
λ
→

∀
=Is

ab
el
le

β

α

Isar

Code generation from Isabelle/HOL theories

Florian Haftmann with contributions from Lukas Bulwahn

25 May 2015

Abstract

This tutorial introduces the code generator facilities of Isabelle/HOL.
They empower the user to turn HOL specifications into corresponding
executable programs in the languages SML, OCaml, Haskell and Scala.

1 INTRODUCTION 1

1 Introduction

This tutorial introduces the code generator facilities of Isabelle/HOL. It al-
lows to turn (a certain class of) HOL specifications into corresponding exe-
cutable code in the programming languages SML [8], OCaml [7], Haskell [11]
and Scala [10].

To profit from this tutorial, some familiarity and experience with HOL [9]
and its basic theories is assumed.

1.1 Code generation principle: shallow embedding

The key concept for understanding Isabelle’s code generation is shallow em-
bedding : logical entities like constants, types and classes are identified with
corresponding entities in the target language. In particular, the carrier of
a generated program’s semantics are equational theorems from the logic. If
we view a generated program as an implementation of a higher-order rewrite
system, then every rewrite step performed by the program can be simulated
in the logic, which guarantees partial correctness [6].

1.2 A quick start with the Isabelle/HOL toolbox

In a HOL theory, the datatype and definition/primrec/fun declarations
form the core of a functional programming language. By default equational
theorems stemming from those are used for generated code, therefore “naive”
code generation can proceed without further ado.

For example, here a simple “implementation” of amortised queues:

datatype ′a queue = AQueue ′a list ′a list

definition empty :: ′a queue where
empty = AQueue [] []

primrec enqueue :: ′a ⇒ ′a queue ⇒ ′a queue where
enqueue x (AQueue xs ys) = AQueue (x # xs) ys

fun dequeue :: ′a queue ⇒ ′a option × ′a queue where
dequeue (AQueue [] []) = (None, AQueue [] [])
| dequeue (AQueue xs (y # ys)) = (Some y , AQueue xs ys)
| dequeue (AQueue xs []) =

(case rev xs of y # ys ⇒ (Some y , AQueue [] ys))

Then we can generate code e.g. for SML as follows:

1 INTRODUCTION 2

export-code empty dequeue enqueue in SML
module-name Example file examples/example.ML

resulting in the following code:

structure Example : sig
type ’a queue
val empty : ’a queue
val dequeue : ’a queue -> ’a option * ’a queue
val enqueue : ’a -> ’a queue -> ’a queue

end = struct

datatype ’a queue = AQueue of ’a list * ’a list;

fun fold f (x :: xs) s = fold f xs (f x s)
| fold f [] s = s;

fun rev xs = fold (fn a => fn b => a :: b) xs [];

val empty : ’a queue = AQueue ([], []);

fun dequeue (AQueue ([], [])) = (NONE, AQueue ([], []))
| dequeue (AQueue (xs, y :: ys)) = (SOME y, AQueue (xs, ys))
| dequeue (AQueue (v :: va, [])) =
let
val y :: ys = rev (v :: va);

in
(SOME y, AQueue ([], ys))

end;

fun enqueue x (AQueue (xs, ys)) = AQueue (x :: xs, ys);

end; (*struct Example*)

The export-code command takes a space-separated list of constants for
which code shall be generated; anything else needed for those is added im-
plicitly. Then follows a target language identifier and a freely chosen module
name. A file name denotes the destination to store the generated code. Note
that the semantics of the destination depends on the target language: for
SML, OCaml and Scala it denotes a file, for Haskell it denotes a directory
where a file named as the module name (with extension .hs) is written:

export-code empty dequeue enqueue in Haskell
module-name Example file examples/

This is the corresponding code:

module Example(Queue, empty, dequeue, enqueue) where {

import Prelude ((==), (/=), (<), (<=), (>=), (>), (+), (-), (*), (/),
(**), (>>=), (>>), (=<<), (&&), (||), (^), (^^), (.), ($), ($!), (++),
(!!), Eq, error, id, return, not, fst, snd, map, filter, concat,
concatMap, reverse, zip, null, takeWhile, dropWhile, all, any, Integer,

1 INTRODUCTION 3

negate, abs, divMod, String, Bool(True, False), Maybe(Nothing, Just));
import qualified Prelude;

data Queue a = AQueue [a] [a];

empty :: forall a. Queue a;
empty = AQueue [] [];

dequeue :: forall a. Queue a -> (Maybe a, Queue a);
dequeue (AQueue [] []) = (Nothing, AQueue [] []);
dequeue (AQueue xs (y : ys)) = (Just y, AQueue xs ys);
dequeue (AQueue (v : va) []) =

let {
(y : ys) = reverse (v : va);

} in (Just y, AQueue [] ys);

enqueue :: forall a. a -> Queue a -> Queue a;
enqueue x (AQueue xs ys) = AQueue (x : xs) ys;

}

For more details about export-code see §7.

1.3 Type classes

Code can also be generated from type classes in a Haskell-like manner. For
illustration here an example from abstract algebra:

class semigroup =
fixes mult :: ′a ⇒ ′a ⇒ ′a (infixl ⊗ 70)
assumes assoc: (x ⊗ y) ⊗ z = x ⊗ (y ⊗ z)

class monoid = semigroup +
fixes neutral :: ′a (1)
assumes neutl : 1 ⊗ x = x

and neutr : x ⊗ 1 = x

instantiation nat :: monoid
begin

primrec mult-nat where
0 ⊗ n = (0::nat)
| Suc m ⊗ n = n + m ⊗ n

definition neutral-nat where
1 = Suc 0

lemma add-mult-distrib:

1 INTRODUCTION 4

fixes n m q :: nat
shows (n + m) ⊗ q = n ⊗ q + m ⊗ q
by (induct n) simp-all

instance proof
fix m n q :: nat
show m ⊗ n ⊗ q = m ⊗ (n ⊗ q)

by (induct m) (simp-all add : add-mult-distrib)
show 1 ⊗ n = n

by (simp add : neutral-nat-def)
show m ⊗ 1 = m

by (induct m) (simp-all add : neutral-nat-def)
qed

end

We define the natural operation of the natural numbers on monoids:

primrec (in monoid) pow :: nat ⇒ ′a ⇒ ′a where
pow 0 a = 1
| pow (Suc n) a = a ⊗ pow n a

This we use to define the discrete exponentiation function:

definition bexp :: nat ⇒ nat where
bexp n = pow n (Suc (Suc 0))

The corresponding code in Haskell uses that language’s native classes:

module Example(Nat, bexp) where {

import Prelude ((==), (/=), (<), (<=), (>=), (>), (+), (-), (*), (/),
(**), (>>=), (>>), (=<<), (&&), (||), (^), (^^), (.), ($), ($!), (++),
(!!), Eq, error, id, return, not, fst, snd, map, filter, concat,
concatMap, reverse, zip, null, takeWhile, dropWhile, all, any, Integer,
negate, abs, divMod, String, Bool(True, False), Maybe(Nothing, Just));

import qualified Prelude;

data Nat = Zero_nat | Suc Nat;

plus_nat :: Nat -> Nat -> Nat;
plus_nat (Suc m) n = plus_nat m (Suc n);
plus_nat Zero_nat n = n;

mult_nat :: Nat -> Nat -> Nat;
mult_nat Zero_nat n = Zero_nat;
mult_nat (Suc m) n = plus_nat n (mult_nat m n);

neutral_nat :: Nat;
neutral_nat = Suc Zero_nat;

1 INTRODUCTION 5

class Semigroup a where {
mult :: a -> a -> a;

};

class (Semigroup a) => Monoid a where {
neutral :: a;

};

instance Semigroup Nat where {
mult = mult_nat;

};

instance Monoid Nat where {
neutral = neutral_nat;

};

pow :: forall a. (Monoid a) => Nat -> a -> a;
pow Zero_nat a = neutral;
pow (Suc n) a = mult a (pow n a);

bexp :: Nat -> Nat;
bexp n = pow n (Suc (Suc Zero_nat));

}

This is a convenient place to show how explicit dictionary construction man-
ifests in generated code – the same example in SML:

structure Example : sig
type nat
val bexp : nat -> nat

end = struct

datatype nat = Zero_nat | Suc of nat;

fun plus_nat (Suc m) n = plus_nat m (Suc n)
| plus_nat Zero_nat n = n;

fun mult_nat Zero_nat n = Zero_nat
| mult_nat (Suc m) n = plus_nat n (mult_nat m n);

val neutral_nat : nat = Suc Zero_nat;

type ’a semigroup = {mult : ’a -> ’a -> ’a};
val mult = #mult : ’a semigroup -> ’a -> ’a -> ’a;

type ’a monoid = {semigroup_monoid : ’a semigroup, neutral : ’a};
val semigroup_monoid = #semigroup_monoid : ’a monoid -> ’a semigroup;
val neutral = #neutral : ’a monoid -> ’a;

val semigroup_nat = {mult = mult_nat} : nat semigroup;

val monoid_nat = {semigroup_monoid = semigroup_nat, neutral = neutral_nat}
: nat monoid;

fun pow A_ Zero_nat a = neutral A_
| pow A_ (Suc n) a = mult (semigroup_monoid A_) a (pow A_ n a);

fun bexp n = pow monoid_nat n (Suc (Suc Zero_nat));

1 INTRODUCTION 6

end; (*struct Example*)

Note the parameters with trailing underscore (A_), which are the dictionary
parameters.

1.4 How to continue from here

What you have seen so far should be already enough in a lot of cases. If you
are content with this, you can quit reading here.

Anyway, to understand situations where problems occur or to increase
the scope of code generation beyond default, it is necessary to gain some
understanding how the code generator actually works:

• The foundations of the code generator are described in §2.

• In particular §2.6 gives hints how to debug situations where code gen-
eration does not succeed as expected.

• The scope and quality of generated code can be increased dramatically
by applying refinement techniques, which are introduced in §3.

• Inductive predicates can be turned executable using an extension of
the code generator §4.

• If you want to utilize code generation to obtain fast evaluators e.g. for
decision procedures, have a look at §6.

• You may want to skim over the more technical sections §5 and §7.

• The target language Scala [10] comes with some specialities discussed
in §7.1.

• For exhaustive syntax diagrams etc. you should visit the Isabelle/Isar
Reference Manual [12].

Happy proving, happy hacking!

2 CODE GENERATION FOUNDATIONS 7

2 Code generation foundations

2.1 Code generator architecture

The code generator is actually a framework consisting of different components
which can be customised individually.

Conceptually all components operate on Isabelle’s logic framework Pure.
Practically, the object logic HOL provides the necessary facilities to make
use of the code generator, mainly since it is an extension of Pure.

The constellation of the different components is visualized in the following
picture.

specification tools user proofs

raw code equations preprocessing code equations

intermediate program serialisation

SML

OCaml

Haskell

Scala

translation

Figure 1: Code generator architecture

Central to code generation is the notion of code equations. A code equation
as a first approximation is a theorem of the form f t1 t2 . . . tn ≡ t (an
equation headed by a constant f with arguments t1 t2 . . . tn and right hand
side t).

• Starting point of code generation is a collection of (raw) code equations
in a theory. It is not relevant where they stem from, but typically they
were either produced by specification tools or proved explicitly by the
user.

• These raw code equations can be subjected to theorem transforma-
tions. This preprocessor (see §2.2) can apply the full expressiveness of
ML-based theorem transformations to code generation. The result of
preprocessing is a structured collection of code equations.

• These code equations are translated to a program in an abstract inter-
mediate language. Think of it as a kind of “Mini-Haskell” with four
statements : data (for datatypes), fun (stemming from code equations),
also class and inst (for type classes).

2 CODE GENERATION FOUNDATIONS 8

• Finally, the abstract program is serialised into concrete source code of a
target language. This step only produces concrete syntax but does not
change the program in essence; all conceptual transformations occur in
the translation step.

From these steps, only the last two are carried out outside the logic; by
keeping this layer as thin as possible, the amount of code to trust is kept to
a minimum.

2.2 The pre- and postprocessor

Before selected function theorems are turned into abstract code, a chain of
definitional transformation steps is carried out: preprocessing. The prepro-
cessor consists of two components: a simpset and function transformers.

The preprocessor simpset has a disparate brother, the postprocessor simpset.
In the theory-to-code scenario depicted in the picture above, it plays no role.
But if generated code is used to evaluate expressions (cf. §6), the postpro-
cessor simpset is applied to the resulting expression before this is turned
back.

The pre- and postprocessor simpsets can apply the full generality of the
Isabelle simplifier. Due to the interpretation of theorems as code equations,
rewrites are applied to the right hand side and the arguments of the left hand
side of an equation, but never to the constant heading the left hand side.

Pre- and postprocessor can be setup to broker between expressions suitable
for logical reasoning and expressions suitable for execution. As example, take
list membership; logically is is just expressed as x ∈ set xs. But for execution
the intermediate set is not desirable. Hence the following specification:

definition member :: ′a list ⇒ ′a ⇒ bool
where

[code-abbrev]: member xs x ←→ x ∈ set xs

The code-abbrev attribute declares its theorem a rewrite rule for the postpro-
cessor and the symmetric of its theorem as rewrite rule for the preprocessor.
Together, this has the effect that expressions x ∈ set xs are replaced by mem-
ber xs x in generated code, but are turned back into x ∈ set xs if generated
code is used for evaluation.

Rewrite rules for pre- or postprocessor may be declared independently
using code-unfold or code-post respectively.

Function transformers provide a very general interface, transforming a
list of function theorems to another list of function theorems, provided that

2 CODE GENERATION FOUNDATIONS 9

neither the heading constant nor its type change. The 0 / Suc pattern used
in theory Code-Abstract-Nat (see §5.3) uses this interface.
The current setup of the pre- and postprocessor may be inspected using the
print-codeproc command. code-thms (see §2.3) provides a convenient
mechanism to inspect the impact of a preprocessor setup on code equations.

2.3 Understanding code equations

As told in §1.1, the notion of code equations is vital to code generation. In-
deed most problems which occur in practice can be resolved by an inspection
of the underlying code equations.

It is possible to exchange the default code equations for constants by ex-
plicitly proving alternative ones:

lemma [code]:
dequeue (AQueue xs []) =

(if xs = [] then (None, AQueue [] [])
else dequeue (AQueue [] (rev xs)))

dequeue (AQueue xs (y # ys)) =
(Some y , AQueue xs ys)

by (cases xs, simp-all) (cases rev xs, simp-all)

The annotation [code] is an attribute which states that the given theorems
should be considered as code equations for a fun statement – the correspond-
ing constant is determined syntactically. The resulting code:

dequeue :: forall a. Queue a -> (Maybe a, Queue a);
dequeue (AQueue xs (y : ys)) = (Just y, AQueue xs ys);
dequeue (AQueue xs []) =

(if null xs then (Nothing, AQueue [] [])
else dequeue (AQueue [] (reverse xs)));

You may note that the equality test xs = [] has been replaced by the predicate
List .null xs. This is due to the default setup of the preprocessor.

This possibility to select arbitrary code equations is the key technique for
program and datatype refinement (see §3).

Due to the preprocessor, there is the distinction of raw code equations
(before preprocessing) and code equations (after preprocessing).

The first can be listed (among other data) using the print-codesetup
command.

The code equations after preprocessing are already are blueprint of the
generated program and can be inspected using the code-thms command:

2 CODE GENERATION FOUNDATIONS 10

code-thms dequeue

This prints a table with the code equations for dequeue, including all code
equations those equations depend on recursively. These dependencies them-
selves can be visualized using the code-deps command.

2.4 Equality

Implementation of equality deserves some attention. Here an example func-
tion involving polymorphic equality:

primrec collect-duplicates :: ′a list ⇒ ′a list ⇒ ′a list ⇒ ′a list where
collect-duplicates xs ys [] = xs
| collect-duplicates xs ys (z#zs) = (if z ∈ set xs

then if z ∈ set ys
then collect-duplicates xs ys zs
else collect-duplicates xs (z#ys) zs

else collect-duplicates (z#xs) (z#ys) zs)

During preprocessing, the membership test is rewritten, resulting in List .member,
which itself performs an explicit equality check, as can be seen in the corre-
sponding SML code:

structure Example : sig
type ’a equal
val collect_duplicates :
’a equal -> ’a list -> ’a list -> ’a list -> ’a list

end = struct

type ’a equal = {equal : ’a -> ’a -> bool};
val equal = #equal : ’a equal -> ’a -> ’a -> bool;

fun eq A_ a b = equal A_ a b;

fun member A_ [] y = false
| member A_ (x :: xs) y = eq A_ x y orelse member A_ xs y;

fun collect_duplicates A_ xs ys [] = xs
| collect_duplicates A_ xs ys (z :: zs) =
(if member A_ xs z
then (if member A_ ys z then collect_duplicates A_ xs ys zs

else collect_duplicates A_ xs (z :: ys) zs)
else collect_duplicates A_ (z :: xs) (z :: ys) zs);

end; (*struct Example*)

Obviously, polymorphic equality is implemented the Haskell way using a type
class. How is this achieved? HOL introduces an explicit class equal with a
corresponding operation equal-class .equal such that equal-class .equal = op

2 CODE GENERATION FOUNDATIONS 11

=. The preprocessing framework does the rest by propagating the equal
constraints through all dependent code equations. For datatypes, instances
of equal are implicitly derived when possible. For other types, you may
instantiate equal manually like any other type class.

2.5 Explicit partiality

Partiality usually enters the game by partial patterns, as in the following
example, again for amortised queues:

definition strict-dequeue :: ′a queue ⇒ ′a × ′a queue where
strict-dequeue q = (case dequeue q

of (Some x , q ′) ⇒ (x , q ′))

lemma strict-dequeue-AQueue [code]:
strict-dequeue (AQueue xs (y # ys)) = (y , AQueue xs ys)
strict-dequeue (AQueue xs []) =

(case rev xs of y # ys ⇒ (y , AQueue [] ys))
by (simp-all add : strict-dequeue-def) (cases xs, simp-all split : list .split)

In the corresponding code, there is no equation for the pattern AQueue [] []:

strict_dequeue :: forall a. Queue a -> (a, Queue a);
strict_dequeue (AQueue xs []) =
let {
(y : ys) = reverse xs;

} in (y, AQueue [] ys);
strict_dequeue (AQueue xs (y : ys)) = (y, AQueue xs ys);

In some cases it is desirable to have this pseudo-“partiality” more explicitly,
e.g. as follows:

axiomatization empty-queue :: ′a

definition strict-dequeue ′ :: ′a queue ⇒ ′a × ′a queue where
strict-dequeue ′ q = (case dequeue q of (Some x , q ′) ⇒ (x , q ′) | - ⇒

empty-queue)

lemma strict-dequeue ′-AQueue [code]:
strict-dequeue ′ (AQueue xs []) = (if xs = [] then empty-queue

else strict-dequeue ′ (AQueue [] (rev xs)))
strict-dequeue ′ (AQueue xs (y # ys)) =

(y , AQueue xs ys)
by (simp-all add : strict-dequeue ′-def split : list .splits)

2 CODE GENERATION FOUNDATIONS 12

Observe that on the right hand side of the definition of strict-dequeue ′, the
unspecified constant empty-queue occurs.

Normally, if constants without any code equations occur in a program, the
code generator complains (since in most cases this is indeed an error). But
such constants can also be thought of as function definitions which always
fail, since there is never a successful pattern match on the left hand side.
In order to categorise a constant into that category explicitly, use the code
attribute with abort :

declare [[code abort : empty-queue]]

Then the code generator will just insert an error or exception at the appro-
priate position:

empty_queue :: forall a. a;
empty_queue = error "Foundations.empty_queue";

strict_dequeue :: forall a. Queue a -> (a, Queue a);
strict_dequeue (AQueue xs (y : ys)) = (y, AQueue xs ys);
strict_dequeue (AQueue xs []) =

(if null xs then empty_queue
else strict_dequeue (AQueue [] (reverse xs)));

This feature however is rarely needed in practice. Note also that the HOL
default setup already declares undefined, which is most likely to be used in
such situations, as code abort.

2.6 If something goes utterly wrong

Under certain circumstances, the code generator fails to produce code en-
tirely. To debug these, the following hints may prove helpful:

Check with a different target language. Sometimes the situation gets more
clear if you switch to another target language; the code generated there
might give some hints what prevents the code generator to produce code
for the desired language.

Inspect code equations. Code equations are the central carrier of code gener-
ation. Most problems occurring while generating code can be traced
to single equations which are printed as part of the error message. A
closer inspection of those may offer the key for solving issues (cf. §2.3).

Inspect preprocessor setup. The preprocessor might transform code equations
unexpectedly; to understand an inspection of its setup is necessary
(cf. §2.2).

3 PROGRAM AND DATATYPE REFINEMENT 13

Generate exceptions. If the code generator complains about missing code
equations, in can be helpful to implement the offending constants as
exceptions (cf. §2.5); this allows at least for a formal generation of code,
whose inspection may then give clues what is wrong.

Remove offending code equations. If code generation is prevented by just a
single equation, this can be removed (cf. §2.3) to allow formal code
generation, whose result in turn can be used to trace the problem.
The most prominent case here are mismatches in type class signatures
(“wellsortedness error”).

3 Program and datatype refinement

Code generation by shallow embedding (cf. §1.1) allows to choose code equa-
tions and datatype constructors freely, given that some very basic syntactic
properties are met; this flexibility opens up mechanisms for refinement which
allow to extend the scope and quality of generated code dramatically.

3.1 Program refinement

Program refinement works by choosing appropriate code equations explicitly
(cf. §2.3); as example, we use Fibonacci numbers:

fun fib :: nat ⇒ nat where
fib 0 = 0
| fib (Suc 0) = Suc 0
| fib (Suc (Suc n)) = fib n + fib (Suc n)

The runtime of the corresponding code grows exponential due to two recursive
calls:

fib :: Nat -> Nat;
fib Zero_nat = Zero_nat;
fib (Suc Zero_nat) = Suc Zero_nat;
fib (Suc (Suc n)) = plus_nat (fib n) (fib (Suc n));

A more efficient implementation would use dynamic programming, e.g. shar-
ing of common intermediate results between recursive calls. This idea is
expressed by an auxiliary operation which computes a Fibonacci number
and its successor simultaneously:

3 PROGRAM AND DATATYPE REFINEMENT 14

definition fib-step :: nat ⇒ nat × nat where
fib-step n = (fib (Suc n), fib n)

This operation can be implemented by recursion using dynamic program-
ming:

lemma [code]:
fib-step 0 = (Suc 0, 0)
fib-step (Suc n) = (let (m, q) = fib-step n in (m + q , m))
by (simp-all add : fib-step-def)

What remains is to implement fib by fib-step as follows:

lemma [code]:
fib 0 = 0
fib (Suc n) = fst (fib-step n)
by (simp-all add : fib-step-def)

The resulting code shows only linear growth of runtime:

fib_step :: Nat -> (Nat, Nat);
fib_step (Suc n) = let {

(m, q) = fib_step n;
} in (plus_nat m q, m);

fib_step Zero_nat = (Suc Zero_nat, Zero_nat);

fib :: Nat -> Nat;
fib (Suc n) = fst (fib_step n);
fib Zero_nat = Zero_nat;

3.2 Datatype refinement

Selecting specific code equations and datatype constructors leads to datatype
refinement. As an example, we will develop an alternative representation of
the queue example given in §1.2. The amortised representation is convenient
for generating code but exposes its “implementation” details, which may be
cumbersome when proving theorems about it. Therefore, here is a simple,
straightforward representation of queues:

datatype ′a queue = Queue ′a list

definition empty :: ′a queue where
empty = Queue []

3 PROGRAM AND DATATYPE REFINEMENT 15

primrec enqueue :: ′a ⇒ ′a queue ⇒ ′a queue where
enqueue x (Queue xs) = Queue (xs @ [x])

fun dequeue :: ′a queue ⇒ ′a option × ′a queue where
dequeue (Queue []) = (None, Queue [])
| dequeue (Queue (x # xs)) = (Some x , Queue xs)

This we can use directly for proving; for executing, we provide an alternative
characterisation:

definition AQueue :: ′a list ⇒ ′a list ⇒ ′a queue where
AQueue xs ys = Queue (ys @ rev xs)

code-datatype AQueue

Here we define a “constructor” AQueue which is defined in terms of Queue
and interprets its arguments according to what the content of an amortised
queue is supposed to be.

The prerequisite for datatype constructors is only syntactical: a construc-
tor must be of type τ = . . . ⇒ κ α1 . . . αn where {α1, . . ., αn} is exactly the
set of all type variables in τ ; then κ is its corresponding datatype. The HOL
datatype package by default registers any new datatype with its construc-
tors, but this may be changed using code-datatype; the currently chosen
constructors can be inspected using the print-codesetup command.

Equipped with this, we are able to prove the following equations for our
primitive queue operations which “implement” the simple queues in an amor-
tised fashion:

lemma empty-AQueue [code]:
empty = AQueue [] []
by (simp add : AQueue-def empty-def)

lemma enqueue-AQueue [code]:
enqueue x (AQueue xs ys) = AQueue (x # xs) ys
by (simp add : AQueue-def)

lemma dequeue-AQueue [code]:
dequeue (AQueue xs []) =

(if xs = [] then (None, AQueue [] [])
else dequeue (AQueue [] (rev xs)))

dequeue (AQueue xs (y # ys)) = (Some y , AQueue xs ys)
by (simp-all add : AQueue-def)

3 PROGRAM AND DATATYPE REFINEMENT 16

It is good style, although no absolute requirement, to provide code equa-
tions for the original artefacts of the implemented type, if possible; in our
case, these are the datatype constructor Queue and the case combinator
case-queue:

lemma Queue-AQueue [code]:
Queue = AQueue []
by (simp add : AQueue-def fun-eq-iff)

lemma case-queue-AQueue [code]:
case-queue f (AQueue xs ys) = f (ys @ rev xs)
by (simp add : AQueue-def)

The resulting code looks as expected:

structure Example : sig
type ’a queue
val empty : ’a queue
val dequeue : ’a queue -> ’a option * ’a queue
val enqueue : ’a -> ’a queue -> ’a queue
val queue : ’a list -> ’a queue
val case_queue : (’a list -> ’b) -> ’a queue -> ’b

end = struct

datatype ’a queue = AQueue of ’a list * ’a list;

fun fold f (x :: xs) s = fold f xs (f x s)
| fold f [] s = s;

fun rev xs = fold (fn a => fn b => a :: b) xs [];

fun null [] = true
| null (x :: xs) = false;

val empty : ’a queue = AQueue ([], []);

fun dequeue (AQueue (xs, y :: ys)) = (SOME y, AQueue (xs, ys))
| dequeue (AQueue (xs, [])) =
(if null xs then (NONE, AQueue ([], []))
else dequeue (AQueue ([], rev xs)));

fun enqueue x (AQueue (xs, ys)) = AQueue (x :: xs, ys);

fun queue x = AQueue ([], x);

fun case_queue f (AQueue (xs, ys)) = f (ys @ rev xs);

end; (*struct Example*)

The same techniques can also be applied to types which are not specified
as datatypes, e.g. type int is originally specified as quotient type by means of
typedef , but for code generation constants allowing construction of binary
numeral values are used as constructors for int.

3 PROGRAM AND DATATYPE REFINEMENT 17

This approach however fails if the representation of a type demands in-
variants; this issue is discussed in the next section.

3.3 Datatype refinement involving invariants

Datatype representation involving invariants require a dedicated setup for
the type and its primitive operations. As a running example, we implement
a type ′a dlist of list consisting of distinct elements.

The first step is to decide on which representation the abstract type (in
our example ′a dlist) should be implemented. Here we choose ′a list. Then
a conversion from the concrete type to the abstract type must be specified,
here:

Dlist :: ′a list ⇒ ′a dlist

Next follows the specification of a suitable projection, i.e. a conversion from
abstract to concrete type:

list-of-dlist :: ′a dlist ⇒ ′a list

This projection must be specified such that the following abstract datatype
certificate can be proven:

lemma [code abstype]:
Dlist (list-of-dlist dxs) = dxs
by (fact Dlist-list-of-dlist)

Note that so far the invariant on representations (distinct :: ′a list ⇒ bool) has
never been mentioned explicitly: the invariant is only referred to implicitly:
all values in set {xs . list-of-dlist (Dlist xs) = xs} are invariant, and in our
example this is exactly {xs . distinct xs}.

The primitive operations on ′a dlist are specified indirectly using the pro-
jection list-of-dlist. For the empty dlist, Dlist .empty, we finally want the code
equation

Dlist .empty = Dlist []

This we have to prove indirectly as follows:

3 PROGRAM AND DATATYPE REFINEMENT 18

lemma [code]:
list-of-dlist Dlist .empty = []
by (fact list-of-dlist-empty)

This equation logically encodes both the desired code equation and that the
expression Dlist is applied to obeys the implicit invariant. Equations for
insertion and removal are similar:

lemma [code]:
list-of-dlist (Dlist .insert x dxs) = List .insert x (list-of-dlist dxs)
by (fact list-of-dlist-insert)

lemma [code]:
list-of-dlist (Dlist .remove x dxs) = remove1 x (list-of-dlist dxs)
by (fact list-of-dlist-remove)

Then the corresponding code is as follows:

module Example(Dlist, empty, list_of_dlist, inserta, remove) where {

import Prelude ((==), (/=), (<), (<=), (>=), (>), (+), (-), (*), (/),
(**), (>>=), (>>), (=<<), (&&), (||), (^), (^^), (.), ($), ($!), (++),
(!!), Eq, error, id, return, not, fst, snd, map, filter, concat,
concatMap, reverse, zip, null, takeWhile, dropWhile, all, any, Integer,
negate, abs, divMod, String, Bool(True, False), Maybe(Nothing, Just));

import qualified Prelude;

newtype Dlist a = Dlist [a];

empty :: forall a. Dlist a;
empty = Dlist [];

member :: forall a. (Eq a) => [a] -> a -> Bool;
member [] y = False;
member (x : xs) y = x == y || member xs y;

insert :: forall a. (Eq a) => a -> [a] -> [a];
insert x xs = (if member xs x then xs else x : xs);

list_of_dlist :: forall a. Dlist a -> [a];
list_of_dlist (Dlist x) = x;

inserta :: forall a. (Eq a) => a -> Dlist a -> Dlist a;
inserta x dxs = Dlist (insert x (list_of_dlist dxs));

remove1 :: forall a. (Eq a) => a -> [a] -> [a];
remove1 x [] = [];
remove1 x (y : xs) = (if x == y then xs else y : remove1 x xs);

remove :: forall a. (Eq a) => a -> Dlist a -> Dlist a;
remove x dxs = Dlist (remove1 x (list_of_dlist dxs));

}

4 INDUCTIVE PREDICATES 19

See further [5] for the meta theory of datatype refinement involving invari-
ants.

Typical data structures implemented by representations involving invari-
ants are available in the library, theory Mapping specifies key-value-mappings
(type (′a, ′b) mapping); these can be implemented by red-black-trees (theory
RBT).

4 Inductive Predicates

The predicate compiler is an extension of the code generator which turns
inductive specifications into equational ones, from which in turn executable
code can be generated. The mechanisms of this compiler are described in
detail in [3].

Consider the simple predicate append given by these two introduction
rules:

append [] ys ys
append xs ys zs =⇒ append (x # xs) ys (x # zs)

To invoke the compiler, simply use code-pred:

code-pred append .

The code-pred command takes the name of the inductive predicate and then
you put a period to discharge a trivial correctness proof. The compiler infers
possible modes for the predicate and produces the derived code equations.
Modes annotate which (parts of the) arguments are to be taken as input, and
which output. Modes are similar to types, but use the notation i for input
and o for output.

For append, the compiler can infer the following modes:

• i ⇒ i ⇒ i ⇒ bool

• i ⇒ i ⇒ o ⇒ bool

• o ⇒ o ⇒ i ⇒ bool

You can compute sets of predicates using values:

values {zs. append [(1::nat),2,3] [4,5] zs}

4 INDUCTIVE PREDICATES 20

outputs {[1, 2, 3, 4, 5]}, and

values {(xs, ys). append xs ys [(2::nat),3]}

outputs {([], [2, 3]), ([2], [3]), ([2, 3], [])}.

If you are only interested in the first elements of the set comprehension (with
respect to a depth-first search on the introduction rules), you can pass an
argument to values to specify the number of elements you want:

values 1 {(xs, ys). append xs ys [(1::nat), 2, 3, 4]}
values 3 {(xs, ys). append xs ys [(1::nat), 2, 3, 4]}

The values command can only compute set comprehensions for which a
mode has been inferred.

The code equations for a predicate are made available as theorems with
the suffix equation, and can be inspected with:

thm append .equation

More advanced options are described in the following subsections.

4.1 Alternative names for functions

By default, the functions generated from a predicate are named after the
predicate with the mode mangled into the name (e.g., append-i-i-o). You
can specify your own names as follows:

code-pred (modes: i ⇒ i ⇒ o ⇒ bool as concat ,
o ⇒ o ⇒ i ⇒ bool as split ,
i ⇒ o ⇒ i ⇒ bool as suffix) append .

4.2 Alternative introduction rules

Sometimes the introduction rules of an predicate are not executable because
they contain non-executable constants or specific modes could not be inferred.
It is also possible that the introduction rules yield a function that loops
forever due to the execution in a depth-first search manner. Therefore, you
can declare alternative introduction rules for predicates with the attribute
code-pred-intro. For example, the transitive closure is defined by:

4 INDUCTIVE PREDICATES 21

r a b =⇒ tranclp r a b
tranclp r a b =⇒ r b c =⇒ tranclp r a c

These rules do not suit well for executing the transitive closure with the
mode (i ⇒ o ⇒ bool) ⇒ i ⇒ o ⇒ bool, as the second rule will cause an
infinite loop in the recursive call. This can be avoided using the following
alternative rules which are declared to the predicate compiler by the attribute
code-pred-intro:

lemma [code-pred-intro]:
r a b =⇒ tranclp r a b
r a b =⇒ tranclp r b c =⇒ tranclp r a c

by auto

After declaring all alternative rules for the transitive closure, you invoke
code-pred as usual. As you have declared alternative rules for the predicate,
you are urged to prove that these introduction rules are complete, i.e., that
you can derive an elimination rule for the alternative rules:

code-pred tranclp
proof −

case tranclp
from this converse-tranclpE [OF tranclp.prems] show thesis by metis

qed

Alternative rules can also be used for constants that have not been defined
inductively. For example, the lexicographic order which is defined as:

lexordp r ?xs ?ys ←→
(∃ a v . ?ys = ?xs @ a # v ∨

(∃ u a b v w . r a b ∧ ?xs = u @ a # v ∧ ?ys = u @ b # w))

To make it executable, you can derive the following two rules and prove the
elimination rule:

lemma [code-pred-intro]:
append xs (a # v) ys =⇒ lexordp r xs ys

lemma [code-pred-intro]:
append u (a # v) xs =⇒ append u (b # w) ys =⇒ r a b
=⇒ lexordp r xs ys

code-pred lexordp

4 INDUCTIVE PREDICATES 22

4.3 Options for values

In the presence of higher-order predicates, multiple modes for some predicate
could be inferred that are not disambiguated by the pattern of the set com-
prehension. To disambiguate the modes for the arguments of a predicate,
you can state the modes explicitly in the values command. Consider the
simple predicate succ:

inductive succ :: nat ⇒ nat ⇒ bool where
succ 0 (Suc 0)
| succ x y =⇒ succ (Suc x) (Suc y)

code-pred succ .

For this, the predicate compiler can infer modes o ⇒ o ⇒ bool, i ⇒ o ⇒
bool, o ⇒ i ⇒ bool and i ⇒ i ⇒ bool. The invocation of values {n. tranclp
succ 10 n} loops, as multiple modes for the predicate succ are possible and
here the first mode o ⇒ o ⇒ bool is chosen. To choose another mode for the
argument, you can declare the mode for the argument between the values
and the number of elements.

values [mode: i ⇒ o ⇒ bool] 1 {n. tranclp succ 10 n}
values [mode: o ⇒ i ⇒ bool] 1 {n. tranclp succ n 10}

4.4 Embedding into functional code within Isabelle/HOL

To embed the computation of an inductive predicate into functions that are
defined in Isabelle/HOL, you have a number of options:

• You want to use the first-order predicate with the mode where all ar-
guments are input. Then you can use the predicate directly, e.g.

valid-suffix ys zs =
(if append [Suc 0, 2] ys zs then Some ys else None)

• If you know that the execution returns only one value (it is determin-
istic), then you can use the combinator Predicate.the, e.g., a functional
concatenation of lists is defined with

functional-concat xs ys = Predicate.the (append-i-i-o xs ys)

Note that if the evaluation does not return a unique value, it raises a
run-time error not-unique.

5 ADAPTATION TO TARGET LANGUAGES 23

4.5 Further Examples

Further examples for compiling inductive predicates can be found in ~~/src/

HOL/Predicate_Compile_Examples/Examples.thy. There are also some
examples in the Archive of Formal Proofs, notably in the POPLmark−deBruijn
and the FeatherweightJava sessions.

5 Adaptation to target languages

5.1 Adapting code generation

The aspects of code generation introduced so far have two aspects in common:

• They act uniformly, without reference to a specific target language.

• They are safe in the sense that as long as you trust the code generator
meta theory and implementation, you cannot produce programs that
yield results which are not derivable in the logic.

In this section we will introduce means to adapt the serialiser to a specific
target language, i.e. to print program fragments in a way which accommo-
dates “already existing” ingredients of a target language environment, for
three reasons:

• improving readability and aesthetics of generated code

• gaining efficiency

• interface with language parts which have no direct counterpart in HOL
(say, imperative data structures)

Generally, you should avoid using those features yourself at any cost :

• The safe configuration methods act uniformly on every target language,
whereas for adaptation you have to treat each target language sepa-
rately.

• Application is extremely tedious since there is no abstraction which
would allow for a static check, making it easy to produce garbage.

• Subtle errors can be introduced unconsciously.

5 ADAPTATION TO TARGET LANGUAGES 24

However, even if you ought refrain from setting up adaptation yourself, al-
ready HOL comes with some reasonable default adaptations (say, using target
language list syntax). There also some common adaptation cases which you
can setup by importing particular library theories. In order to understand
these, we provide some clues here; these however are not supposed to replace
a careful study of the sources.

5.2 The adaptation principle

Figure 2 illustrates what “adaptation” is conceptually supposed to be:

logic intermediate language target language

translation serialisation

adaptation

ge
n
er

at
ed

language

library

includes

re
se

rv
ed

Figure 2: The adaptation principle

In the tame view, code generation acts as broker between logic, intermediate
language and target language by means of translation and serialisation; for
the latter, the serialiser has to observe the structure of the language itself
plus some reserved keywords which have to be avoided for generated code.
However, if you consider adaptation mechanisms, the code generated by the
serializer is just the tip of the iceberg:

• serialisation can be parametrised such that logical entities are mapped
to target-specific ones (e.g. target-specific list syntax, see also §5.4)

• Such parametrisations can involve references to a target-specific stan-
dard library (e.g. using the Haskell Maybe type instead of the HOL
option type); if such are used, the corresponding identifiers (in our ex-
ample, Maybe, Nothing and Just) also have to be considered reserved.

5 ADAPTATION TO TARGET LANGUAGES 25

• Even more, the user can enrich the library of the target-language by
providing code snippets (“includes”) which are prepended to any gen-
erated code (see §5.6); this typically also involves further reserved iden-
tifiers.

As figure 2 illustrates, all these adaptation mechanisms have to act consis-
tently; it is at the discretion of the user to take care for this.

5.3 Common adaptation applications

The HOL Main theory already provides a code generator setup which should
be suitable for most applications. Common extensions and modifications are
available by certain theories in ~~/src/HOL/Library; beside being useful in
applications, they may serve as a tutorial for customising the code generator
setup (see below §5.4).

Code-Numeral provides additional numeric types integer and natural iso-
morphic to types int and nat respectively. Type integer is mapped
to target-language built-in integers; natural is implemented as abstract
type over integer. Useful for code setups which involve e.g. indexing of
target-language arrays. Part of HOL−Main.

Code-Target-Int implements type int by integer and thus by target-language
built-in integers.

Code-Binary-Nat implements type nat using a binary rather than a linear
representation, which yields a considerable speedup for computations.
Pattern matching with 0 / Suc is eliminated by a preprocessor.

Code-Target-Nat implements type nat by integer and thus by target-language
built-in integers. Pattern matching with 0 / Suc is eliminated by a pre-
processor.

Code-Target-Numeral is a convenience theory containing both Code-Target-Nat
and Code-Target-Int.

String provides an additional datatype String .literal which is isomorphic to
strings; String .literals are mapped to target-language strings. Useful
for code setups which involve e.g. printing (error) messages. Part of
HOL−Main.

Code-Char represents HOL characters by character literals in target lan-
guages. Warning: This modifies adaptation in a non-conservative man-
ner and thus should always be imported last in a theory header.

5 ADAPTATION TO TARGET LANGUAGES 26

IArray provides a type ′a iarray isomorphic to lists but implemented by
(effectively immutable) arrays in SML only.

5.4 Parametrising serialisation

Consider the following function and its corresponding SML code:

primrec in-interval :: nat × nat ⇒ nat ⇒ bool where
in-interval (k , l) n ←→ k ≤ n ∧ n ≤ l

structure Example : sig
type nat
type boola
val in_interval : nat * nat -> nat -> boola

end = struct

datatype nat = Zero_nat | Suc of nat;

datatype boola = True | False;

fun conj p True = p
| conj p False = False
| conj True p = p
| conj False p = False;

fun less_eq_nat (Suc m) n = less_nat m n
| less_eq_nat Zero_nat n = True

and less_nat m (Suc n) = less_eq_nat m n
| less_nat n Zero_nat = False;

fun in_interval (k, l) n = conj (less_eq_nat k n) (less_eq_nat n l);

end; (*struct Example*)

Though this is correct code, it is a little bit unsatisfactory: boolean values and
operators are materialised as distinguished entities with have nothing to do
with the SML-built-in notion of “bool”. This results in less readable code;
additionally, eager evaluation may cause programs to loop or break which
would perfectly terminate when the existing SML bool would be used. To
map the HOL bool on SML bool, we may use custom serialisations :

code printing
type constructor bool ⇀ (SML) "bool"

| constant True ⇀ (SML) "true"

| constant False ⇀ (SML) "false"

| constant HOL.conj ⇀ (SML) "_ andalso _"

5 ADAPTATION TO TARGET LANGUAGES 27

The code-printing command takes a series of symbols (contants, type con-
structor, . . .) together with target-specific custom serialisations. Each cus-
tom serialisation starts with a target language identifier followed by an ex-
pression, which during code serialisation is inserted whenever the type con-
structor would occur. Each “_” in a serialisation expression is treated as a
placeholder for the constant’s or the type constructor’s arguments.

structure Example : sig
type nat
val in_interval : nat * nat -> nat -> bool

end = struct

datatype nat = Zero_nat | Suc of nat;

fun less_eq_nat (Suc m) n = less_nat m n
| less_eq_nat Zero_nat n = true

and less_nat m (Suc n) = less_eq_nat m n
| less_nat n Zero_nat = false;

fun in_interval (k, l) n = (less_eq_nat k n) andalso (less_eq_nat n l);

end; (*struct Example*)

This still is not perfect: the parentheses around the “andalso” expression
are superfluous. Though the serialiser by no means attempts to imitate the
rich Isabelle syntax framework, it provides some common idioms, notably
associative infixes with precedences which may be used here:

code printing
constant HOL.conj ⇀ (SML) infixl 1 "andalso"

structure Example : sig
type nat
val in_interval : nat * nat -> nat -> bool

end = struct

datatype nat = Zero_nat | Suc of nat;

fun less_eq_nat (Suc m) n = less_nat m n
| less_eq_nat Zero_nat n = true

and less_nat m (Suc n) = less_eq_nat m n
| less_nat n Zero_nat = false;

fun in_interval (k, l) n = less_eq_nat k n andalso less_eq_nat n l;

end; (*struct Example*)

The attentive reader may ask how we assert that no generated code will ac-
cidentally overwrite. For this reason the serialiser has an internal table of
identifiers which have to be avoided to be used for new declarations. Ini-
tially, this table typically contains the keywords of the target language. It

5 ADAPTATION TO TARGET LANGUAGES 28

can be extended manually, thus avoiding accidental overwrites, using the
code-reserved command:

code-reserved SML bool true false andalso

Next, we try to map HOL pairs to SML pairs, using the infix “*” type
constructor and parentheses:

code printing
type constructor prod ⇀ (SML) infix 2 "*"

| constant Pair ⇀ (SML) "!((_),/ (_))"

The initial bang “!” tells the serialiser never to put parentheses around the
whole expression (they are already present), while the parentheses around
argument place holders tell not to put parentheses around the arguments.
The slash “/” (followed by arbitrary white space) inserts a space which may
be used as a break if necessary during pretty printing.

These examples give a glimpse what mechanisms custom serialisations pro-
vide; however their usage requires careful thinking in order not to introduce
inconsistencies – or, in other words: custom serialisations are completely ax-
iomatic.

A further noteworthy detail is that any special character in a custom seri-
alisation may be quoted using “’”; thus, in “fn ’_ => _” the first “_” is a
proper underscore while the second “_” is a placeholder.

5.5 Haskell serialisation

For convenience, the default HOL setup for Haskell maps the equal class to
its counterpart in Haskell, giving custom serialisations for the class equal and
its operation HOL.equal.

code printing
type class equal ⇀ (Haskell) "Eq"

| constant HOL.equal ⇀ (Haskell) infixl 4 "=="

A problem now occurs whenever a type which is an instance of equal in HOL
is mapped on a Haskell -built-in type which is also an instance of Haskell Eq :

typedecl bar

instantiation bar :: equal

6 EVALUATION 29

begin

definition HOL.equal (x ::bar) y ←→ x = y

instance by default (simp add : equal-bar-def)

end

code printing
type constructor bar ⇀ (Haskell) "Integer"

The code generator would produce an additional instance, which of course is
rejected by the Haskell compiler. To suppress this additional instance:

code printing
class instance bar :: "HOL.equal" ⇀ (Haskell) -

5.6 Enhancing the target language context

In rare cases it is necessary to enrich the context of a target language; this
can also be accomplished using the code-printing command:

code printing
code module "Errno" ⇀ (Haskell)

〈errno i = error ("Error number: " ++ show i)〉

code reserved Haskell Errno

Such named modules are then prepended to every generated code. Inspect
such code in order to find out how this behaves with respect to a particular
target language.

6 Evaluation

Recalling §1.1, code generation turns a system of equations into a program
with the same equational semantics. As a consequence, this program can be
used as a rewrite engine for terms: rewriting a term t using a program to a
term t ′ yields the theorems t ≡ t ′. This application of code generation in
the following is referred to as evaluation.

6 EVALUATION 30

6.1 Evaluation techniques

The existing infrastructure provides a rich palette of evaluation techniques,
each comprising different aspects:

Expressiveness. Depending on how good symbolic computation is sup-
ported, the class of terms which can be evaluated may be bigger or
smaller.

Efficiency. The more machine-near the technique, the faster it is.

Trustability. Techniques which a huge (and also probably more config-
urable infrastructure) are more fragile and less trustable.

The simplifier (simp)

The simplest way for evaluation is just using the simplifier with the orig-
inal code equations of the underlying program. This gives fully symbolic
evaluation and highest trustablity, with the usual performance of the simpli-
fier. Note that for operations on abstract datatypes (cf. §3.3), the original
theorems as given by the users are used, not the modified ones.

Normalization by evaluation (nbe)

Normalization by evaluation [1] provides a comparably fast partially symbolic
evaluation which permits also normalization of functions and uninterpreted
symbols; the stack of code to be trusted is considerable.

Evaluation in ML (code)

Highest performance can be achieved by evaluation in ML, at the cost of
being restricted to ground results and a layered stack of code to be trusted,
including code generator configurations by the user.

Evaluation is carried out in a target language Eval which inherits from
SML but for convenience uses parts of the Isabelle runtime environment.
The soundness of computation carried out there depends crucially on the
correctness of the code generator setup; this is one of the reasons why you
should not use adaptation (see §5) frivolously.

6 EVALUATION 31

6.2 Aspects of evaluation

Each of the techniques can be combined with different aspects. The most
important distinction is between dynamic and static evaluation. Dynamic
evaluation takes the code generator configuration “as it is” at the point where
evaluation is issued. Best example is the value command which allows ad-
hoc evaluation of terms:

value 42 / (12 :: rat)

value tries first to evaluate using ML, falling back to normalization by eval-
uation if this fails.

A particular technique may be specified in square brackets, e.g.

value [nbe] 42 / (12 :: rat)

To employ dynamic evaluation in the document generation, there is also a
value antiquotation with the same evaluation techniques as value.

Static evaluation freezes the code generator configuration at a certain point
and uses this context whenever evaluation is issued later on. This is partic-
ularly appropriate for proof procedures which use evaluation, since then the
behaviour of evaluation is not changed or even compromised later on by
actions of the user.

As a technical complication, terms after evaluation in ML must be turned
into Isabelle’s internal term representation again. Since this is also config-
urable, it is never fully trusted. For this reason, evaluation in ML comes with
further aspects:

Plain evaluation. A term is normalized using the provided term recon-
struction from ML to Isabelle; for applications which do not need to
be fully trusted.

Property conversion. Evaluates propositions; since these are monomor-
phic, the term reconstruction is fixed once and for all and therefore
trustable.

Conversion. Evaluates an arbitrary term t first by plain evaluation and
certifies the result t ′ by checking the equation t ≡ t ′ using property
conversion.

The picture is further complicated by the roles of exceptions. Here three
cases have to be distinguished:

6 EVALUATION 32

• Evaluation of t terminates with a result t ′.

• Evaluation of t terminates which en exception indicating a pattern
match failure or a non-implemented function. As sketched in §2.5, this
can be interpreted as partiality.

• Evaluation raises any other kind of exception.

For conversions, the first case yields the equation t = t ′, the second defaults
to reflexivity t = t. Exceptions of the third kind are propagated to the user.

By default return values of plain evaluation are optional, yielding SOME t ′

in the first case, NONE in the second, and propagating the exception in the
third case. A strict variant of plain evaluation either yields t ′ or propagates
any exception, a liberal variant captures any exception in a result of type
Exn.result.

For property conversion (which coincides with conversion except for eval-
uation in ML), methods are provided which solve a given goal by evaluation.

6.3 Schematic overview
simp nbe code

d
y
n
a
m
ic

interactive evaluation value [simp] value [nbe] value [code]

plain evaluation Code_Evaluation.dynamic_value

evaluation method code-simp normalization eval

property conversion Code_Runtime.dynamic_holds_conv

conversion Code_Simp.dynamic_conv Nbe.dynamic_conv Code_Evaluation.dynamic_conv

st
a
ti
c plain evaluation Code_Evaluation.static_value

property conversion Code_Runtime.static_holds_conv

conversion Code_Simp.static_conv Nbe.static_conv Code_Evaluation.static_conv

6.4 Preprocessing HOL terms into evaluable shape

When integration decision procedures developed inside HOL into HOL it-
self, it is necessary to somehow get from the Isabelle/ML representation to
the representation used by the decision procedure itself (“reification”). One
option is to hardcode it using code antiquotations (see §6.5). Another op-
tion is to use pre-existing infrastructure in HOL: Reification.conv and
Reification.tac

An simplistic example:

datatype form-ord = T | F | Less nat nat
| And form-ord form-ord | Or form-ord form-ord | Neg form-ord

6 EVALUATION 33

primrec interp :: form-ord ⇒ ′a::order list ⇒ bool
where

interp T vs ←→ True
| interp F vs ←→ False
| interp (Less i j) vs ←→ vs ! i < vs ! j
| interp (And f 1 f 2) vs ←→ interp f 1 vs ∧ interp f 2 vs
| interp (Or f 1 f 2) vs ←→ interp f 1 vs ∨ interp f 2 vs
| interp (Neg f) vs ←→ ¬ interp f vs

The datatype form-ord represents formulae whose semantics is given by
interp. Note that values are represented by variable indices (nat) whose
concrete values are given in list vs.

ML 〈val thm =
Reification.conv @{context} @{thms interp.simps} @{cterm x < y ∧ x < z}〉

By virtue of interp.simps , Reification.conv provides a conversion which,
for this concrete example, yields x < y ∧ x < z ≡ interp (And (Less (Suc
0) (Suc (Suc 0))) (Less (Suc 0) 0)) [z , x , y]. Note that the argument to
interp does not contain any free variables and can thus be evaluated using
evaluation.

A less meager example can be found in the AFP, session Regular−Sets,
theory Regexp-Method.

6.5 Intimate connection between logic and system run-
time

The toolbox of static evaluation conversions forms a reasonable base to in-
terweave generated code and system tools. However in some situations more
direct interaction is desirable.

Static embedding of generated code into system runtime – the code
antiquotation

The code antiquotation allows to include constants from generated code di-
rectly into ML system code, as in the following toy example:

datatype form = T | F | And form form | Or form form

ML 〈

fun eval_form @{code T} = true

| eval_form @{code F} = false

6 EVALUATION 34

| eval_form (@{code And} (p, q)) =

eval_form p andalso eval_form q

| eval_form (@{code Or} (p, q)) =

eval_form p orelse eval_form q;
〉

code takes as argument the name of a constant; after the whole ML is read,
the necessary code is generated transparently and the corresponding con-
stant names are inserted. This technique also allows to use pattern matching
on constructors stemming from compiled datatypes. Note that the code an-
tiquotation may not refer to constants which carry adaptations; here you
have to refer to the corresponding adapted code directly.

For a less simplistic example, theory Approximation in the Decision-Procs
session is a good reference.

Static embedding of generated code into system runtime – code-reflect

The code antiquoation is lightweight, but the generated code is only acces-
sible while the ML section is processed. Sometimes this is not appropriate,
especially if the generated code contains datatype declarations which are
shared with other parts of the system. In these cases, code-reflect can be
used:

code-reflect Sum-Type
datatypes sum = Inl | Inr
functions Sum-Type.sum.projl Sum-Type.sum.projr

code-reflect takes a structure name and references to datatypes and func-
tions; for these code is compiled into the named ML structure and the Eval
target is modified in a way that future code generation will reference these
precompiled versions of the given datatypes and functions. This also allows
to refer to the referenced datatypes and functions from arbitrary ML code
as well.

A typical example for code-reflect can be found in the Predicate theory.

Separate compilation – code-reflect

For technical reasons it is sometimes necessary to separate generation and
compilation of code which is supposed to be used in the system runtime. For
this code-reflect with an optional file argument can be used:

7 FURTHER ISSUES 35

code-reflect Rat
datatypes rat = Frct
functions Fract

(plus :: rat ⇒ rat ⇒ rat) (minus :: rat ⇒ rat ⇒ rat)
(times :: rat ⇒ rat ⇒ rat) (divide :: rat ⇒ rat ⇒ rat)

file examples/rat .ML

This merely generates the referenced code to the given file which can be
included into the system runtime later on.

7 Further issues

7.1 Specialities of the Scala target language

Scala deviates from languages of the ML family in a couple of aspects; those
which affect code generation mainly have to do with Scala’s type system:

• Scala prefers tupled syntax over curried syntax.

• Scala sacrifices Hindely-Milner type inference for a much more rich type
system with subtyping etc. For this reason type arguments sometimes
have to be given explicitly in square brackets (mimicking System F
syntax).

• In contrast to Haskell where most specialities of the type system are
implemented using type classes, Scala provides a sophisticated system
of implicit arguments.

Concerning currying, the Scala serializer counts arguments in code equations
to determine how many arguments shall be tupled; remaining arguments and
abstractions in terms rather than function definitions are always curried.

The second aspect affects user-defined adaptations with code-printing.
For regular terms, the Scala serializer prints all type arguments explicitly.
For user-defined term adaptations this is only possible for adaptations which
take no arguments: here the type arguments are just appended. Otherwise
they are ignored; hence user-defined adaptations for polymorphic constants
have to be designed very carefully to avoid ambiguity.

Isabelle’s type classes are mapped onto Scala implicits; in cases with dia-
monds in the subclass hierarchy this can lead to ambiguities in the generated
code:

7 FURTHER ISSUES 36

class class1 =
fixes foo :: ′a ⇒ ′a

class class2 = class1

class class3 = class1

Here both class2 and class3 inherit from class1, forming the upper part of a
diamond.

definition bar :: ′a :: {class2, class3} ⇒ ′a where
bar = foo

This yields the following code:

object Example {

trait class1[A] {
val ‘Example.foo‘: A => A

}
def foo[A](a: A)(implicit A: class1[A]): A = A.‘Example.foo‘(a)

trait class2[A] extends class1[A] {
}

trait class3[A] extends class1[A] {
}

def bar[A : class2 : class3]: A => A = (a: A) => foo[A](a)

} /* object Example */

This code is rejected by the Scala compiler: in the definition of bar, it is not
clear from where to derive the implicit argument for foo.

The solution to the problem is to close the diamond by a further class with
inherits from both class2 and class3:

class class4 = class2 + class3

Then the offending code equation can be restricted to class4:

lemma [code]:
(bar :: ′a::class4 ⇒ ′a) = foo
by (simp only : bar-def)

with the following code:

7 FURTHER ISSUES 37

object Example {

trait class1[A] {
val ‘Example.foo‘: A => A

}
def foo[A](a: A)(implicit A: class1[A]): A = A.‘Example.foo‘(a)

trait class2[A] extends class1[A] {
}

trait class3[A] extends class1[A] {
}

trait class4[A] extends class2[A] with class3[A] {
}

def bar[A : class4]: A => A = (a: A) => foo[A](a)

} /* object Example */

which exposes no ambiguity.
Since the preprocessor (cf. §2.2) propagates sort constraints through a

system of code equations, it is usually not very difficult to identify the set of
code equations which actually needs more restricted sort constraints.

7.2 Modules namespace

When invoking the export-code command it is possible to leave out the
module-name part; then code is distributed over different modules, where
the module name space roughly is induced by the Isabelle theory name space.

Then sometimes the awkward situation occurs that dependencies between
definitions introduce cyclic dependencies between modules, which in the
Haskell world leaves you to the mercy of the Haskell implementation you
are using, while for SML/OCaml code generation is not possible.

A solution is to declare module names explicitly. Let use assume the three
cyclically dependent modules are named A, B and C. Then, by stating

code-identifier
code-module A ⇀ (SML) ABC
| code-module B ⇀ (SML) ABC
| code-module C ⇀ (SML) ABC

we explicitly map all those modules on ABC, resulting in an ad-hoc merge
of this three modules at serialisation time.

7 FURTHER ISSUES 38

7.3 Locales and interpretation

A technical issue comes to surface when generating code from specifications
stemming from locale interpretation.

Let us assume a locale specifying a power operation on arbitrary types:

locale power =
fixes power :: ′a ⇒ ′b ⇒ ′b
assumes power-commute: power x ◦ power y = power y ◦ power x

begin

Inside that locale we can lift power to exponent lists by means of specification
relative to that locale:

primrec powers :: ′a list ⇒ ′b ⇒ ′b where
powers [] = id
| powers (x # xs) = power x ◦ powers xs

lemma powers-append :
powers (xs @ ys) = powers xs ◦ powers ys
by (induct xs) simp-all

lemma powers-power :
powers xs ◦ power x = power x ◦ powers xs
by (induct xs)

(simp-all del : o-apply id-apply add : comp-assoc,
simp del : o-apply add : o-assoc power-commute)

lemma powers-rev :
powers (rev xs) = powers xs

by (induct xs) (simp-all add : powers-append powers-power)

end

After an interpretation of this locale (say, interpretation fun-power :
power (λn (f :: ′a ⇒ ′a). f ˆˆ n)), one would expect to have a constant
fun-power .powers :: nat list ⇒ (′a ⇒ ′a) ⇒ ′a ⇒ ′a for which code can be
generated. But this not the case: internally, the term fun-power .powers is
an abbreviation for the foundational term power .powers (λn (f :: ′a ⇒ ′a).
f ˆˆ n) (see [2] for the details behind).

Fortunately, with minor effort the desired behaviour can be achieved. First,
a dedicated definition of the constant on which the local powers after inter-
pretation is supposed to be mapped on:

7 FURTHER ISSUES 39

definition funpows :: nat list ⇒ (′a ⇒ ′a) ⇒ ′a ⇒ ′a where
[code del]: funpows = power .powers (λn f . f ˆˆ n)

In general, the pattern is c = t where c is the name of the future constant
and t the foundational term corresponding to the local constant after inter-
pretation.

The interpretation itself is enriched with an equation t = c:

interpretation fun-power : power (λn (f :: ′a ⇒ ′a). f ˆˆ n) where
power .powers (λn f . f ˆˆ n) = funpows
by unfold-locales

(simp-all add : fun-eq-iff funpow-mult mult .commute funpows-def)

This additional equation is trivially proved by the definition itself.
After this setup procedure, code generation can continue as usual:

funpow :: forall a. Nat -> (a -> a) -> a -> a;
funpow Zero_nat f = id;
funpow (Suc n) f = f . funpow n f;

funpows :: forall a. [Nat] -> (a -> a) -> a -> a;
funpows [] = id;
funpows (x : xs) = funpow x . funpows xs;

Fortunately, an even more succint approach is available using command
permanent-interpretation. This is available by importing theory ~~/src/

Tools/Permanent_Interpretation.thy. Then the pattern above collapses
to

permanent-interpretation fun-power : power (λn (f :: ′a ⇒ ′a). f ˆˆ n)
defining funpows = fun-power .powers :: nat list ⇒ (′a ⇒ ′a) ⇒ ′a ⇒ ′a
by unfold-locales

(simp-all add : fun-eq-iff funpow-mult mult .commute)

7.4 Parallel computation

Theory Parallel in ~~/src/HOL/Library contains operations to exploit par-
allelism inside the Isabelle/ML runtime engine.

7.5 Imperative data structures

If you consider imperative data structures as inevitable for a specific applica-
tion, you should consider Imperative Functional Programming with Isabelle/HOL
[4]; the framework described there is available in session Imperative-HOL, to-
gether with a short primer document.

7 FURTHER ISSUES 40

7.6 ML system interfaces

Since the code generator framework not only aims to provide a nice Isar
interface but also to form a base for code-generation-based applications, here
a short description of the most fundamental ML interfaces.

Managing executable content

ml Reference

Code.read_const: theory -> string -> string

Code.add_eqn: thm -> theory -> theory

Code.del_eqn: thm -> theory -> theory

Code_Preproc.map_pre: (Proof.context -> Proof.context) -> theory -> theory

Code_Preproc.map_post: (Proof.context -> Proof.context) -> theory -> theory

Code_Preproc.add_functrans:

string * (Proof.context -> (thm * bool) list -> (thm * bool) list option)

-> theory -> theory

Code_Preproc.del_functrans: string -> theory -> theory

Code.add_datatype: (string * typ) list -> theory -> theory

Code.get_type: theory -> string

-> ((string * sort) list * (string * ((string * sort) list * typ list)) list) * bool

Code.get_type_of_constr_or_abstr: theory -> string -> (string * bool) option

Code.read_const thy s reads a constant as a concrete term expression s.

Code.add_eqn thm thy adds function theorem thm to executable content.

Code.del_eqn thm thy removes function theorem thm from executable content,
if present.

Code_Preproc.map_pre f thy changes the preprocessor simpset.

Code_Preproc.add_functrans (name, f) thy adds function transformer f (named
name) to executable content; f is a transformer of the code equations be-
longing to a certain function definition, depending on the current theory
context. Returning NONE indicates that no transformation took place;
otherwise, the whole process will be iterated with the new code equations.

Code_Preproc.del_functrans name thy removes function transformer named
name from executable content.

Code.add_datatype cs thy adds a datatype to executable content, with genera-
tion set cs.

Code.get_type_of_constr_or_abstr thy const returns type constructor corre-
sponding to constructor const ; returns NONE if const is no constructor.

REFERENCES 41

Data depending on the theory’s executable content

Implementing code generator applications on top of the framework set out so
far usually not only involves using those primitive interfaces but also storing
code-dependent data and various other things.

Due to incrementality of code generation, changes in the theory’s exe-
cutable content have to be propagated in a certain fashion. Additionally,
such changes may occur not only during theory extension but also during
theory merge, which is a little bit nasty from an implementation point of
view. The framework provides a solution to this technical challenge by pro-
viding a functorial data slot Code_Data; on instantiation of this functor, the
following types and operations are required:

type T
val empty : T

T the type of data to store.

empty initial (empty) data.

An instance of Code_Data provides the following interface:

change: theory → (T → T) → T
change-yield : theory → (T → ′a ∗ T) → ′a ∗ T

change update of current data (cached!) by giving a continuation.

change-yield update with side result.

References

[1] Klaus Aehlig, Florian Haftmann, and Tobias Nipkow. A compiled
implementation of normalization by evaluation. In Otmane Aı̈t Mohamed,
César Muñoz, and Sofiène Tahar, editors, TPHOLs ’08: Proceedings of the
21th International Conference on Theorem Proving in Higher Order Logics,
volume 5170 of Lecture Notes in Computer Science, pages 352–367.
Springer-Verlag, 2008.

[2] Clemens Ballarin. Tutorial to Locales and Locale Interpretation.
http://isabelle.in.tum.de/doc/locales.pdf.

[3] Stefan Berghofer, Lukas Bulwahn, and Florian Haftmann. Turning inductive
into equational specifications. In Theorem Proving in Higher Order Logics,
pages 131–146, 2009.

http://isabelle.in.tum.de/doc/locales.pdf

REFERENCES 42

[4] Lukas Bulwahn, Alexander Krauss, Florian Haftmann, Levent Erkk, and
John Matthews. Imperative functional programming with Isabelle/HOL. In
Theorem Proving in Higher Order Logics: TPHOLs 2008, Lecture Notes in
Computer Science. Springer-Verlag, 2008.

[5] Florian Haftmann, Alexander Krauss, Ondřej Kunčar, and Tobias Nipkow.
Data refinement in isabelle/hol. In S. Blazy, C. Paulin-Mohring, and
D. Pichardie, editors, Interactive Theorem Proving (ITP 2013), volume 7998
of Lecture Notes in Computer Science, pages 100–115. Springer-Verlag, 2013.

[6] Florian Haftmann and Tobias Nipkow. Code generation via higher-order
rewrite systems. In Matthias Blume, Naoki Kobayashi, and Germán Vidal,
editors, Functional and Logic Programming: 10th International Symposium:
FLOPS 2010, volume 6009 of Lecture Notes in Computer Science.
Springer-Verlag, 2010.

[7] Xavier Leroy et al. The Objective Caml system – Documentation and user’s
manual. http://caml.inria.fr/pub/docs/manual-ocaml/.

[8] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard
ML. MIT Press, 1990.

[9] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A
Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in
Computer Science. Springer-Verlag, 2002.

[10] Martin Odersky and al. An overview of the scala programming language.
Technical Report IC/2004/64, EPFL Lausanne, Switzerland, 2004.

[11] Simon Peyton Jones et al. The Haskell 98 language and libraries: The
revised report. Journal of Functional Programming, 13(1):0–255, Jan 2003.
http://www.haskell.org/definition/.

[12] Makarius Wenzel. The Isabelle/Isar Reference Manual.
http://isabelle.in.tum.de/doc/isar-ref.pdf.

http://caml.inria.fr/pub/docs/manual-ocaml/
http://www.haskell.org/definition/
http://isabelle.in.tum.de/doc/isar-ref.pdf

	Introduction
	Code generation principle: shallow embedding
	A quick start with the Isabelle/HOL toolbox
	Type classes
	How to continue from here

	Code generation foundations
	Code generator architecture
	The pre- and postprocessor
	Understanding code equations
	Equality
	Explicit partiality
	If something goes utterly wrong

	Program and datatype refinement
	Program refinement
	Datatype refinement
	Datatype refinement involving invariants

	Inductive Predicates
	Alternative names for functions
	Alternative introduction rules
	Options for values
	Embedding into functional code within Isabelle/HOL
	Further Examples

	Adaptation to target languages
	Adapting code generation
	The adaptation principle
	Common adaptation applications
	Parametrising serialisation
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Haskell serialisation
	Enhancing the target language context

	Evaluation
	Evaluation techniques
	Aspects of evaluation
	Schematic overview
	Preprocessing HOL terms into evaluable shape
	Intimate connection between logic and system runtime

	Further issues
	Specialities of the 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Scala target language
	Modules namespace
	Locales and interpretation
	Parallel computation
	Imperative data structures
	ML system interfaces

