == FPSR]

mov-to-AR-FSR

mov-to-AR-M[Field(ar3) == FSR]

mov-to-AR-gr mov-to-AR-M[Format in {M29}], mov-to-AR-I[Format in {I26}]
mov-to-AR-| mov_ar[Format in {126 127}]

mov-to-AR-ig mov-to-AR-IM[Field(ar3) in {48-63 112-127}]

mov-to-AR-IM mov_ar[Format in {126 127 M29 M30}]

mov-to-AR-ITC mov-to-AR-M[Field(ar3) == ITC]

mov-to-AR-K mov-to-AR-M[Field(ar3) in {KO K1 K2 K3 K4 K5 K6 K7}]
mov-to-AR-LC mov-to-AR-I[Field(ar3) == LC]

mov-to-AR-M mov_ar[Format in {M29 M30}]

mov-to-AR-PFS

mov-to-AR-I[Field(ar3) == PFS]

mov-to-AR-RNAT

mov-to-AR-M[Field(ar3) == RNAT]

mov-to-AR-RSC

mov-to-AR-M[Field(ar3) == RSC]

mov-to-AR-SSD

mov-to-AR-M[Field(ar3) == SSD]

mov-to-AR-UNAT

mov-to-AR-M[Field(ar3) == UNAT]

mov-to-BR

mov_br[Format in {I121}]

mov-to-CR

mov_cr[Format in {M32}]

mov-to-CR-CMCV

mov-to-CR[Field(cr3) == CMCV]

mov-to-CR-DCR

mov-to-CR[Field(cr3) == DCR]

mov-to-CR-EOI mov-to-CR[Field(cr3) == EOI]
mov-to-CR-IFA mov-to-CR[Field(cr3) == IFA]
3:374 Volume 3: Resource and Dependency Semantics

Table 5-5. Instruction Classes (Continued)

Class Events/Instructions
mov-to-CR-IFS mov-to-CR[Field(cr3) == IFS]
mov-to-CR-IHA mov-to-CR[Field(cr3) == IHA]
mov-to-CR-1IM mov-to-CR[Field(cr3) == 1IM]
mov-to-CR-1IP mov-to-CR[Field(cr3) == IIP]

mov-to-CR-IIPA

mov-to-CR[Field(cr3) == lIPA]

mov-to-CR-IPSR

mov-to-CR[Field(cr3) == IPSR]

mov-to-CR-IRR mov-to-CRJ[Field(cr3) in {IRRO IRR1 IRR2 IRR3}]
mov-to-CR-ISR mov-to-CR[Field(cr3) == ISR]
mov-to-CR-ITIR mov-to-CR[Field(cr3) == ITIR]
mov-to-CR-ITM mov-to-CR[Field(cr3) == ITM]
mov-to-CR-ITV mov-to-CR[Field(cr3) == ITV]
mov-to-CR-IVA mov-to-CR[Field(cr3) == IVA]
mov-to-CR-IVR mov-to-CR[Field(cr3) == IVR]
mov-to-CR-LID mov-to-CR[Field(cr3) == LID]

mov-to-CR-LRR

mov-to-CR[Field(cr3) in {LRRO LRR1}]

mov-to-CR-PMV

mov-to-CR[Field(cr3) == PMV]

mov-to-CR-PTA

mov-to-CR[Field(cr3) == PTA]

mov-to-CR-TPR

mov-to-CR[Field(cr3) == TPR]

mov-to-IND

mov_indirect[Format in {M42}]

mov-to-IND-CPUID

mov-to-IND[Field(ireg) == cpuid]

mov-to-IND-DBR

mov-to-IND[Field(ireg) == dbr]

mov-to-IND-IBR

mov-to-IND[Field(ireg) == ibr]

mov-to-IND-PKR

mov-to-IND[Field(ireg) == pkr]

mov-to-IND-PMC

mov-to-IND[Field(ireg) == pmc]

mov-to-IND-PMD

mov-to-IND[Field(ireg) == pmd]

mov-to-IND-priv

mov-to-IND

mov-to-IND-RR

mov-to-IND[Field(ireg) == rr]

mov-to-interruption-CR

mov-to-CR-ITIR, mov-to-CR-IFS, mov-to-CR-1IM, mov-to-CR-1IP, mov-to-CR-IPSR,
mov-to-CR-ISR, mov-to-CR-IFA, mov-to-CR-IHA, mov-to-CR-IIPA

mov-to-PR

mov-to-PR-allreg, mov-to-PR-rotreg

mov-to-PR-allreg

mov_pr[Format in {I23}]

mov-to-PR-rotreg

mov_pr[Format in {I24}]

mov-to-PSR-I

mov_psr[Format in {M35}]

mov-to-PSR-um

mov_um[Format in {M35}]

mux mux1, mux2
non-access fc, Ifetch, probe-all, tpa, tak
none -

pack pack2, pack4

padd paddl, padd2, padd4
pavg pavgl, pavg2

pavgsub pavgsubl, pavgsub2
pcmp pcmpl, pcmp2, pcmp4
pmax pmax1, pmax2

pmin pminl, pmin2

pmpy pmpy2

Volume 3: Resource and Dependency Semantics 3:375

Table 5-5. Instruction Classes (Continued)

Class

Events/Instructions

pmpyshr

pmpyshr2

pr-and-writers

pr-gen-writers-int[Field(ctype) in {and andcm}],
pr-gen-writers-int[Field(ctype) in {or.andcm and.orcm}]

pr-gen-writers-fp

fclass, fcmp

pr-gen-writers-int

cmp, cmp4, tbit, tf, tnat

pr-norm-writers-fp

pr-gen-writers-fp[Field(ctype)==]

pr-norm-writers-int

pr-gen-writers-int[Field(ctype)==]

pr-or-writers

pr-gen-writers-int[Field(ctype) in {or orcm}],
pr-gen-writers-int[Field(ctype) in {or.andcm and.orcm}]

pr-readers-br

br.call, br.cond, brl.call, brl.cond, br.ret, br.wexit, br.wtop, break.b, hint.b, nop.b,
ReservedBQP

pr-readers-nobr-nomovpr

add, addl|, addp4, adds, and, andcm, break.f, break.i, break.m, break.x, chk.s, chk-a, cmp,
cmp4, cmpxchg, czx, dep, extr, fp-arith, fp-non-arith, fc, fchkf, fclrf, fcmp, fetchadd,
fpcmp, fsetc, fwb, getf, hint.f, hint.i, hint.m, hint.x, invala-all, itc.i, itc.d, itr.i, itr.d, Id, Idf, Idfp,
Ifetch-all, mf, mix, mov-from-AR-M, mov-from-AR-IM, mov-from-AR-I, mov-to-AR-M,
mov-to-AR-I, mov-to-AR-IM, mov-to-BR, mov-from-BR, mov-to-CR, mov-from-CR,
mov-to-IND, mov-from-IND, mov-ip, mov-to-PSR-l, mov-to-PSR-um, mov-from-PSR,
mov-from-PSR-um, movl, mux, nop.f, nop.i, nop.m, nop.x, or, pack, padd, pavg,
pavgsub, pcmp, pmax, pmin, pmpy, pmpyshr, popcnt, probe-all, psad, pshl, pshladd,
pshr, pshradd, psub, ptc.e, ptc.g, ptc.ga, ptc.l, ptr.d, ptr.i, ReservedQP, rsm, setf, shl,
shladd, shladdp4, shr, shrp, srlz.i, srlz.d, ssm, st, stf, sub, sum, sxt, sync, tak, thit, tf, thash,
tnat, tpa, ttag, unpack, xchg, xma, xmpy, xor, zxt

pr-unc-writers-fp

pr-gen-writers-fp[Field(ctype)==unc]™, fprcpall, fprsqrtall, frepall, frsqrtall

pr-unc-writers-int

pr-gen-writers-int[Field(ctype)==unc]

pr-writers

pr-writers-int, pr-writers-fp

pr-writers-fp

pr-norm-writers-fp, pr-unc-writers-fp

pr-writers-int

pr-norm-writers-int, pr-unc-writers-int, pr-and-writers, pr-or-writers

predicatable-instructions

mov-from-PR, mov-to-PR, pr-readers-br, pr-readers-nobr-nomovpr

priv-ops mov-to-IND-priv, bsw, itc.i, itc.d, itr.i, itr.d, mov-to-CR, mov-from-CR, mov-to-PSR-I,
mov-from-PSR, mov-from-IND-priv, ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d, rfi, rsm, ssm, tak,
tpa, vmsw

probe-all probe-fault, probe-nofault

probe-fault probe[Format in {M40}]

probe-nofault

probe[Format in {M38 M39}]

psad psadl

pshl pshl2, pshl4

pshladd pshladd2

pshr pshr2, pshr4
pshradd pshradd2

psub psubl, psub2, psub4
ReservedBQP 15

ReservedQP 16

rse-readers

alloc, br.call, br.ia, br.ret, brl.call, cover, flushrs, loadrs, mov-from-AR-BSP,
mov-from-AR-BSPSTORE, mov-to-AR-BSPSTORE, mov-from-AR-RNAT,
mov-to-AR-RNAT, rfi

rse-writers alloc, br.call, br.ia, br.ret, brl.call, cover, flushrs, loadrs, mov-to-AR-BSPSTORE, rfi

st stl, st2, st4, st8, st8.spill, st16

st-postinc stf[Format in {M10}], st[Format in {M5}]

stf stfs, stfd, stfe, stf8, stf.spill
3:376 Volume 3: Resource and Dependency Semantics

Table 5-5. Instruction Classes (Continued)

Class

Events/Instructions

sxt

sxtl, sxt2, sxt4

sys-mask-writers-partial

rsm, ssm

unpack

unpackl, unpack2, unpack4

unpredicatable-instructions

alloc, br.cloop, br.ctop, br.cexit, br.ia, brp, bsw, clrrrb, cover, epc, flushrs, loadrs, rfi, vmsw

user-mask-writers-partial

rum, sum

xchg

xchgl, xchg2, xchg4, xchg8

zxt

zxtl, zxt2, zxt4

Volume 3: Resource and Dependency Semantics

3:377

3:378 Volume 3: Resource and Dependency Semantics

Part Il: IA-32 Instruction Set
Descriptions

Base IA-32 Instruction Reference

1

This section lists all 1A-32 instructions and their behavior in the Itanium System Environment and
|A-32 System Environments on an processor based on the Itanium architecture. Unless noted
otherwise all |A-32 and MM X technology and SSE instructions operate as defined in the | A-32

Intel® Architecture Software Devel oper’s Manual.

This volume describes the complete 1A-32 Architecture instruction set, including the integer,

floating-point, MM X technology and SSE technology, and system instructions. The instruction
descriptions are arranged in a phabetical order. For each instruction, the forms are given for each
operand combination, including the opcode, operands required, and a description. Also given for
each instruction are a description of the instruction and its operands, an operational description, a
description of the effect of the instructions on flags in the EFLAGS register, and a summary of the

exceptions that can be generated.

For al 1A-32 the following relationships hold:

« Writes—Writes of any |1A-32 genera purpose, floating-point or SSE, MM X technology
registers by 1A-32 instructions are reflected in the Itanium registers defined to hold that 1A-32
state when 1A-32 instruction set completes execution.

Reads — Reads of any |A-32 genera purpose, floating-point or SSE, MM X technology
registers by 1A-32 instructions see the state of the Itanium registers defined to hold the |A-32
state after entering the 1A-32 instruction set.

Sate mappings—1A-32 numeric instructions are controlled by and reflect their statusin FCW,
FSW, FTW, FCS, FIP, FOPR, FDS and FEA. On exit from the |A-32 instruction set, Itanium
numeric status and control resources defined to hold | A-32 state reflect the results of all 1A-32
prior numeric instructionsin FCR, FSR, FIR and FDR. Itanium numeric status and control
resources defined to hold 1A-32 state are honored by 1A-32 numeric instructions when entering
the 1A-32 instruction set.

1.1 Additional Intel® Itanium® Faults

The following fault behavior is defined for all |A-32 instructionsin the Itanium System

Environment:

* IA-32 Faults— All IA-32 faults are performed as defined in the IA-32 Intel® Architecture
Software Devel oper’s Manual, unless otherwise noted. |A-32 faults are delivered on the
|A_32_Exception interruption vector.

I A-32 GPFault — Null segments are signified by the segment descriptor register’s P-bit being
set to zero. |A-32 memory references through DSD, ESD, FSD, and GSD with the P-bit set to
zero result in an 1A-32 GPFault.

Itanium Low FP Reg Fault — If PSR.dfl is 1, execution of any IA-32 MMX technology, SSE
or floating-point instructions resultsin a Disabled FP Register fault (regardless of whether
FR2-31 isreferenced).

Volume 3: Base IA-32 Instruction Reference 3:381

1.2

121

3:382

¢ Itanium High FP Reg Fault — If PSR.dfh is 1, execution of the first target |A-32 instruction
followinganbr.ia or rfi resultsin aDisabled FP Register fault (regardless of whether
FR32-127 is referenced).

 |tanium Instruction Mem Faults— The following additional Itanium memory faults can be
generated on each virtual page referenced when fetching 1A-32 or MM X technology or SSE
instructions for execution:

Alternative instruction TLB fault

VHPT instruction fault

Instruction TLB fault

Instruction Page Not Present fault
Instruction NaT Page Consumption Abort
Instruction Key Miss fault

Instruction Key Permission fault
Instruction Access Rights fault
Instruction Access Bit fault

* |tanium Data M em Faults— The following additional Itanium memory faults can be
generated on each virtual page touched when reading or writing memory operands from the
IA-32 instruction set including MM X technology and SSE instructions:

Nested TLB fault
Alternative data TLB fault
VHPT data fault

Data TLB fault

Data Page Not Present fault
Data NaT Page Consumption Abort
Data Key Miss fault

Data Key Permission fault
Data Access Rights fault
Data Dirty bit fault

Data Access bit fault

Interpreting the 1A-32 Instruction Reference Pages

This section describes the information contained in the various sections of the instruction reference
pages that make up the majority of this chapter. It also explains the notational conventions and
abbreviations used in these sections.

IA-32 Instruction Format

Thefollowing isan example of the format used for each Intel architectureinstruction descriptionin
this chapter.

Volume 3: Base IA-32 Instruction Reference

CMC—Complement Carry Flag

Opcode Instruction Description

F5 CcMC Complement carry flag

1.2.1.1 Opcode Column

The “Opcode” column gives the complete object code produced for each form of the instruction.
When possible, the codes are given as hexadecimal bytes, in the same order in which they appear in
memory. Definitions of entries other than hexadecimal bytes are as follows:

* /digit — A digit between 0 and 7 indicates that the ModR/M byte of the instruction uses only
the r/m (register or memory) operand. The reg field contains the digit that provides an
extension to the instruction's opcode.

 /r —Indicates that the ModR/M byte of the instruction contains both a register operand and an
r/m operand.

« ch, cw, cd, cp — A 1-byte (cb), 2-byte (cw), 4-byte (cd), or 6-byte (cp) value following the
opcode that is used to specify a code offset and possibly a new value for the code segment
register.

* ib, iw, id — A 1-byte (ib), 2-byte (iw), or 4-byte (id) immediate operand to the instruction that
follows the opcode, ModR/M bytes or scale-indexing bytes. The opcode determinesif the
operand is asigned value. All words and doublewords are given with the low-order byte first.

e +rb, +rw, +rd — A register code, from 0 through 7, added to the hexadecimal byte given at the
left of the plus sign to form a single opcode byte. The register codes are given in Table 1-1.

* +i —A number used in floating-point instructions when one of the operandsis ST(i) from the
FPU register stack. The number i (which can range from 0 to 7) is added to the hexadecimal
byte given at the | eft of the plus sign to form a single opcode byte.

Table 1-1. Register Encodings Associated with the +rb, +rw, and +rd Nomenclature

rb rw rd
AL = 0 AX = 0 EAX = 0
CL = 1 CX = 1 ECX = 1
DL = 2 DX = 2 EDX = 2
BL = 3 BX = 3 EBX = 3
rb rw rd
AH = 4 SP = 4 ESP = 4
CH = 5 BP = 5 EBP = 5
DH = 6 Sl = 6 ESI = 6
BH = 7 DI = 7 EDI = 7
1.2.1.2 Instruction Column

The “Instruction” column gives the syntax of the instruction statement asit would appear in an
ASM386 program. The following isalist of the symbols used to represent operandsin the
instruction statements:

» rel8 — A relative address in the range from 128 bytes before the end of the instruction to
127 bytes after the end of the instruction.

Volume 3: Base IA-32 Instruction Reference 3:383

3:384

rel16 and rel32 — A relative address within the same code segment as the instruction
assembled. Therel16 symbol applies to instructions with an operand-size attribute of 16 bits;
the rel 32 symbol applies to instructions with an operand-size attribute of 32 bits.

ptr16:16 and ptr16:32 — A far pointer, typically in a code segment different from that of the
instruction. The notation 16:16 indicates that the value of the pointer has two parts. The value
to the left of the colon is a 16-bit selector or value destined for the code segment register. The
value to the right corresponds to the offset within the destination segment. The ptr16:16
symbol is used when the instruction’s operand-size attribute is 16 bits; the ptrl6:32 symbol is
used when the operand-size attribute is 32 hits.

r8 — One of the byte general-purpose registers AL, CL, DL, BL, AH, CH, DH, or BH.
r 16 — One of the word general-purpose registers AX, CX, DX, BX, SP, BR, Sl, or DI.

r 32 — One of the doubleword general-purpose registers EAX, ECX, EDX, EBX, ESP, EBPR,
ESI, or EDI.

imm8 — An immediate byte value. The imm8 symbol is a signed number between —128 and
+127 inclusive. For instructions in which imm8 is combined with aword or doubleword
operand, the immediate value is sign-extended to form aword or doubleword. The upper byte
of the word isfilled with the topmost bit of the immediate value.

imm16 — An immediate word value used for instructions whose operand-size attribute is
16 bits. Thisis anumber between —32,768 and +32,767 inclusive.

imm32 — An immediate doubleword value used for instructions whose operand-size
attribute is 32 bits. It allows the use of a number between +2,147,483,647 and
-2,147,483,648 inclusive.

r/m8— A byte operand that is either the contents of a byte general-purpose register (AL, BL,
CL, DL, AH, BH, CH, and DH), or a byte from memory.

r/m16 — A word general-purpose register or memory operand used for instructions whose
operand-size attributeis 16 bits. The word general-purpose registersare: AX, BX, CX, DX, SR,
BP, S, and DI. The contents of memory are found at the address provided by the effective
address computation.

r/m32 — A doubleword general-purpose register or memory operand used for instructions
whose operand-size attribute is 32 bits. The doubleword general-purpose registers are: EAX,
EBX, ECX, EDX, ESP, EBP, ESI, and EDI. The contents of memory are found at the address
provided by the effective address computation.

m — A 16- or 32-bit operand in memory.

m8 — A byte operand in memory, usually expressed as a variable or array name, but pointed to
by the DS:(E)SI or ES:(E)DI registers. This nomenclature is used only with the string
instructions and the XLAT instruction.

m16 — A word operand in memory, usually expressed as a variable or array hame, but pointed

to by the DS:(E)SI or ES.(E)DI registers. This nomenclature is used only with the string
instructions.

m32 — A doubleword operand in memory, usually expressed as a variable or array hame, but
pointed to by the DS:(E)SI or ES:(E)DI registers. This nomenclature is used only with the
string instructions.

m64 — A memory quadword operand in memory. This nomenclature is used only with the
CMPXCHGSB instruction.

m16:16, m16:32 — A memory operand containing afar pointer composed of two numbers. The
number to the left of the colon corresponds to the pointer's segment selector. The number to the
right corresponds to its offset.

Volume 3: Base IA-32 Instruction Reference

* M16& 32, m16& 16, m32& 32 — A memory operand consisting of dataitem pairs whose sizes
areindicated on the left and the right side of the ampersand. All memory addressing modes are
allowed. The m16& 16 and m32& 32 operands are used by the BOUND instruction to provide
an operand containing an upper and lower bounds for array indices. The m16& 32 operand is
used by LIDT and LGDT to provide aword with which to load the limit field, and a
doubleword with which to load the base field of the corresponding GDTR and IDTR registers.

» moffs8, moffsl6, moffs32 — A simple memory variable (memory offset) of type byte, word, or
doubleword used by some variants of the MOV instruction. The actual addressis given by a
simple offset relative to the segment base. No ModR/M byte is used in the instruction. The
number shown with moffs indicates its size, which is determined by the address-size attribute
of the instruction.

* Sreg— A segment register. The segment register bit assignments are ES=0, CS=1, SS=2,
DS=3, FS=4, and GS=5.

* m32real, m64real, m80real — A single-, double-, and extended-real (respectively)
floating-point operand in memory.

* m16int, m32int, m64int — A word-, short-, and long-integer (respectively) floating-point
operand in memory.

e ST or ST(0) — The top element of the FPU register stack.

« ST(i) — The i element from the top of the FPU register stack. (i = 0 through 7).

« mm—-AnMMX technology register. The 64-bit MM X technology registers are: MMO through
MM?7.

« mm/m32—Thelow order 32 bits of an MM X technol ogy register or a 32-bit memory operand.
The 64-bit MM X technology registers are: MMO through MM 7. The contents of memory are
found at the address provided by the effective address computation.

* mm/m64 — An MMX technology register or a 64-bit memory operand. The 64-bit MM X
technology registers are: MMO through MM 7. The contents of memory are found at the
address provided by the effective address computation.

1.2.1.3 Description Column

The“Description” column following the “Instruction” column briefly explains the various forms of
theinstruction. The following “Description” and “Operation” sections contain more details of the
instruction's operation.

1214 Description

The “Description” section describes the purpose of the instructions and the required operands. It
al so discusses the effect of the instruction on flags.

1.2.2 Operation

The “ Operation” section contains an a gorithmic description (written in pseudo-code) of the
instruction. The pseudo-code uses a notation similar to the Algol or Pascal language. The
algorithms are composed of the following elements:

« Comments are enclosed within the symbol pairs“(*” and “*)”.

Volume 3: Base IA-32 Instruction Reference 3:385

3:386

Compound statements are enclosed in keywords, such as |F, THEN, ELSE, and FI for an if
statement, DO and OD for a do statement, or CASE... OF and ESAC for a case statement.

A register name implies the contents of the register. A register name enclosed in brackets
implies the contents of the location whose address is contained in that register. For example,
ES:[DI] indicates the contents of the location whose ES segment relative address isin register
DI. [SI] indicates the contents of the address contained in register Sl relative to SI’s default
segment (DS) or overridden segment.

Parentheses around the “E” in a general -purpose register name, such as (E)Sl, indicates that an
offset isread from the Sl register if the current address-size attributeis 16 or isread from the
ESI register if the address-size attribute is 32.

Brackets are also used for memory operands, where they mean that the contents of the memory
location is a segment-relative offset. For example, [SRC] indicates that the contents of the
source operand is a segment-relative offset.

A «B; indicates that the value of B isassigned to A.

The symbols =, #, >, and <are relational operators used to compare two values, meaning equal,
not equal, greater or equal, less or equal, respectively. A relational expression suchasA =B is
TRUE if the value of A isegual to B; otherwiseit is FALSE.

The expression “<< COUNT” and “>> COUNT” indicates that the destination operand should
be shifted left or right, respectively, by the number of bitsindicated by the count operand.

The following identifiers are used in the algorithmic descriptions:
» OperandSize and AddressSize — The OperandSize identifier represents the operand-size

attribute of the instruction, which is either 16 or 32 bits. The AddressSize identifier represents
the address-size attribute, which is either 16 or 32 bits. For example, the following
pseudo-code indicates that the operand-size attribute depends on the form of the CMPS
instruction used.

IF instruction = CMPSW
THEN OperandSize «16;
ELSE
IF instruction = CMPSD
THEN OperandSize «32;
FI;
FI;

See “Operand-Size and Address-Size Attributes’ in Chapter 3 of the | A-32 Intel® Architecture

Software Developer’s Manual, Volume 1, for general guidelines on how these attributes
are determined.

SackAddr Size — Represents the stack address-size attribute associated with the instruction,

which hasavalue of 16 or 32 bits (see “ Address-Size Attribute for Stack” in Chapter 4 of the
IA-32 Intel® Architecture Software Devel oper’s Manual, Volume 1).

» SRC — Represents the source operand.
» DEST — Represents the destination operand.

The following functions are used in the algorithmic descriptions:
» ZeroExtend(value) — Returns a value zero-extended to the operand-size attribute of the

instruction. For example, if the operand-size attribute is 32, zero extending a byte value of -10
converts the byte from F6H to a doubleword value of 000000F6H. If the value passed to the
ZeroExtend function and the operand-size attribute are the same size, ZeroExtend returns the
value unaltered.

Volume 3: Base IA-32 Instruction Reference

« SignExtend(value) — Returns a value sign-extended to the operand-size attribute of the
instruction. For example, if the operand-size attribute is 32, sign extending a byte containing
the value -10 converts the byte from F6H to a doubleword value of FFFFFFFGH. If the value
passed to the SignExtend function and the operand-si ze attribute are the same size, SignExtend
returns the value unaltered.

« SaturateSignedWordToSignedByte — Converts a signed 16-bit value to a signed 8-hit value.
If the signed 16-bit valueislessthan -128, it is represented by the saturated value -128 (80H);
if it isgreater than 127, it is represented by the saturated value 127 (7FH).

 SaturateSignedDwordToSignedWord — Converts a signed 32-bit value to a signed 16-bit
value. If the signed 32-bit value isless than -32768, it is represented by the saturated value
-32768 (8000H); if it is greater than 32767, it is represented by the saturated value 32767
(7FFFH).

« SaturateSignedWordToUnsignedByte — Converts a signed 16-bit value to an unsigned 8-bit
value. If the signed 16-hit valueislessthan zero, it is represented by the saturated value zero
(OOH); if it is greater than 255, it is represented by the saturated value 255 (FFH).

« SaturateToSignedByte — Represents the result of an operation as asigned 8-bit value. If the
result islessthan -128, it is represented by the saturated value -128 (80H); if it is greater than
127, it isrepresented by the saturated value 127 (7FH).

« SaturateToSignedWor d — Represents the result of an operation asasigned 16-hit value. If the
result islessthan -32768, it is represented by the saturated value -32768 (8000H); if itis
greater than 32767, it is represented by the saturated value 32767 (7FFFH).

« SaturateToUnsignedByte — Representsthe result of an operation asasigned 8-bit value. If the
result islessthan zero it is represented by the saturated value zero (OOH); if it is greater than
255, it is represented by the saturated value 255 (FFH).

» SaturateToUnsignedWor d — Represents the result of an operation as a signed 16-bit value. If
the result isless than zero it is represented by the saturated value zero (OOH); if it is greater
than 65535, it is represented by the saturated value 65535 (FFFFH).

e LowOrderWord(DEST * SRC) — Multiplies aword operand by aword operand and stores
the least significant word of the doubleword result in the destination operand.

¢ HighOrderWord(DEST * SRC) —Multiplies aword operand by aword operand and stores
the most significant word of the doubleword result in the destination operand.

» Push(value) — Pushes avalue onto the stack. The number of bytes pushed is determined by the
operand-size attribute of the instruction.

* Pop() — Removes the value from the top of the stack and returnsit. The statement EAX «
Pop(); assigns to EAX the 32-bit value from the top of the stack. Pop will return either aword
or a doubleword depending on the operand-size attribute.

» PopRegister Sack —Marksthe FPU ST(0) register as empty and increments the FPU register
stack pointer (TOP) by 1.

» Switch-Tasks — Performs atask switch.

* Bit(BitBase, BitOffset) — Returns the value of abit within abit string, which is a sequence of
bitsin memory or aregister. Bits are numbered from low-order to high-order within registers
and within memory bytes. If the base operand is a register, the offset can be in the range 0..31.
This offset addresses a bit within the indicated register. An example, the function Bit[EAX, 21]
isillustrated in Figure 1-1.

Volume 3: Base IA-32 Instruction Reference 3:387

Figure 1-1. Bit Offset for BIT[EAX,21]

31 21 0

ﬁ BitOffset = 21

If BitBaseis a memory address, BitOffset can range from -2 GBits to 2 GBits. The addressed hit is
numbered (Offset MOD 8) within the byte at address (BitBase + (BitOffset DIV 8)), where DIV is
signed division with rounding towards negative infinity, and MOD returns a positive number. This
operation isillustrated in Figure 1-2.

Figure 1-2. Memory Bit Indexing

BitBase +1 BitBase BitBase -1
* BitOffset = +13

7 07 07 5 0

BitBase BitBase -1 BitBase -2
BitOffset = -11 *

1.2.3 Flags Affected

The “Flags Affected” section lists the flags in the EFLAGS register that are affected by the
instruction. When aflag iscleared, it isequal to O; when it isset, it isequal to 1. The arithmetic and
logical instructions usually assign values to the status flags in a uniform manner (see Appendix A,
EFLAGS Cross-Reference, in the A-32 Intel® Architecture Software Devel oper’s Manual, Volume
1). Non-conventional assignments are described in the “ Operation” section. The values of flags
listed as undefined may be changed by the instruction in an indeterminate manner. Flags that are
not listed are unchanged by the instruction.

1.24 FPU Flags Affected

The floating-point instructions have an “FPU Flags Affected” section that describes how each
instruction can affect the four condition code flags of the FPU status word.

3:388 Volume 3: Base IA-32 Instruction Reference

1.2.5 Protected Mode Exceptions

The “Protected Mode Exceptions” section lists the exceptionsthat can occur when theinstructionis
executed in protected mode and the reasons for the exceptions. Each exceptionis given a
mnemonic that consists of a pound sign (#) followed by two letters and an optiona error codein
parentheses. For example, #GP(0) denotes a general protection exception with an error code of 0.
Table 1-2 associates each two-letter mnemonic with the corresponding interrupt vector number and
exception name. See Chapter 5, Interrupt and Exception Handling, in the |A-32 Intel® Architecture
Software Developer’s Manual, Volume 3, for a detailed description of the exceptions.

Application programmers should consult the documentation provided with their operating systems
to determine the actions taken when exceptions occur.

1.2.6 Real-address Mode Exceptions

The “Real-Address Mode Exceptions’ section lists the exceptions that can occur when the
instruction is executed in real-address mode.

Table 1-2. Exception Mnemonics, Names, and Vector Numbers

V?\lcéér Mnemonic Name Source

0 #DE Divide Error DIV and IDIV instructions.

1 #DB Debug Any code or data reference.

3 #BP Breakpoint INT 3 instruction.

4 #OF Overflow INTO instruction.

5 #BR BOUND Range Exceeded BOUND instruction.

6 #UD Invalid Opcode (Undefined Opcode) UD?2 instruction or reserved opcode.?

7 #NM Device Not Available (No Math Floating-point or WAIT/FWAIT instruction.

Coprocessor)

8 #DF Double Fault Any instruction that can generate an
exception, an NMI, or an INTR.

10 #TS Invalid TSS Task switch or TSS access.

11 #NP Segment Not Present Loading segment registers or accessing
system segments.

12 #SS Stack Segment Fault Stack operations and SS register loads.

13 #GP General Protection Any memory reference and other protection
checks.

14 #PF Page Fault Any memory reference.

16 #MF Floating-point Error (Math Fault) Floating-point or WAIT/FWAIT instruction.

17 #AC Alignment Check Any data reference in memory.b

18 #MC Machine Check Model dependent.©

a. The UD2 instruction was introduced in the Pentium® Pro processor.
b. This exception was introduced in the Intel® 486 processor.
c. This exception was introduced in the Pentium processor and enhanced in the Pentium Pro processor.

Volume 3: Base IA-32 Instruction Reference

3:389

1.2.7 Virtual-8086 Mode Exceptions

The “Virtual-8086 Mode Exceptions” section lists the exceptions that can occur when the
instruction is executed in virtual-8086 mode.

1.2.8 Floating-point Exceptions

The “Floating-point Exceptions” section lists additional exceptions that can occur when a
floating-point instruction is executed in any mode. All of these exception conditionsresult in a
floating-point error exception (#MF, vector number 16) being generated. Table 1-3 associates each
one- or two-letter mnemonic with the corresponding exception name. See “ Floating-Point
Exception Conditions” in Chapter 7 of the |A-32 Intel® Architecture Software Devel oper’s Manual,
Volume 1, for a detailed description of these exceptions.

Table 1-3. Floating-point Exception Mnemonics and Names

V?\lc;?r Mnemonic Name Source

16 Floating-point invalid operation:
#1S - Stack overflow or underflow - FPU stack overflow or underflow
#IA - Invalid arithmetic operation - Invalid FPU arithmetic operation

16 #Z Floating-point divide-by-zero FPU divide-by-zero

16 #D Floating-point denormalized operation Attempting to operate on a denormal

number

16 #0O Floating-point numeric overflow FPU numeric overflow

16 #U Floating-point numeric underflow FPU numeric underflow

16 #P Floating-point inexact result (precision) | Inexact result (precision)

1.3 |A-32 Base Instruction Reference

The remainder of this chapter provides detailed descriptions of each of the Intel architecture
instructions.

3:390 Volume 3: Base IA-32 Instruction Reference

AAA—ASCII Adjust After Addition

Opcode Instruction Description
37 AAA ASCII adjust AL after addition
Description

Adjuststhe sum of two unpacked BCD valuesto create an unpacked BCD result. The AL register is
the implied source and destination operand for thisinstruction. The AAA instruction is only useful
when it follows an ADD instruction that adds (binary addition) two unpacked BCD values and
stores a byte result in the AL register. The AAA instruction then adjusts the contents of the AL
register to contain the correct 1-digit unpacked BCD result.

If the addition produces a decimal carry, the AH register isincremented by 1, and the CF and
AF flags are set. If there was no decimal carry, the CF and AF flags are cleared and the AH register
isunchanged. In either case, bits 4 through 7 of the AL register are cleared to 0.

Operation

IF ((AL AND FH) > 9) OR (AF = 1)
THEN
AL <AL + 6);
AH «AH + 1;
AF «1;
CF «1;
ELSE
AF «0;
CF «0;
Fl;
AL < AL AND FH;

Flags Affected

The AF and CF flags are set to 1 if the adjustment resultsin adecimal carry; otherwise they are
cleared to 0. The OF, SF, ZF, and PF flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Volume 3: Base IA-32 Instruction Reference 3:391

AAD—ASCII Adjust AX Before Division

3:392

Opcode Instruction Description
D5 OA AAD ASCII adjust AX before division
Description

Adjusts two unpacked BCD digits (the least-significant digit in the AL register and the
most-significant digit in the AH register) so that a division operation performed on the result will
yield a correct unpacked BCD value. The AAD instruction is only useful when it precedes a DIV
instruction that divides (binary division) the adjusted valuein the AL register by an unpacked BCD
value.

The AAD instruction setsthe value in the AL register to (AL + (10 * AH)), and then clearsthe
AH register to 00H. The valuein the AX register isthen equal to the binary equivalent of the
original unpacked two-digit number in registers AH and AL.

Operation

tempAL «AL;

tempAH «AH;

AL «(tempAL + (tempAH * imm8)) AND FFH;
AH <0

The immediate value (imm8) is taken from the second byte of the instruction, which under normal
assembly is OAH (10 decimal). However, thisimmediate value can be changed to produce a
different result.

Flags Affected

The SF, ZF, and PF flags are set according to the result; the OF, AF, and CF flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Volume 3: Base IA-32 Instruction Reference

AAM—ASCII Adjust AX After Multiply

Opcode Instruction Description
D4 O0A AAM ASCII adjust AX after multiply
Description

Adjusts the result of the multiplication of two unpacked BCD valuesto create a pair of unpacked
BCD values. The AX register istheimplied source and destination operand for thisinstruction. The
AAM instruction is only useful when it follows an MUL instruction that multiplies (binary
multiplication) two unpacked BCD values and stores aword result in the AX register. The AAM
instruction then adjusts the contents of the AX register to contain the correct 2-digit unpacked BCD
result.

Operation

tempAL «AL;
AH «tempAL / imm8;
AL «tempAL MOD imm8;

The immediate value (imm8) is taken from the second byte of the instruction, which under normal
assembly is OAH (10 decimal). However, thisimmediate value can be changed to produce a
different result.

Flags Affected

The SF, ZF, and PF flags are set according to the result. The OF, AF, and CF flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Volume 3: Base IA-32 Instruction Reference 3:393

AAS—ASCII Adjust AL After Subtraction

Opcode Instruction Description
3F AAS ASCII adjust AL after subtraction
Description

Adjuststhe result of the subtraction of two unpacked BCD valuesto create a unpacked BCD result.
The AL register isthe implied source and destination operand for thisinstruction. The AAS
instruction is only useful when it follows a SUB instruction that subtracts (binary subtraction) one
unpacked BCD value from another and stores abyte result in the AL register. The AAA instruction
then adjusts the contents of the AL register to contain the correct 1-digit unpacked BCD resullt.

If the subtraction produced a decimal carry, the AH register is decremented by 1, and the CF and
AFflags are set. If no decimal carry occurred, the CF and AF flags are cleared, and the AH register
isunchanged. In either case, the AL register isleft with itstop nibble set to 0.

Operation

IF (AL AND FH) > 9) OR (AF =1)
THEN
AL <AL - 6;
AH «AH - 1,
AF «1;
CF «1;
ELSE
CF «0;
AF «0;
FI,
AL <AL AND FH;

Flags Affected

The AF and CF flags are set to 1 if there isadecimal borrow; otherwise, they are cleared to 0. The
OF, SF, ZF, and PF flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

3:394 Volume 3: Base IA-32 Instruction Reference

ADC—Add with Carry

Opcode Instruction Description

14 ib ADC AL,imm8 Add with carry imm8 to AL

15 iw ADC AX,imm16 Add with carry imm16 to AX

15id ADC EAX,imm32 Add with carry imm32 to EAX

80/2ib ADC r/m8,imm8 Add with carry imm8 to r/m8

81 /2 iw ADC r/m16,imm16 Add with carry imm16 to r/m16

81/2id ADC r/m32,imm32 Add with CF imm32 to r/m32

83/2ib ADC r/m16,imm8 Add with CF sign-extended imm8 to r/m16
83/2ib ADC r/m32,imm8 Add with CF sign-extended imm8 into r/m32
10 /r ADC r/m8,r8 Add with carry byte register to r/m8

1/ ADC r/m16,r16 Add with carry r16 to r/m16

11 /r ADC r/m32,r32 Add with CF r32 to r/m32

12 /r ADC r8,r/m8 Add with carry r/m8 to byte register

13 /r ADC r16,r/m16 Add with carry r/m16 to r16

13 /r ADC r32,r/m32 Add with CF r/m32 to r32

Description

Adds the destination operand (first operand), the source operand (second operand), and the carry
(CF) flag and stores the result in the destination operand. The destination operand can be aregister
or amemory location; the source operand can be an immediate, aregister, or amemory location.
The state of the CF flag represents a carry from a previous addition. When an immediate value is
used as an operand, it is sign-extended to the length of the destination operand format.

The ADC instruction does not distinguish between signed or unsigned operands. Instead, the
processor evaluates the result for both data types and sets the OF and CF flags to indicate acarry in
the signed or unsigned result, respectively. The SF flag indicates the sign of the signed resuilt.

The ADC instruction is usually executed as part of a multibyte or multiword addition in which an
ADD ingtruction is followed by an ADC instruction.
Operation

DEST «DEST + SRC + CF;

Flags Affected

The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

[tanium Mem Faults VHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data TLB
Fault, DataPage Not Present Fault, DataNaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights Fault, Data
Access Bit Fault, Data Dirty Bit Fault

Volume 3: Base IA-32 Instruction Reference 3:395

ADC—Add with Carry (Continued)

3:396

Protected Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#AC(0)

If the destination is located in a nonwritable segment.

If amemory operand effective addressis outside the CS, DS, ES, FS, or GS
segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a
null segment selector.

If amemory operand effective address is outside the SS segment limit.
If apage fault occurs.

If alignment checking is enabled and an unaligned memory referenceis made
while the current privilege level is 3.

Real Address Mode Exceptions

#GP

#SS

If amemory operand effective addressis outside the CS, DS, ES, FS, or GS
segment limit.

If amemory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#AC(0)

If amemory operand effective addressis outside the CS, DS, ES, FS, or GS
segment limit.

If amemory operand effective address is outside the SS segment limit.
If apage fault occurs.
If alignment checking is enabled and an unaligned memory referenceis made.

Volume 3: Base IA-32 Instruction Reference

ADD—Add

Opcode Instruction Description

04 ib ADD AL,imm8 Add imm8 to AL

05 iw ADD AX,imm16 Add imm16 to AX

05id ADD EAX,imm32 Add imm32 to EAX

80/0ib ADD r/m8,imm8 Add imm8 to r/m8

81 /0 iw ADD r/m16,imm16 Add imm16 to r/m16

81/0id ADD r/m32,imm32 Add imm32 to r/m32

83/0ib ADD r/m16,imm8 Add sign-extended imm8 to r/m16
83/0ib ADD r/m32,imm8 Add sign-extended imm8 to r/m32
00 /r ADD r/m8,r8 Add r8 to r/m8

0l/r ADD r/m16,r16 Add r16 to r/m16

ol/r ADD r/m32,r32 Add r32 to r/m32

02 /r ADD r8,r/m8 Add r/m8 to r8

03 /r ADD r16,r/m16 Add r/m16 to r16

03 /r ADD r32,r/m32 Add r/m32 to r32

Description

Adds the first operand (destination operand) and the second operand (source operand) and stores
the result in the destination operand. The destination operand can be a register or a memory
location; the source operand can be an immediate, aregister, or amemory location. When an
immediate value is used as an operand, it is sign-extended to the length of the destination operand
format.

The ADD instruction does not distinguish between signed or unsigned operands. Instead, the
processor evaluates the result for both data types and sets the OF and CF flags to indicate acarry in
the signed or unsigned result, respectively. The SF flag indicates the sign of the signed resuilt.

Operation

DEST «DEST + SRC;

Flags Affected

The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Additional Itanium System Environment Exceptions
Itanium Reg Faults NaT Register Consumption Abort.

[tanium Mem Faults VHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data TLB
Fault, Data Page Not Present Fault, DataNaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights Fault, Data
Access Bit Fault, Data Dirty Bit Fault

Volume 3: Base IA-32 Instruction Reference 3:397

ADD—Add (Continued)

3:398

Protected Mode Exceptions

#GP(0)

#PF(fault-code)
#AC(0)

If the destination is located in a nonwritable segment.

If amemory operand effective addressis outside the CS, DS, ES, FS, or GS
segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a
null segment selector.

#SS(0)If amemory operand effective addressis outside the SS segment limit.
If apage fault occurs.

If alignment checking is enabled and an unaligned memory referenceis made
while the current privilege level is 3.

Real Address Mode Exceptions

#GP

#SS

If amemory operand effective addressis outside the CS, DS, ES, FS, or GS
segment limit.

If amemory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#AC(0)

If amemory operand effective addressis outside the CS, DS, ES, FS, or GS
segment limit.

If amemory operand effective address is outside the SS segment limit.
If apage fault occurs.
If alignment checking isenabled and an unaligned memory referenceis made.

Volume 3: Base IA-32 Instruction Reference

AND—Logical AND

Opcode Instruction Description

24 ib AND AL,imm8 AL AND imm8

25 iw AND AX,imm16 AX AND imm16
25id AND EAX,imm32 EAX AND imm32
80 /4 ib AND r/m8,imm8 r/m8 AND imm8
81 /4 iw AND r/m16,imm16 r/m16 AND imm16
81/4id AND r/m32,imm32 r/m32 AND imm32
83/4ib AND r/m16,imm8 r/m16 AND imm8
83 /4ib AND r/m32,imm8 r/m32 AND imm8
20 /r AND r/m8,r8 r/m8 AND r8

21 /r AND r/m16,r16 r/m16 AND r16
21/ AND r/m32,r32 r/m32 AND r32

22 Ir AND r8,r/m8 r8 AND r/m8

23Ir AND r16,r/m16 rl6 AND r/m16

23 1Ir AND r32,r/m32 r32 AND r/m32
Description

Performs a bitwise AND operation on the destination (first) and source (second) operands and
stores the result in the destination operand location. The source operand can be an immediate, a
register, or amemory location; the destination operand can be a register or amemory location.

Operation
DEST «DEST AND SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result. The state
of the AF flag is undefined.

Additional Itanium System Environment Exceptions
Itanium Reg Faults NaT Register Consumption Abort.

[tanium Mem Faults VHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data TLB
Fault, Data Page Not Present Fault, DataNaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights Fault, Data
Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions
#GP(0) If the destination operand points to a nonwritable segment.

If amemory operand effective addressis outside the CS, DS, ES, FS, or GS
segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.
#SS(0) If amemory operand effective address is outside the SS segment limit.

Volume 3: Base IA-32 Instruction Reference 3:399

AND—Logical AND (Continued)

3:400

#PF(fault-code) If apage fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory referenceis made
while the current privilege level is 3.

Real Address Mode Exceptions

#GP If amemory operand effective addressis outside the CS, DS, ES, FS, or GS
segment limit.
#SS If amemory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If amemory operand effective addressis outside the CS, DS, ES, FS, or GS
segment limit.

#SS(0) If amemory operand effective address is outside the SS segment limit.

#PF(fault-code) If apage fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory referenceis made.

Volume 3: Base IA-32 Instruction Reference

ARPL—Adjust RPL Field of Segment Selector

Opcode Instruction Description
63 /r ARPL r/m16,r16 Adjust RPL of r/m16 to not less than RPL of r16
Description

Compares the RPL fields of two segment selectors. The first operand (the destination operand)
contains one segment selector and the second operand (source operand) contains the other. (The
RPL field islocated in bits 0 and 1 of each operand.) If the RPL field of the destination operand is
less than the RPL field of the source operand, the ZF flag is set and the RPL field of the destination
operand is increased to match that of the source operand. Otherwise, the ZF flag is cleared and no
change is made to the destination operand. (The destination operand can be aword register or a
memory location; the source operand must be aword register.)

The ARPL instruction is provided for use by operating-system procedures (however, it can also be
used by applications). It is generally used to adjust the RPL of a segment selector that has been
passed to the operating system by an application program to match the privilege level of the
application program. Here the segment selector passed to the operating system is placed in the
destination operand and segment selector for the application program’s code segment is placed in
the source operand. (The RPL field in the source operand represents the privilege level of the
application program.) Execution of the ARPL instruction then insures that the RPL of the segment
selector received by the operating system is no lower (does not have a higher privilege) than the
privilege level of the application program. (The segment selector for the application program’s
code segment can be read from the procedure stack following a procedure call.)

See the IA-32 Intel® Architecture Software Devel oper’s Manual, Volume 3 for more information
about the use of thisinstruction.

Operation

IF DEST(RPL) < SRC(RPL)
THEN

ZF «1;

DEST(RPL) «SRC(RPL);
ELSE

ZF «0;
Fl;

Flags Affected

The ZF flag is set to 1 if the RPL field of the destination operand is less than that of the source
operand; otherwise, is cleared to 0.

Additional Itanium System Environment Exceptions
Itanium Reg Faults NaT Register Consumption Abort.

[tanium Mem Faults VHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data TLB
Fault, DataPage Not Present Fault, DataNaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data A ccess Rights Fault, Data
Access Bit Fault, Data Dirty Bit Fault

Volume 3: Base IA-32 Instruction Reference 3:401

ARPL—Adjust RPL Field of Segment Selector (Continued)

Protected Mode Exceptions
#GP(0) If the destination is located in a nonwritable segment.

If amemory operand effective addressis outside the CS, DS, ES, FS, or GS
segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a
null segment selector.

#SS(0) If amemory operand effective address is outside the SS segment limit.
#PF(fault-code) If apage fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory referenceis made

while the current privilege level is 3.

Real Address Mode Exceptions
#UD The ARPL instruction is not recognized in real address mode.

Virtual 8086 Mode Exceptions
#UD The ARPL instruction is not recognized in virtual 8086 mode.

3:402 Volume 3: Base IA-32 Instruction Reference

BOUND—Check Array Index Against Bounds

Opcode Instruction Description

62 /r BOUND r16,m16&16 Check if r16 (array index) is within bounds specified by m16&16
62 /r BOUND r32,m32&32 Check if r32 (array index) is within bounds specified by m16&16
Description

Determinesif the first operand (array index) is within the bounds of an array specified the second
operand (bounds operand). The array index is asigned integer located in aregister. The bounds
operand isamemory location that points to apair of signed doubleword-integers (when the
operand-size attribute is 32) or a pair of signed word-integers (when the operand-size attribute is
16). Thefirst doubleword (or word) is the lower bound of the array and the second doubleword (or
word) isthe upper bound of the array. The array index must be greater than or equal to the lower
bound and less than or equal to the upper bound plus the operand size in bytes. If the index is not
within bounds, a BOUND range exceeded exception (#BR) is signaled. (When athis exception is
generated, the saved return instruction pointer points to the BOUND instruction.)

The bounds limit data structure (two words or doublewords containing the lower and upper limits
of the array) isusually placed just before the array itself, making the limits addressable viaa
constant offset from the beginning of the array. Because the address of the array already will be
present in aregister, this practice avoids extra bus cycles to obtain the effective address of the array
bounds.

Operation

IF (Arraylndex < LowerBound OR Arraylndex > (UppderBound + OperandSize/8]))
(* Below lower bound or above upper bound *)
THEN
#BR;
FI;

Flags Affected

None.

Additional Itanium System Environment Exceptions
Itanium Reg Faults NaT Register Consumption Abort.

[tanium Mem Faults VHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data TLB
Fault, Data Page Not Present Fault, DataNaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights Fault, Data
Access Bit Fault, Data Dirty Bit Fault

Volume 3: Base IA-32 Instruction Reference 3:403

BOUND—Check Array Index Against Bounds (Continued)

3:404

Protected Mode Exceptions

#BR
#UD
#GP(0)

#SS(0)
#PF(fault-code)
#AC(0)

If the bounds test fails.
If second operand is not a memory location.

If amemory operand effective addressis outside the CS, DS, ES, FS, or GS
segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.
If amemory operand effective address is outside the SS segment limit.
If apage fault occurs.

If alignment checking is enabled and an unaligned memory referenceis made
while the current privilege level is 3.

Real Address Mode Exceptions

#BR
#GP

#SS

If the bounds test fails.

If amemory operand effective addressis outside the CS, DS, ES, FS, or GS
segment limit.

If amemory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#BR
H#GP(0)

#5S5(0)
#PF(fault-code)
#AC(0)

If the bounds test fails.

If amemory operand effective addressis outside the CS, DS, ES, FS, or GS
segment limit.

If amemory operand effective address is outside the SS segment limit.
If apage fault occurs.

If alignment checking is enabled and an unaligned memory referenceis made.

Volume 3: Base IA-32 Instruction Reference

BSF—Bit Scan Forward

Opcode Instruction Description

OF BC BSF r16,r/m16 Bit scan forward on r/m16
OF BC BSF r32,r/m32 Bit scan forward on r/m32
Description

Searches the source operand (second operand) for the least significant set bit (1 bit). If aleast
significant 1 bit isfound, its bit index is stored in the destination operand (first operand). The
source operand can be aregister or amemory location; the destination operand is aregister. The bit
index is an unsigned offset from bit O of the source operand. If the contents source operand are O,
the contents of the destination operand is undefined.

Operation

IFSRC=0
THEN
ZF <1,
DEST is undefined;
ELSE
ZF «0;
temp «0;
WHILE Bit(SRC, temp) =0
DO
temp «temp + 1;
DEST «temp;
OD;
Fl;

Flags Affected

The ZF flag is set to 1 if all the source operand is O; otherwise, the ZF flag is cleared. The CF, OF,
SF, AF, and PF, flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

[tanium Mem Faults VHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data TLB
Fault, Data Page Not Present Fault, DataNaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights Fault, Data
Access Bit Fault, Data Dirty Bit Fault

Volume 3: Base IA-32 Instruction Reference 3:405

BSF—Bit Scan Forward (Continued)

3:406

Protected Mode Exceptions

#GP(0) If amemory operand effective addressis outside the CS, DS, ES, FS, or GS
segment limit.
If the DS, ES, FS, or GS register contains a null segment selector.
#SS(0) If amemory operand effective address is outside the SS segment limit.
#PF(fault-code) If apage fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory referenceis made

while the current privilege level is 3.

Real Address Mode Exceptions

#GP If amemory operand effective addressis outside the CS, DS, ES, FS, or GS
segment limit.
#SS If amemory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If amemory operand effective addressis outside the CS, DS, ES, FS, or GS
segment limit.

#SS(0) If amemory operand effective address is outside the SS segment limit.

#PF(fault-code) If apage fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory referenceis made.

Volume 3: Base IA-32 Instruction Reference

BSR—Bit Scan Reverse

Opcode Instruction Description

OF BD BSR r16,r/m16 Bit scan reverse on r/m16
OF BD BSR r32,r/m32 Bit scan reverse on r/m32
Description

Searches the source operand (second operand) for the most significant set bit (1 bit). If a most
significant 1 bit isfound, its bit index is stored in the destination operand (first operand). The
source operand can be aregister or amemory location; the destination operand is aregister. The bit
index is an unsigned offset from bit O of the source operand. If the contents source operand are O,
the contents of the destination operand is undefined.

Operation

IFSRC=0
THEN
ZF <1,
DEST is undefined;
ELSE
ZF «0;
temp «OperandSize - 1;
WHILE Bit(SRC, temp) =0
DO
temp «temp —1;
DEST «temp;
OD;
Fl;

Flags Affected

The ZF flag is set to 1 if all the source operand is O; otherwise, the ZF flag is cleared. The CF, OF,
SF, AF, and PF, flags are undefined.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

[tanium Mem Faults VHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data TLB
Fault, Data Page Not Present Fault, DataNaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights Fault, Data
Access Bit Fault, Data Dirty Bit Fault

Volume 3: Base IA-32 Instruction Reference 3:407

BSR—Bit Scan Reverse (Continued)

3:408

Protected Mode Exceptions

#GP(0) If amemory operand effective addressis outside the CS, DS, ES, FS, or GS
segment limit.
If the DS, ES, FS, or GS register contains a null segment selector.
#SS(0) If amemory operand effective address is outside the SS segment limit.
#PF(fault-code) If apage fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory referenceis made

while the current privilege level is 3.

Real Address Mode Exceptions

#GP If amemory operand effective addressis outside the CS, DS, ES, FS, or GS
segment limit.
#SS If amemory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0) If amemory operand effective addressis outside the CS, DS, ES, FS, or GS
segment limit.

#SS(0) If amemory operand effective address is outside the SS segment limit.

#PF(fault-code) If apage fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory referenceis made.

Volume 3: Base IA-32 Instruction Reference

BSWAP—Byte Swap

Opcode Instruction Description
OF C8+rd BSWAP r32 Reverses the byte order of a 32-bit register.
Description

Reverses the byte order of a 32-bit (destination) register: bits 0 through 7 are swapped with bits 24
through 31, and bits 8 through 15 are swapped with bits 16 through 23. Thisinstruction is provided
for converting little-endian values to big-endian format and vice versa.

To swap bytesin aword value (16-bit register), use the XCHG instruction. When the BSWAP
instruction references a 16-bit register, the result is undefined.

Operation

TEMP «DEST
DEST(7..0) < TEMP(31..24)
DEST(15..8) < TEMP(23..16)
DEST(23..16) < TEMP(15..8)
DEST(31..24) < TEMP(7..0)

Flags Affected

None.

Additional Itanium System Environment Exceptions
Itanium Reg Faults NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Intel Architecture Compatibility Information

The BSWAP instruction isnot supported on Intel architecture processors earlier than the Intel 486™
processor family. For compatibility with this instruction, include functionally-equivalent code for
execution on Intel processors earlier than the Intel 486 processor family.

Volume 3: Base IA-32 Instruction Reference 3:409

BT—DBit Test

3:410

Opcode Instruction Description

OF A3 BT r/m16,r16 Store selected bit in CF flag
OF A3 BT r/m32,r32 Store selected bit in CF flag
OFBA/4ib BT r/m16,imm8 Store selected bit in CF flag
OF BA/4ib BT r/m32,imm8 Store selected bit in CF flag
Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-position
designated by the bit offset operand (second operand) and stores the value of the bit in the CF flag.
The bit base operand can be aregister or amemory location; the bit offset operand can be aregister
or an immediate value. If the bit base operand specifies aregister, the instruction takes the modulo
16 or 32 (depending on the register size) of the bit offset operand, allowing any bit position to be
selected in a 16- or 32-bit register, respectively. If the bit base operand specifies amemory location,
it represents the address of the byte in memory that contains the bit base (bit 0 of the specified byte)
of the bit string. The offset operand then selects a bit position within the range 23! to 231 —1 for a
register offset and 0 to 31 for an immediate offset.

Some assembl ers support immediate bit offsets larger than 31 by using the immediate bit offset
field in combination with the displacement field of the memory operand. In this case, the low-order
3or 5 bits (3 for 16-hit operands, 5 for 32-hit operands) of theimmediate bit offset are stored in the
immediate bit offset field, and the high-order bits are shifted and combined with the byte
displacement in the addressing mode by the assembler. The processor will ignore the high order bits
if they are not zero.

When accessing a bit in memory, the processor may access 4 bytes starting from the memory
address for a 32-bit operand size, using by the following relationship:
Effective Address + (4 * (BitOffset DIV 32))

Or, it may access 2 bytes starting from the memory address for a 16-bit operand, using this
relationship:

Effective Address + (2 * (BitOffset DIV 16))

It may do so even when only a single byte needs to be accessed to reach the given bit. When using
this bit addressing mechanism, software should avoid referencing areas of memory close to address
space holes. In particular, it should avoid references to memory-mapped 1/0O registers. Instead,
software should use the MOV instructionsto load from or store to these addresses, and use the
register form of these instructions to manipulate the data.

Operation
CF «Bit(BitBase, BitOffset)

Flags Affected

The CF flag contains the value of the selected bit. The OF, SF, ZF, AF, and PF flags are undefined.

Volume 3: Base IA-32 Instruction Reference

BT—-Bit Test (Continued)

Additional Itanium System Environment Exceptions

Itanium Reg Faults
Itanium Mem Faults

NaT Register Consumption Abort.

VHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data TLB
Fault, Data Page Not Present Fault, DataNaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights Fault, Data
Access Bit Fault, Data Dirty Bit Fault

Protected Mode Exceptions

#GP(0)

#355(0)
#PF(fault-code)
#AC(0)

If amemory operand effective addressis outside the CS, DS, ES, FS, or GS
segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.
If amemory operand effective address is outside the SS segment limit.
If apage fault occurs.

If alignment checking is enabled and an unaligned memory referenceis made
while the current privilege level is 3.

Real Address Mode Exceptions

#GP

#SS

If amemory operand effective addressis outside the CS, DS, ES, FS, or GS
segment limit.

If amemory operand effective address is outside the SS segment limit.

Virtual 8086 Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#AC(0)

If amemory operand effective addressis outside the CS, DS, ES, FS, or GS
segment limit.

If amemory operand effective address is outside the SS segment limit.
If apage fault occurs.
If alignment checking isenabled and an unaligned memory referenceis made.

Volume 3: Base IA-32 Instruction Reference 3:411

BTC—Bit Test and Complement

Opcode Instruction Description

OF BB BTC r/m16,r16 Store selected bit in CF flag and complement
OF BB BTC r/m32,r32 Store selected bit in CF flag and complement
OFBA/7ib BTC r/m16,imm8 Store selected bit in CF flag and complement
OFBA/7ib BTC r/m32,imm8 Store selected bit in CF flag and complement
Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-position
designated by the bit offset operand (second operand), stores the value of the bit in the CF flag, and
complements the selected bit in the bit string. The bit base operand can be aregister or amemory
location; the bit offset operand can be aregister or an immediate value. If the bit base operand
specifies aregister, the instruction takes the modulo 16 or 32 (depending on the register size) of the
bit offset operand, allowing any bit position to be selected in a 16- or 32-bit register, respectively. If
the bit base operand specifies a memory location, it represents the address of the byte in memory
that contains the bit base (bit O of the specified byte) of the bit string. The offset operand then
selects abit position within the range 23! to 231 —1 for aregister offset and 0 to 31 for an immediate
offset.

Some assembl ers support immediate bit offsets larger than 31 by using the immediate bit offset
field in combination with the displacement field of the memory operand. See “BT—-Bit Test” on
page 0:410 for more information on this addressing mechanism.

Operation

CF «Bit(BitBase, BitOffset)
Bit(BitBase, BitOffset) «NOT Bit(BitBase, BitOffset);

Flags Affected

The CF flag contains the value of the selected bit before it is complemented. The OF, SF, ZF, AF,
and PF flags are undefined.

Additional Itanium System Environment Exceptions
Itanium Reg Faults ~ NaT Register Consumption Abort.

Itanium Mem Faults VHPT Data Fault, Nested TLB Fault, Data TLB Fault, Alternate Data TLB
Fault, DataPage Not Present Fault, DataNaT Page Consumption Abort, Data
Key Miss Fault, Data Key Permission Fault, Data Access Rights Fault, Data
Access Bit Fault, Data Dirty Bit Fault

3:412 Volume 3: Base IA-32 Instruction Reference

BTC—Bit Test and Complement (Continued)

Protected Mode Exceptions

#GP(0) If the destination operand points to a non-writable segment.
If amemory operand effective addressis outside the CS, DS, ES, FS, or GS
segment limit.
If the DS, ES, FS, or GS register contains a null segment selector.
#SS(0) If amemory