ERLANG

Erlang/OTP System Documentation

Copyright © 1997-2021 Ericsson AB. All Rights Reserved.
Erlang/OTP System Documentation 11.1.4
January 29, 2021

Copyright © 1997-2021 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

January 29, 2021

1.1 Deprecations

1 General Information

1.1 Deprecations

1.1.1 Introduction

Thisdocument lists all deprecated functionality in Erlang/OTP. For more information regarding the strategy regarding
deprecations see the documentation of Support, Compatibility, Deprecations, and Removal.

1.1.2 OTP 23

Crypto Old API
The Old API is now deprecated and has also been scheduled for removal.
For replacement functions see the New API.

http_uri

Since OTP 21 the recommended module to handle URIs is uri_string. The module http_uri does not provide a
implementation that satisfies the RFC.

ssh

The public key algorithm ' ssh-r sa isregarded as insecure due to its usage of SHA1, and is therfore deprecated.
It will not be available by default from OTP-24.

The public key algorithm ' ssh- dss isregarded as insecure due to its usage of SHA1 and its short key length, and
istherfore deprecated. It is not available by default from OTP-23.

Pg2

As of OTP 23, a new process group implementation pg is introduced. pg is similar to pg2, but with much better
scalability properties. However, the APl and behavior are not compatible.

pg2 isnow deprecated and has also been scheduled for removal in OTP 24.

Distributed Disk Logs

As of OTP 23, the distributed di sk_| og feature has been deprecated and it has also been scheduled for removal
in OTP 24.

erl_interface registry

As of OTP 23, ther egi st ry functionality part of er | _i nt er f ace has been deprecated and it has also been
scheduled for removal in OTP 24.

Functions Deprecated in OTP 23

e erl _tidy:dir/O0 (usehttps://github.com/richcarl/erl_tidy)

e« erl_tidy:dir/1 (usehttps://github.com/richcarl/erl_tidy)

« erl_tidy:filell (usehttps//github.com/richcarl/erl_tidy)

e« erl _tidy: nodul e/ 1 (use https://github.com/richcarl/erl_tidy)

e« erl _tidy: nodul e/ 2 (use https://github.com/richcarl/erl_tidy)

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 1

1.1 Deprecations

« filenane:safe _relative_path/1 (usefileib:safe relative path/2 instead)
e http_uri:decode/ 1 (useuri_string functions instead)

e http_uri:encode/ 1 (useuri_string functions instead)

« http_uri: parse/ 1 (useuri_string functions instead)

e http_uri: parse/ 2 (useuri_string functions instead)

e http_uri:schene_defaul ts/0 (useuri_string functions instead)

e httpd: parse_query/ 1 (useuri_string:dissect_query/1 instead)

e igor:_/ _(usehttps//github.com/richcarl/igor)

e pg2: /| _(use'pg instead)

 snnmpm async_get/ 3 (use snmpm:async_get2/3 instead.)

e snnpm async_get/ 4 (use snmpm:async_get2/4 instead.)

e snnpm async_get/ 5 (use snmpm:async_get2/4 instead.)
 snnmpm async_get/ 6 (use snmpm:async_get2/4 instead.)

e« snnpm async_get bul k/ 5 (use snmpm:async_get_bulk2/5 instead.)
 snnmpm async_get _bul k/ 6 (use snmpm:async_get_bulk2/6 instead.)
e« snnpm async_get bul k/ 7 (use snmpm:async_get_bulk2/6 instead.)
 snmpm async_get _bul k/ 8 (use snrmpm:async_get_bulk2/6 instead.)
 snnmpm async_get next/ 3 (use snmpm:async_get_next2/3 instead.)
e snnpm async_get next/ 4 (use snmpm:async_get_next2/4 instead.)
 snmpm async_get _next/5 (use snmpm:async_get_next2/4 instead.)
e snnpm async_get next/ 6 (usesnmpm:async_get next2/4 instead.)
 snnmpm async_set/ 3 (use snmpm:async_set?/3 instead.)
 snnpm async_set/ 4 (use snmpm:async_set?/4 instead.)

e snnpm async_set/ 5 (use snmpm:async_set2/4 instead.)
 snnmpm async_set/ 6 (use snmpm:async_set?/4 instead.)

e snnpm sync_get/ 3 (use snmpm:sync_get2/3 instead.)

 snnmpm sync_get/ 4 (use snmpm:sync_get2/4 instead.)

e snnpm sync_get /5 (use snmpm:sync_get2/4 instead.)

* snnmpm sync_get/ 6 (use snmpm:sync_get2/4 instead.)

e« snnmpm sync_get bul k/ 5 (use snmpm:sync_get bulk2/5 instead.)

e snnpm sync_get bul k/ 6 (use snmpm:sync_get bulk2/6 instead.)

e« snnmpm sync_get _bul k/ 7 (use snmpm:sync_get bulk2/6 instead.)

e snnpm sync_get bul k/ 8 (use snmpm:sync_get bulk2/6 instead.)
 snmpm sync_get _next/ 3 (use snmpm:sync_get_next2/3 instead.)
 snnpm sync_get next/ 4 (usesnmpm:sync_get next2/4 instead.)

e snnpm sync_get next/5 (use snmpm:sync_get next2/4 instead.)
 snnmpm sync_get _next/ 6 (use snmpm:sync_get_next2/4 instead.)

e snnpm sync_set/ 3 (use snmpm:sync_set2/3 instead.)

e snmpm sync_set/ 4 (use snmpm:sync_set2/4 instead.)

e snnpm sync_set /5 (use snmpm:sync_set2/4 instead.)

e snnmpm sync_set/ 6 (use snmpm:sync_set2/4 instead.)

2 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.1 Deprecations

1.1.3 OTP 22
VxWorks Support

Some parts of OTP has had limited VxWorks support, such as for example er | _i nt er f ace. This support is now
deprecated and has al so been scheduled for removal in OTP 23.

Legacy parts of erl_interface

Theold legacy er| _i nt er f ace library (functions with prefix er | _) is deprecated as of OTP 22. These parts of
erl _interface hasbeeninformally deprecated for a very long time. Y ou typically want to replace the usage of
theer| _i nt erface library with the use of theei library which alsoispart of theer | _i nt er f ace application.
Theoldlegacy er | _i nt er f ace library has aso been scheduled for removal in OTP 23.

System Events

The format of "System Events' as defined in the man page for sys has been clarified and cleaned up. Due to this,
code that relied on the internal badly documented previous (before this change) format of OTP's "System Events',
needs to be changed.

Inthewake of thisthefunction sys.get_debug/3 that returns datawith undocumented and internal format (and therefore
ispracticaly useless) has been deprecated, and anew function sys.get_log/1 has been added, that hopefully does what
the deprecated function was intended for.

Functions Deprecated in OTP 22

e crypto: bl ock_decrypt/ 3 (usecrypto:crypto_one time/4 or crypto:crypto_init/3 +
crypto:crypto_update/2 + crypto:crypto_final/1 instead)

e crypto: bl ock_decrypt/ 4 (usecrypto:crypto_one_time/5, crypto:crypto_one_time_aead/6,7 or
crypto:crypto_(dyn_iv)?_init + crypto:crypto_(dyn_iv)? _update + crypto:crypto_final instead)

e« crypto: bl ock_encrypt/ 3 (usecrypto:crypto_one time/4 or crypto:crypto_init/3 +
crypto:crypto_update/2 + crypto:crypto_final/1 instead)

e crypto: bl ock_encrypt/ 4 (usecrypto:crypto_one_time/5, crypto:crypto_one_time_aead/6,7 or
crypto:crypto_(dyn_iv)?_init + crypto:crypto_(dyn_iv)?_update + crypto:crypto_final instead)

e crypto: cmac/ 3 (use crypto:mac/4 instead)

e crypto: cmac/ 4 (usecrypto:macN/5 instead)

e crypto: hmac/ 3 (use crypto:mac/4 instead)

e crypto: hmac/ 4 (use crypto:macN/5 instead)

e crypto: hmac_final /1 (usecrypto:mac_fina/l instead)

e crypto: hmac_final n/2 (usecrypto:mac finalN/2 instead)

e crypto: hmac_i nit/ 2 (usecrypto:mac_init/3 instead)

e crypto: hmac_updat e/ 2 (use crypto:mac_update/2 instead)

e crypto:next _iv/_(seethe'New and Old API' chapter of the CRYPTO User's guide)

e crypto: pol y1305/ 2 (use crypto:mac/3 instead)

e crypto:stream decrypt/ 2 (usecrypto:crypto_update/2 instead)

e crypto:stream encrypt/ 2 (usecrypto:crypto_update/2 instead)

e crypto:stream.init/_ (usecrypto:.crypto_init/3 + crypto:crypto_update/2 + crypto:crypto_final/1 or
crypto:crypto_one_time/4 instead)

e net: broadcast/ 3 (userpc.eva_everywhere/3 instead)
e net:call/4 (userpc:cal/4instead)
e net:cast/ 4 (userpc:.cast/4 instead)

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 3

1.1 Deprecations

e net: ping/ 1l (usenet_adm:ping/linstead)
e net:rel ay/ 1 (usedaverelay/l instead)
* net:sleep/1(use'receive after T -> ok end' instead)

e sys:get _debug/ 3 (incorrectly documented and only for internal use. Can often be replaced with
sys.get_log/1)

1.1.4 OTP 21

Functions Deprecated in OTP 21

e ssl:cipher_suites/O0 (usecipher_suites/2,3 instead)
e ssl:cipher_suites/1 (usecipher_suites/2,3 instead)
e ssl:ssl_accept/ _ (usesd_handshake/1,2,3 instead)

1.1.5 OTP 20

Functions Deprecated in OTP 20

e crypto:rand_uniforn 2 (userand:uniform/1 instead)

« erlang: get_stacktrace/ 0 (usethe new try/catch syntax for retrieving the stack backtrace)
« filenane:find_src/_(usefileib:find source/1,3 instead)

e gen_fsm _/_ (usethe'gen_statem' module instead)

1.1.0 OTP 19
SSL/TLS

For security reasons SSL-3.0 is ho longer supported by default, but can be configured.

Functions Deprecated in OTP 19

e code: rehash/ 0 (the code path cache feature has been removed)
e crypto:rand_bytes/1()

e queue: | ai t/ 1 (usequeueliat/l instead)

« random _/ _ (usethe'rand' module instead)

1.1.7 OTP 18

erlang:now/0

New time functionality and a new time APl was introduced. For more information see the Time and Time
Correction chapter in the ERTS User's guide and specifically the Dos and Donts section on how to replace usage of
erl ang: now 0.

httpd_conf module

API functions in the module ht t pd_conf was deprecated in favor of standard modulessuch asl i st s, stri ng,
filelib,anderl ang.

Functions Deprecated in OTP 18

* erlang: now 0O (seethe"Time and Time Correction in Erlang" chapter of the ERTS User's Guide for more
information)

4 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.1 Deprecations

1.1.8 OTP 16
Functions Deprecated in OTP 16

nmegaco: f or mat _ver si ons/ 1 (use megaco:print_version_info/0,1 instead.)

snnpa: ol d_i nfo_format/ 1 (use"new" format instead)

wxCal endar Ct r | : enabl eYear Change/ 1 (not available in wxWidgets-2.9 and later)

wxCal endar Ct r | : enabl eYear Change/ 2 (not available in wxWidgets-2.9 and later)

wxCl i ent DC. new 0 (not available in wxWidgets-2.9 and later)

wxCur sor : new 3 (not availablein wxWidgets-2.9 and later)

wxCur sor : new 4 (not availablein wxWidgets-2.9 and later)

wxDC: conmput eScal eAndOr i gi n/ 1 (not available in wxWidgets-2.9 and later)

wx G aphi csRender er: creat eLi near G adi ent Brush/ 7 (not available in wxWidgets-2.9 and later)
wxG aphi csRender er: cr eat eRadi al Gr adi ent Br ush/ 8 (not available in wxWidgets-2.9 and | ater)
wxG i dCel | Edi t or: endEdi t / 4 (not available in wxWidgets-2.9 and later)

wxG i dCel | Edi t or : pai nt Backgr ound/ 3 (not available in wxWidgets-2.9 and later)

wx| dl eEvent : canSend/ 1 (not available in wxWidgets-2.9 and later)

wxMDI O i ent W ndow. new 1 (hot available in wxWidgets-2.9 and later)

wxMDI O i ent W ndow. new 2 (not available in wxWidgets-2.9 and later)

wxPai nt DC. new 0 (hot available in wxWidgets-2.9 and later)

wxPost Scri pt DC. get Resol uti on/ 0 (not availablein wxWidgets-2.9 and later)

wxPost Scri pt DC: set Resol uti on/ 1 (not availablein wxWidgets-2.9 and later)

wxW ndowDC: new/ 0 (not available in wxWidgets-2.9 and later)

1.1.9 OTP 12
inets - httpd Apache config files

A new config file format was introduced.

Functions Deprecated in OTP 12

aut h: cooki e/ 0 (use erlang:get_cookie/0 instead)

aut h: cooki e/ 1 (use erlang:set_cookie/2 instead)

aut h: i s_aut h/ 1 (use net_adm:ping/1 instead)

aut h: node_cooki e/ _ (use erlang:set_cookie/2 and net_adm:ping/1 instead)

cal endar: | ocal _tine_to_universal _tine/1 (usecaendar:local_time to_universal time dst/1
instead)

1.1.10 OTP 10
Functions Deprecated in OTP 10

snnp: add_agent _caps/ 2 (use snmpaiadd_agent_caps/2 instead.)
snnp: ¢/ 1 (use snmpc:.compile/1 instead.)

snnp: ¢/ 2 (use snmpc:compile/2 instead.)

snnp: change_| og_si ze/ 1 (use snmpa:change log_size/1 instead.)
snnp: conpi | e/ 3 (use snmpc:compile/3 instead.)

snnp: cur rent _addr ess/ 0 (use snmpa:current_address/O instead.)

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 5

1.2 Scheduled for Removal

e snnp:current _communi ty/ 0 (use snmpa.current_community/O instead.)
e snnp:current _cont ext/ 0 (use snmpa:current_context/0 instead.)

e snnp:current_net _if_data/0 (usesnmpacurrent_net_if data/0 instead.)
e snnp:current_request i d/ 0 (usesnmpa:current_request_id/O instead.)
 snnp: del _agent _caps/ 1 (use snmpadel_agent _caps/1instead.)

e snnp: dunp_nmi bs/ 0 (use snmpa:dump_mibs/0 instead.)

e snnp: dunp_mi bs/ 1 (use snmpa:dump_mibs/1 instead.)

e snnp:enumto_int/2 (usesnmpaenum to_int/2 instead.)

e snnp:enumto_int/ 3 (usesnmpaenum to int/3instead.)

e snnp: get/ 2 (use snmpaget/2 instead.)

 snnp: get_agent caps/ 0 (use snmpaget_agent caps/0 instead.)

e snnp:get_synbolic_store_db/ 0 (usesnmpa:get_ symbolic_store db/Oinstead.)
e snnp:info/ 1 (usesnmpainfo/linstead.)

e snnp:int_to_enunt 2 (usesnmpaint_to_enum/2 instead.)

e snnp:int_to_enun 3 (usesnmpaint_to_enum/3instead.)

e snnp:is_consistent/ 1 (usesnmpc:is consistent/1 instead.)

e snnp: |l oad_m bs/ 2 (use sompaload_mibs/2 instead.)

e snnp:log_to_txt/2 (usesnmpalog to txt/2 instead.)

e snnp:log to_txt/3 (usesnmpalog to txt/3instead.)
 snnp:log_to_txt/4 (usesnmpalog_to txt/4 instead.)

e snnp:mb_to_hrl/1 (usesnmpc:mib_to hrl/1instead.)

* snnp: nanme_t o_oi d/ 1 (use snmpaname_to_oid/1 instead.)

e snnp: nanme_t o_oi d/ 2 (use snmpaname _to_oid/2 instead.)

e snnp:oid_to_nane/1 (usesnmpaoid to name/linstead.)
 snnp:oid_to_nane/ 2 (usesnmpaoid_to name/2 instead.)

e snnp:regi ster_subagent/ 3 (use snmparegister_subagent/3 instead.)

« snnp:send_notification/3 (usesnmpasend notification/3 instead.)

e« snnp:send_notification/4 (usesnmpasend notification/4 instead.)

e snnp:send_notification/5 (usesnmpasend_ notification/5 instead.)

« snnp:send_notification/6 (usesnmpasend notification/6 instead.)

e« snnp:send_trap/ 3 (usesnmpasend_trap/3 instead.)

e snnp:send_trap/ 4 (usesnmpasend_trap/4 instead.)

e snnp: unl oad_m bs/ 2 (use snmpa:unload mibs/2 instead.)

e snnp:unregi ster_subagent/ 2 (use snmpaunregister_subagent/2 instead.)

1.2 Scheduled for Removal

1.2.1 Introduction

This document list all functionality in Erlang/OTP that currently are scheduled for removal. For more information
regarding the strategy regarding removal of functionality see the documentation of Support, Compatibility,
Deprecations, and Removal.

6 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.2 Scheduled for Removal

1.2.2 OTP 25
http_uri

Since OTP 21 the recommended module to handle URIs is uri_string. The module htt p_uri does not provide a
implementation that satisfies the RFC. Formally deprecated since OTP-23.

Functions Scheduled for Removal in OTP 25

« filenane:safe relative_path/1 (usefileib:safe relative path/2 instead)
e http_uri:decode/ 1 (useuri_string functions instead)

e http_uri:encode/ 1 (useuri_string functions instead)

e http_uri:parse/1 (useuri_string functions instead)

« http_uri: parse/ 2 (useuri_string functions instead)

e http_uri:schene_defaul ts/0 (useuri_string functions instead)

e snnmpm async_get/ 3 (use snmpm:async_get2/3 instead.)

e snnpm async_get/ 4 (use snmpm:async_get2/4 instead.)

e snnmpm async_get /5 (use snmpm:async_get2/4 instead.)

e snnpm async_get/ 6 (use snmpm:async_get2/4 instead.)

e snnpm async_get _bul k/ 5 (use snmpm:async_get_bulk2/5 instead.)
« snnmpm async_get bul k/ 6 (use snmpm:async_get_bulk2/6 instead.)
e« snnpm async_get bul k/ 7 (use snmpm:async_get_bulk2/6 instead.)
e snnmpm async_get _bul k/ 8 (use snmpm:async_get_bulk2/6 instead.)
e snnpm async_get next/ 3 (use snmpm:async_get next2/3 instead.)
e snnmpm async_get _next/ 4 (use snmpm:async_get_next2/4 instead.)
 snnmpm async_get next/5 (use snmpm:async_get_next2/4 instead.)
e snnpm async_get next/ 6 (usesnmpm:async_get next2/4 instead.)
 snnmpm async_set/ 3 (use snmpm:async_set?/3 instead.)

e snnpm async_set/ 4 (use snmpm:async_set2/4 instead.)
 snmpm async_set/ 5 (use snrmpm:async_set?/4 instead.)

e snnpm async_set/ 6 (use snmpm:async_set2/4 instead.)

e snnpm sync_get/ 3 (use snmpm:sync_get2/3 instead.)

e snnmpm sync_get/ 4 (use snmpm:sync_get2/4 instead.)

e snnpm sync_get /5 (use snmpm:sync_get2/4 instead.)

e snnmpm sync_get/ 6 (use snmpm:sync_get2/4 instead.)

e snnpm sync_get bul k/ 5 (use snmpm:sync_get bulk2/5 instead.)
 snnmpm sync_get _bul k/ 6 (use sompm:sync_get bulk2/6 instead.)

e« snnpm sync_get bul k/ 7 (use snmpm:sync_get bulk2/6 instead.)

e snnpm sync_get bul k/ 8 (use snmpm:sync_get bulk2/6 instead.)
 snnmpm sync_get next/ 3 (use snmpm:sync_get_next2/3 instead.)

e snnpm sync_get next/ 4 (use snmpm:sync_get next2/4 instead.)

e snnmpm sync_get _next/5 (use snmpm:sync_get_next2/4 instead.)

e snnpm sync_get next/ 6 (usesnmpm:sync_get next2/4 instead.)

e snnpm sync_set/ 3 (use snmpm:sync_set2/3 instead.)

e snnmpm sync_set/ 4 (use snmpm:sync_set2/4 instead.)

e snnpm sync_set /5 (use snmpm:sync_set2/4 instead.)

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 7

1.2 Scheduled for Removal

e snnmpm sync_set/ 6 (use snmpm:sync_set2/4 instead.)

1.2.3 OTP 24

Old Crypto API
The Old API will be removed as of OTP 24. The support was formally deprecated as of OTP 23.
For replacement functions see the New API.

P92
pg2 isas of OTP 23 deprecated and will be removed in OTP 24.

Distributed Disk Logs
Thedistributed di sk_| og featureis as of OTP 23 deprecated and will be removed in OTP 24.

Megaco version 3 encoding config

As of OTP 24, the pre-release version 3 encoding configs, pr ev3a, pr ev3b and pr ev3c will be removed. Use
the full version instead.

The (encoding) config option for thefull version, { ver si on3, 3}, will till be supported, even though its no longer
necessary to specify it thisway.

Compilation of Latin-1 Encoded Erlang Files

Asof OTP 24, the Erlang compiler will refuse to compile sourcefiles encoded in Latin-1 but without a%% codi ng:
| at i n- 1 comment at the beginning of thefile.

erl_interface registry
Ther egi st ry functionality part of er | _i nt er f ace isasof OTP 23 deprecated and will be removed in OTP 24.

Functions Scheduled for Removal in OTP 24

e crypto: bl ock_decrypt/ 3 (usecrypto:crypto_one time/4 or crypto:crypto_init/3 +
crypto:crypto_update/2 + crypto:crypto_final/1 instead)

e« crypto: bl ock_decrypt/ 4 (usecrypto:crypto_one_time/5, crypto:crypto_one_time_aead/6,7 or
crypto:crypto_(dyn_iv)?_init + crypto:crypto_(dyn_iv)?_update + crypto:crypto_final instead)

e« crypto: bl ock_encrypt/ 3 (usecrypto:crypto_one time/4 or crypto:crypto_init/3 +
crypto:crypto_update/2 + crypto:crypto_final/1 instead)

e crypto: bl ock_encrypt/ 4 (usecrypto:crypto_one_time/5, crypto:crypto_one_time_aead/6,7 or
crypto:crypto_(dyn_iv)?_init + crypto:crypto_(dyn_iv)?_update + crypto:crypto_final instead)

 crypto: cmac/ 3 (use crypto:mac/4 instead)

e crypto: cmac/ 4 (use crypto:macN/5 instead)

e crypto: hmac/ 3 (use crypto:mac/4 instead)

e crypto: hmac/ 4 (use crypto:macN/5 instead)

e crypto: hmac_final /1 (usecrypto:mac _final/l instead)

* crypto: hmac_final _n/ 2 (usecrypto:mac_finalN/2 instead)

e crypto: hmac_i nit/ 2 (usecrypto:mac_init/3 instead)

e crypto: hmac_updat e/ 2 (use crypto:mac_update/2 instead)

e crypto:next _iv/_(seethe'New and Old API' chapter of the CRYPTO User's guide)

e crypto: pol y1305/ 2 (use crypto:mac/3 instead)

e crypto:stream decrypt/ 2 (usecrypto:crypto_update/2 instead)

8 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.2 Scheduled for Removal

crypto: stream encrypt/ 2 (usecrypto:crypto_update/2 instead)

crypto:stream.init/_ (usecrypto:crypto init/3 + crypto:crypto_update/2 + crypto:crypto_final/1 or
crypto:crypto_one_time/4 instead)

erl _tidy:dir/0 (usehttps://github.com/richcarl/erl_tidy)

erl _tidy:dir/1 (usehttps.//github.com/richcarl/erl _tidy)

erl _tidy:filel1l (usehttps//github.com/richcarl/erl_tidy)

erl _tidy: nodul e/ 1 (use https://github.com/richcarl/erl_tidy)

erl _tidy: nodul e/ 2 (use https://github.com/richcarl/erl_tidy)

erl ang: get _st acktrace/ 0 (usethe new try/catch syntax for retrieving the stack backtrace)
filenane: find_src/_ (usefildib:find source/1,3 instead)

i gor: _/ _ (usehttps://github.com/richcarl/igor)

nmegaco: f or mat _ver si ons/ 1 (use megaco:print_version_info/0,1 instead.)
pg2: [/ _(use'pg instead)

snnp: add_agent _caps/ 2 (use snmpa:add_agent_caps/2 instead.)

snnp: ¢/ 1 (use snmpc:.compile/1 instead.)

snnp: ¢/ 2 (use snmpc:compile/2 instead.)

snnp: change_| og_si ze/ 1 (use snmpa:change log size/1 instead.)

snnp: conpi | e/ 3 (use snmpc:compile/3 instead.)

snnp: cur rent _addr ess/ 0 (use snmpa:current_address/O instead.)

snnp: current _conmuni t y/ 0 (use snmpacurrent_community/0 instead.)
snnp: cur rent _cont ext/ 0 (use snmpa:current_context/0 instead.)

snnp: current _net i f_data/ 0 (usesnmpacurrent_net if data/O instead.)
snnp: current _request _i d/ 0 (use snmpa:current_request_id/0 instead.)
snnp: del _agent caps/ 1 (use snmpadel_agent caps/1instead.)

snnp: dunp_m bs/ 0 (use snmpa:dump_mibs/0 instead.)

snnp: dunp_mi bs/ 1 (use snmpa:dump_mibs/1 instead.)

snnp: enum t o_i nt/ 2 (use snmpa:enum _to_int/2 instead.)

snnp: enum t o_i nt/ 3 (use snmpa:enum_to_int/3 instead.)

snnp: get / 2 (use snmpaget/2 instead.)

snnp: get _agent _caps/ 0 (use snmpaget_agent_caps/0 instead.)

snnp: get _synbol i c_store_db/ 0 (use snmpa:get_symbolic_store db/0 instead.)
snnp: i nf o/ 1 (use snmpainfo/1 instead.)

snnp: i nt _t o_enuni 2 (use snmpaint_to_enum/2 instead.)

snnp: i nt _to_enunt 3 (usesnmpaint_to_enum/3 instead.)

snnp: i s_consi stent/ 1 (usesnmpc:is_consistent/1 instead.)

snnp: | oad_m bs/ 2 (use snmpaload _mibs/2 instead.)

snnp: |1 og_to_txt/2 (usesnmpalog to txt/2 instead.)

snnp: 1 og_to_txt/ 3 (usesnmpalog_to_txt/3 instead.)

snnp: |1 og_to_txt/4 (usesnmpalog to txt/4 instead.)

snnp: m b_to_hrl /1 (usesnmpc:mib_to_hrl/1 instead.)

snnp: nane_t o_oi d/ 1 (use snmpa:name_to_oid/1 instead.)

snnp: nane_t o_oi d/ 2 (use snmpa:name_to_oid/2 instead.)

snnp: oi d_t o_nane/ 1 (use snmpa:oid to_name/1 instead.)

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 9

1.2 Scheduled for Removal

 snnp:oid_to_nane/ 2 (usesnmpaoid_to name/2 instead.)

e snnp:regi ster_subagent/ 3 (use snmparegister_subagent/3 instead.)
« snnp:send_notification/3 (usesnmpasend notification/3 instead.)
e« snnp:send_notification/4 (usesnmpasend notification/4 instead.)
e snnp:send_notification/5 (usesnmpasend_ notification/5 instead.)
« snnp:send_notification/6 (usesnmpasend notification/6 instead.)
e« snnp:send_trap/ 3 (usesnmpasend_trap/3 instead.)
 snnp:send_trap/ 4 (usesnmpasend_trap/4 instead.)

e snnp: unl oad_m bs/ 2 (use snmpa:unload mibs/2 instead.)

e snnp:unregi ster_subagent/ 2 (use snmpaunregister_subagent/2 instead.)
* snnpa: ol d_i nfo_format/ 1 (use"new" format instead)

e ssl:cipher_suites/O0 (usecipher_suites/2,3 instead)

e ssl:cipher_suites/1 (usecipher_suites/2,3 instead)

e ssl:ssl_accept/_ (usesd_handshake/1,2,3 instead)

10 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.1 Installing the Binary Release

2 Installation Guide

This section describes how to install Erlang/OTP on UNIX and Windows.

2.1 Installing the Binary Release
2.1.1 Windows

The system is delivered as a Windows I nstaller executable. Get it from http://www.erlang.org/download.html

Installing
Theinstallation procedure is automated. Double-click the . exe fileicon and follow the instructions.
Verifying
e Start Erlang/OTP by double-clicking on the Erlang shortcut icon on the desktop.
Expect a command-line window to pop up with an output looking something like this:

Erlang/0TP 17 [erts-6.0] [64-bit] [smp:2:2]

Eshell V6.0 (abort with "G)
1>

» Exit by entering the command hal t () .

2> halt().

This closes the Erlang/OTP shell.

2.2 Building and Installing Erlang/OTP

2.2.1 Introduction

This document describes how to build and install Erlang/OTP-23. Erlang/OTP should be possible to build from source
on any Unix/Linux system, including OS X. Y ou are advised to read the whole document before attempting to build
and install Erlang/OTP.

The source code can be downloaded from the official site of Erlang/OTP or GitHub.

e http://Iwww.erlang.org
« https://github.com/erlang/otp

2.2.2 Required Utilities
These are the tools you need in order to unpack and build Erlang/OTP.

Unpacking
e GNU unzip, or amodern uncompress.
* A TAR program that understands the GNU TAR format for long filenames.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 11

href
href

2.2 Building and Installing Erlang/OTP

Building

« GNU nmake

e Compiler -- GNU C Compiler, gcc or the C compiler frontend for LLVM, ¢l ang.
* Pel5

e« GNU m -- If HiPE (native code) support is enabled. HiPE can be disabled using - - di sabl e- hi pe

* ncurses,terncap,ortermib -- The development headers and libraries are needed, often known as
ncur ses-devel .Use--w t hout - t er ntap to build without any of these libraries. Note that in this case
only the old shell (without any line editing) can be used.

» sed -- Stream Editor for basic text transformation.

Building in Git

 GNU aut oconf of at least version 2.59. Note that aut oconf is not needed when building an unmodified
version of the released source.

Building on OS X
e Xcode -- Download and install viathe Mac App Store. Read about Building on a Mac before proceeding.

Installing
« Aninstall program that can take multiple file names.

2.2.3 Optional Utilities

Some applications are automatically skipped if the dependencies aren't met. Hereis alist of utilities needed for those
applications. Y ou will also find the utilities needed for building the documentation.

Building

e OpenSSL -- The opensourcetoolkit for Secure Socket Layer and Transport Layer Security. Required for building
the application cr ypt o. Further, ssl and ssh require a working crypto application and will also be skipped
if OpenSSL ismissing. The publ i c_key application is available without cr ypt o, but the functionality will
be very limited.

The development package of OpenSSL including the header files are needed as well as the binary command
program openssl . At least version 0.9.8 of OpenSSL is required. Read more and download from http://
www.openssl.org.

* Oracle Java SE JDK -- The Java Development Kit (Standard Edition). Required for building the application
jinterface.Atleast version 1.6.0 of the JDK isrequired.

Download from http://www.or acle.com/technetwor k/java/javase/downloads. We have also tested with IBM's
JDK 1.6.0.

« fl ex -- Headersand libraries are needed to build the flex scanner for the megaco application on Unix/Linux.

* wxWidgets -- Toolkit for GUI applications. Required for building the wx application. At least version 3.0 of
wxWidgetsis required.

Download from http://sour cefor ge.net/projects/wxwindows/files/3.0.0/ or get it from GitHub: https://
github.com/wxWidgets/wxWidgets

Further instructions on wxWidgets, read Building with wxErlang.
Building Documentation
e Xxsltproc -- Acommand line XSLT processor.

A tool for applying XSLT stylesheets to XML documents. Download xsltproc from http://xmlsoft.org/XSLT/
xdtproc2.html.

12 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href
href
href
href
href
href
href

2.2 Building and Installing Erlang/OTP

» fop -- Apache FOP print formatter (requires Java). Can be downloaded from http://xmlgraphics.apache.or g/
fop.
2.2.4 How to Build and Install Erlang/OTP

The following instructions are for building the released source tar ball.

The variable $ERL_TOP will be mentioned a lot of times. It refers to the top directory in the source tree. More
information about $ERL_ TOP can be found in the make and $ERL_TOP section below. If you are building in git you
probably want to take alook at the Building in Git section below before proceeding.

Unpacking

Start by unpacking the Erlang/OTP distribution file with your GNU compatible TAR program.
$ tar -zxf otp src 23.2.tar.gz # Assuming bash/sh

Now change directory into the base directory and set the SERL_ TOP variable.

$ cd otp src 23.2
$ export ERL TOP="pwd" # Assuming bash/sh

Configuring
Run the following commands to configure the build:

$./configure [options]

If you arebuilding Erlang/OTPfrom git youwill needtorun. / ot p_bui | d aut oconf togeneratetheconfigure
scripts.

By default, Erlang/OTP release will beinstalledin/ usr/ |1 ocal / { bi n, I i b/ er| ang} . If you for instance don't
have the permission to install in the standard location, you can install Erlang/OTP somewhere else. For example, to
install in/ opt/ erl ang/ 23. 2/ {bi n, | ib/erlang}, usethe--prefix=/opt/erlang/23. 2 option.

On some platforms Perl may behave strangely if certain locales are set. If you get errors when building, try setting
the LANG variable:

$ export LANG=C # Assuming bash/sh
Building
Build the Erlang/OTP release.

$ make

Testing

Before installation you should test whether your build isworking properly by running our smoke test. The smoke test
isasubset of the complete Erlang/OTP test suites. First you will need to build and release the test suites.

$ make release tests

This creates an additional folder in $ERL_TOP/ r el ease calledt est s. Now, it'stime to start the smoke test.

$ cd release/tests/test server
$ $ERL TOP/bin/erl -s ts install -s ts smoke test batch -s init stop

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 13

href
href
href

2.2 Building and Installing Erlang/OTP

To verify that everything is ok you should open $ERL_TOP/ r el ease/ t est s/ test _server/i ndex. htm
in your web browser and make sure that there are zero failed test cases.

On buildswithout cr ypt 0, ssl and ssh thereisafailed test case for undefined functions. Verify that the failed
test case log only shows calls to skipped applications.

Installing
Y ou are now ready to install the Erlang/OTP release! The following command will install the release on your system.

$ make install

Running

Y ou should now have aworking rel ease of Erlang/OTP! Jump to System Principlesfor instructions on running Erlang/
OTP.

How to Build the Documentation
Make sure you're in the top directory in the source tree.
$ cd $ERL_TOP

If you have just built Erlang/OTP in the current source tree, you have already ran conf i gur e and do not need to
do this again; otherwise, run conf i gur e.

$./configure [Configure Args]
When building the documentation you need afull Erlang/OTP-23.2 system in the $PATH.
$ export PATH=$ERL TOP/bin:$PATH # Assuming bash/sh

For the FOP print formatter, two steps must be taken:
e Adding the location of your installation of f op in $FOP_HOVE.

$ export FOP_HOME=/path/to/fop/dir # Assuming bash/sh

* Addingthef op script (in $FOP_HQOVE) to your $PATH, either by adding $FOP_HOVE to $PATH, or by copying
thef op script to adirectory aready in your $PATH.

Build the documentation.

$ make docs

It is possible to limit which types of documentation is build by passing the DOC_TARGETS environment variable to
make docs. Thecurrently availabletypesare: ht m , pdf , man and chunks. Example:

$ make docs DOC TARGETS=chunks

Build Issues

We have sometimes experienced problemswith Oracle'sj ava running out of memory when running f op. Increasing
the amount of memory available as follows has in our case solved the problem.

$ export FOP_OPTS="-Xmx<Installed amount of RAM in MB>m"

More information can be found at

14 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.2 Building and Installing Erlang/OTP

* http://xmlgraphics.apache.or g/fop/0.95/r unning.html#memory.
How to Install the Documentation

The documentation can be installed either using thei nst al | - docs target, or using ther el ease_docs target.

e |If you have installed Erlang/OTP using the i nst al | target, install the documentation using the i nst al | -
docs target. Install locations determined by conf i gur e will be used. $DESTDI R can be used the same way
aswhen doing meke install.

$ make install-docs

« Ifyouhaveinstalled Erlang/OTPusingther el ease target, install the documentationusingther el ease_docs
target. You typically want to use the same RELEASE ROOT aswhen invoking meke r el ease.

$ make release docs RELEASE ROOT=<release dir>

It is possible to limit which types of documentation is released using the same DOC_TARGETS environment variable
as when building documentation.

Accessing the Documentation
After installation you can access the documentation by

* Reading man pages. Make surethat er | isreferring to the installed version. For example/ usr /| ocal / bi n/
er| . Try viewing at the man page for Mnesia

$ erl -man mnesia

« Browsing the html pagesby loadingthepage/ usr /1 ocal / 1'i b/ er| ang/ doc/ erl ang/ i ndex. ht m or
<BaseDir>/1i b/ erl ang/ doc/ erl ang/ i ndex. ht m if the prefix option has been used.

* Read the embedded documentation by using the built-in shell functionsh/ 1, 2, 3orht/ 1, 2, 3.
How to Install the Pre-formatted Documentation

Pre-formatted html documentation and man pages can be downloaded from

e http://www.erlang.or g/download.html.

Extract the html archive in the installation directory.

$ cd <ReleaseDir>
$ tar -zxf otp html 23.2.tar.gz

Forerl -man <page> towork the Unix manual pages haveto beinstalled in the same way, i.e.

$ cd <ReleaseDir>
$ tar -zxf otp man 23.2.tar.gz

Where<Rel easeDi r > is

e <PrefixDir>/1ib/erlangifyouhaveinstaled Erlang/OTP usingmake i nstall .

 $DESTDI R<PrefixDir>/1ib/erlangif youhaveinstaled Erlang/OTP using nake i nst al |
DESTDI R=<Tnpl nstal | Di r >.

 RELEASE_ROOT if you haveinstalled using make rel ease RELEASE ROOT=<Rel easeDi r>.

2.2.5 Advanced configuration and build of Erlang/OTP

If youwant totailor your Erlang/OTP build and install ation, please read on for detailed information about theindividual
steps.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 15

href
href
href
href

2.2 Building and Installing Erlang/OTP

make and $ERL_TOP

All the makefiles in the entire directory tree use the environment variable ERL_ TOP to find the absolute path of the
installation. Theconf i gur e script will figure this out and set it in the top level Makefile (which, when building, it
will pass on). However, when developing it is sometimes convenient to be able to run make in a subdirectory. To do
this you must set the ERL_ TOP variable before you run make.

For example, assume your GNU make program is called mak e and you want to rebuild the application STDLI B, then
you could do:

$ cd lib/stdlib; env ERL_TOP=<Dir> make
where <Di r > would be what you find ERL_ TOP is set to in the top level Makefile.

otp_build vs configure/make

Building Erlang/OTP can be done either by using the SERL_TOP/ ot p_bui | d script, or by invoking $ERL_TOP/
confi gure and make directly. Building using ot p_bui | d is easier since it involves fewer steps, but the
ot p_bui I d build procedure is not as flexible as the conf i gur e/make build procedure. The binary releases for
Windows that we deliver are built using ot p_bui I d.

Configuring
The configure script is created by the GNU autoconf utility, which checks for system specific features and then creates
anumber of makefiles.

The configure script alows you to customize a number of parameters; type ./ configure --help or./
configure --hel p=recursive for details. . / confi gure --hel p=recursive will give help for al
confi gur e scriptsin al applications.

One of the things you can specify iswhere Erlang/OTP should be installed. By default Erlang/OTP will beinstalled in
lusr/local/{bin,lib/erlang}.Tokeepthesame structure but install in a different place, <Di r > say, use
the- - prefi x argument likethis: . / confi gure --prefix=<Dir>.

Some of the available conf i gur e options are;

o --prefix=PATH- Specify installation prefix.

e ~--disabl e-parallel-configure-Disableparalel execution of conf i gur e scripts (parallel
execution is enabled by default)

« --{enabl e, di sabl e} -kernel - pol | -Kernel poll support (enabled by default if possible)

« --{enabl e, di sabl e} - hi pe - HiPE support (enabled by default on supported platforms)

e --{enabl e, di sabl e} - f p- except i ons - Floating point exceptions (an optimization for floating point
operations). The default differs depending on operating system and hardware platform. Note that by enabling
this you might get a seemingly working system that sometimes fail on floating point operations.

e --enabl e- n64- bui | d - Build 64-bit binaries using the - n64 flagto (g) cc

e --enabl e-nB2- bui | d - Build 32-bit binariesusing the - n82 flagto (g) cc

« --{enabl e, di sabl e} - pi e - Build position independent executable binaries.

e --wth-assuned- cache-1i ne-si ze=Sl ZE - Set assumed cache-line size in bytes. Default is 64. Valid
values are powers of two between and including 16 and 8192. The runtime system use this value in order to
try to avoid false sharing. A too large value wastes memory. A to small value will increase the amount of false
sharing.

e --{with,wthout}-terntap -termcap (without impliesthat only the old Erlang shell can be used)

e --wth-javac=JAVAC- Specify Javacompiler to use

e --{with,w thout}-javac - Javacompiler (without impliesthat thej i nt er f ace application won't be
built)

16 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.2 Building and Installing Erlang/OTP

--{enabl e, di sabl e}-dynam c-ssl -1i b - Dynamic OpenSSL libraries

--{enabl e, di sabl e}-bui |l tin-zlib -Usethe built-in source for zlib.

--{with,w thout}-ssl - OpenSSL (without impliesthat thecr ypt o, ssh, and ssl won't be built)
--W t h- ssl =PATH - Specify location of OpenSSL include and lib

--w t h-ssl -i ncl =PATH - Location of OpenSSL i ncl ude directory, if different than specified by - -

Wi t h- ssl =PATH

--w t h-ssl - rpat h=yes| no| PATHS - Runtime library path for OpenSSL. Default isyes, which equates
to a number of standard locations. If no, then no runtime library paths will be used. Anything else should be a
comma separated list of paths.

--with-1ibatom c_ops=PATH- Usethel i bat oni ¢_ops library for atomic memory accesses. If
conf i gur e should inform you about no native atomic implementation available, you typically want to try
usingthel i bat om c_ops library. It can be downloaded from https:.//github.com/ivmai/libatomic_ops/.

- -di sabl e-snp-require-native-aton cs - By default conf i gur e will fail if an SMP runtime
system is about to be built, and no implementation for native atomic memory accesses can be found. If

this happens, you are encouraged to find a native atomic implementation that can be used, e.g., using

I i bat omi c_ops, but by passing - - di sabl e-snp-require-native-atom cs you can build using a
fallback implementation based on mutexes or spinlocks. Performance of the SMP runtime system will however
suffer immensely without an implementation for native atomic memory accesses.

--enabl e-static-{nifs,drivers} - Toallow usage of nifsand drivers on OSsthat do not

support dynamic linking of librariesit is possible to statically link nifs and drivers with the main Erlang

VM binary. Thisis done by passing a comma separated list to the archives that you want to statically link.
eg.--enabl e-stati c-ni fs=/ hone/ $USER/ nmy_ni f . a. The path has to be absolute and the

name of the archive has to be the same asthe module, i.e. ny_ni f inthe example above. Thisisalso true

for drivers, but then it is the driver name that has to be the same as the filename. Y ou a so have to define
STATI C_ERLANG { NI F, DRI VER} when compiling the .o files for the nif/driver. If your nif/driver depends
on some other dynamic library, you now have to link that to the Erlang VM binary. Thisis easily achieved by
passing LI BS=- | | i bnane to configure.

--w t hout - $app - By default all applicationsin Erlang/OTP will be included in arelease. If thisis not
wanted it is possible to specify that Erlang/OTP should be compiled without one or more applications, i.e. - -
wi t hout - wx. There is no automatic dependency handling between applications. If you disable an application
that another application depends on, you aso have to disable the dependant application.

--enabl e-getti neof day- as- os- systemti e - Forceusage of get t i meof day() for OS system
time.

--enabl e- pr ef er - el apsed- nonot oni c-ti me-duri ng- suspend - Prefer an OS monotonic time
source with elapsed time during suspend.

--di sabl e- prefer-el apsed- nonot oni c-ti me-duri ng-suspend - Do not prefer an OS
monoatonic time source with elapsed time during suspend.

--w t h-cl ock-resol uti on=hi gh| | ow- Try to find clock sourcesfor OS system time, and OS
monatonic time with higher or lower resolution than chosen by default. Note that both alternatives may have a
negative impact on the performance and scalability compared to the default clock sources chosen.

- -di sabl e- saved- conpi | e-ti ne - Disable saving of compile date and time in the emulator binary.

If you or your system has special reguirements please read the Makef i | e for additional configuration information.

Atomic Memory Operations and the VM

The VM with SMP support makes quite a heavy use of atomic memory operations. An implementation providing
native atomic memory operations is therefore very important when building Erlang/OTP. By default the VM will
refuse to build if native atomic memory operations are not available.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 17

href

2.2 Building and Installing Erlang/OTP

Erlang/OTP itself provides implementations of native atomic memory operations that can be used when compiling
with a gcc compatible compiler for 32/64-bit x86, 32/64-bit SPARC V9, 32-bit PowerPC, or 32-bit Tile. When
compiling with agcc compatible compiler for other architectures, the VM may be able to make use of native atomic
operationsusingthe __at oni ¢_* builtins (may be available when using agcc of at least version 4.7) and/or using
the __sync_* builtins (may be available when using agcc of at least version 4.1). If only thegcc's__sync_*
builtins are available, the performance will suffer. Such a configuration should only be used as a last resort. When
compiling on Windows using a MicroSoft Visual C++ compiler native atomic memory operations are provided by
Windows APIs.

Native atomic implementation in the order preferred:

e Theimplementation provided by Erlang/OTP.

* TheAPI provided by Windows.

e Theimplementation based onthegcc __at omi ¢_* builtins.

« If none of the above are available for your architecture/compiler, you are recommended to build and install
libatomic_ops before building Erlang/OTP. Thel i bat oni ¢_ops library provides native atomic memory
operations for avariety of architectures and compilers. When building Erlang/OTP you need to inform the build
system of wherethel i bat oni c¢_ops library isinstalled usingthe- - wi t h- | i bat om ¢_ops=PATH
confi gur e switch.

» Asalast resort, the implementation solely based onthegcc __sync_* builtins. Thiswill however cause lots
of expensive and unnecessary memory barrier instructions to beissued. That is, performance will suffer. The
conf i gur e script will warn at the end of its execution if it cannot find any other alternative than this.

Building
Building Erlang/OTP on arelatively fast computer takes approximately 5 minutes. To speed it up, you can utilize
parallel make with the - j <num j obs> option.

$ export MAKEFLAGS=-j8 # Assuming bash/sh
$ make

If you've upgraded the source with a patch you may need to clean up from previous builds before the new build. Make
sure to read the Pre-built Source Release section below before doing amake cl ean.

Within Git

When building in a Git working directory you also have to have a GNU aut oconf of at least version 2.59 on your
system, because you need to generate the conf i gur e scripts before you can start building.

The conf i gur e scripts are generated by invoking . / ot p_bui | d aut oconf inthe $ERL_TOR directory. The
conf i gur e scripts aso have to be regenerated whenaconf i gure. i n or acl ocal . n4 file has been modified.
Note that when checking out abranch aconfi gure. i n or acl ocal . n4 file may change content, and you may
therefore have to regenerate the conf i gur e scripts when checking out a branch. Regenerated conf i gur e scripts
imply that you have to run conf i gur e and build again.

Running. / ot p_bui | d aut oconf isnot needed when building an unmodified version of the released source. ‘

Other useful information can be found at our GitHub wiki:
* http://wiki.github.com/erlang/otp
OS X (Darwin)

Make sure that the command host nane returns a valid fully qualified host name (this is configured in / et ¢/
host conf i g). Otherwise you might experience problems when running distributed systems.

18 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href

2.2 Building and Installing Erlang/OTP

If you develop linked-in drivers (shared library) you need to link using gcc and the flags - bundl e -
fl at _namespace -undefined suppress. Youalsoinclude- f no- common in CFLAGS when compiling.
Use. so asthelibrary suffix.

If you have Xcode 4.3, or later, you will also need to download "Command Line Tools" viathe Downloads preference
panein Xcode.

Building with wxErlang

If you want to build the wx application, you will need to get wxWidgets-3.0 (WwxW dget s-3. 0. 3. tar. bz2 from
https://github.com/wxWidgetswxWidgets'r eleases/download/v3.0.3/wxWidgets-3.0.3.tar .bz2) or get it from
github with bug fixes:

$ git clone --branch WX 3 0 BRANCH git@github.com:wxWidgets/wxWidgets.git

The wxWidgets-3.1 version should also work if 2.8 compatibility is enabled, add - - enabl e- conpat 28 to
configure commands below.

Configure and build wxWidgets (shared library on linux):

$./configure --prefix=/usr/local
$ make && sudo make install
$ export PATH=/usr/local/bin:$PATH

Configure and build wxWidgets (static library on linux):

$ export CFLAGS=-fPIC

$ export CXXFLAGS=-fPIC

$./configure --prefix=/usr/local --disable-shared
$ make & sudo make install

$ export PATH=/usr/local/bin:$PATH

Configure and build wxWidgets (on Mavericks - 10.9):

$./configure --with-cocoa --prefix=/usr/local

or without support for old versions and with static libs

$./configure --with-cocoa --prefix=/usr/local --with-macosx-version-min=10.9 --disable-shared
$ make

$ sudo make install

$ export PATH=/usr/local/bin:$PATH

Check that you got the correct wx-config

$ which wx-config && wx-config --version-full
Build Erlang/OTP

$ export PATH=/usr/local/bin:$PATH
$ cd $ERL_TOP

$./configure

$ make

$ sudo make install

Pre-built Source Release

The sourcereleaseisdelivered with alot of platform independent build results already pre-built. If you want to remove
these pre-built files, invoke . / ot p_bui l d renove_prebuilt fil es fromthe $ERL_TOP directory. After
you have done this, you can build exactly the same way as before, but the build process will take a much longer time.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 19

href

2.2 Building and Installing Erlang/OTP

Doing make cl ean in an arbitrary directory of the source tree, may remove files needed for bootstrapping the
build.

Doing . / ot p_bui | d save_boot st rap from the $ERL_TOP directory before doing make cl ean will
ensure that it will be possible to build after doing make cl ean../otp_buil d save_boot strap will be
invoked automatically when make isinvoked from $ERL_ TOP with either thecl ean target, or the default target.
Itisalso automatically invokedif . / ot p_bui | d renmove_prebuilt _fil es isinvoked.

If you need to verify the bootstrap beam files match the provided source files, use ./ ot p_build
updat e_pri mary to create anew commit that contains differences, if any exist.

How to Build a Debug Enabled Erlang RunTime System

After completing all the normal building steps described above a debug enabled runtime system can be built. To do
this you have to change directory to SERL_TOP/ er t s/ emul at or and execute:

$ (cd $ERL TOP/erts/emulator && make debug)

This will produce a beam.smp.debug executable. The file are installed along side with the normal (opt) version
beam snp.

To start the debug enabled runtime system execute:
$ $ERL TOP/bin/cerl -debug

The debug enabled runtime system features lock violation checking, assert checking and various sanity checksto help
adeveloper ensure correctness. Some of these features can be enabled on a normal beam using appropriate configure
options.

There are other types of runtime systems that can be built as well using the similar steps just described.
$ (cd $ERL TOP/erts/emulator && make $TYPE)

where $TYPE is opt, gcov, gpr of , debug, val gri nd, or | cnt . These different beam types are useful for
debugging and profiling purposes.

Installing

e Staged install using DESTDIR. You can perform the install phase in atemporary directory and later move the
installation into its correct location by use of the DESTDI Rvariable:

$ make DESTDIR=<tmp install dir> install

The installation will be created in a location prefixed by $DESTDI R. It can, however, not be run from there.
It needs to be moved into the correct location before it can be run. If DESTDI R have not been set but
| NSTALL_PREFI X has been set, DESTDI Rwill be setto | NSTALL_PREFI X. Notethat | NSTALL_PREFI X
in pre R13B04 was buggy and behaved as EXTRA PREFI X (see below). There are lots of areas of use for an
installation procedure using DESTDI R, e.g. when creating a package, cross compiling, etc. Here is an example
where the installation should be located under / opt / | ocal :

20 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

2.2 Building and Installing Erlang/OTP

$./configure --prefix=/opt/local
make
make DESTDIR=/tmp/erlang-build install
cd /tmp/erlang-build/opt/local

gnu-tar is used in this example
tar -zcf /home/me/my-erlang-build.tgz *
su -
Password: *x***
$ cd /opt/local
$ tar -zxf /home/me/my-erlang-build.tgz

#H A A A A A

Install using ther el ease target. Instead of doing make i nstal | you can create the installation in whatever
directory you like using the r el ease target and run the | nst al | script yourself. RELEASE ROOT is used
for specifying the directory where the installation should be created. This is what by default ends up under /
usr/local /lib/erlangifyoudotheinstall using make i nstal | .All instalation paths provided in the
confi gur e phaseareignored, aswell asDESTDI R, and | NSTALL_PREFI X. If you want linksfrom a specific
bi n directory to the installation you have to set those up yourself. An example where Erlang/OTP should be
located at / horre/ me/ OTP:

$./configure

$ make

$ make RELEASE_ROOT=/home/me/OTP release
$ cd /home/me/0TP

$./Install -minimal /home/me/OTP
$ mkdir -p /home/me/bin
$ cd /home/me/bin

$ In -s /home/me/0TP/bin/erl erl

$ In -s /home/me/0TP/bin/erlc erlc

$ In -s /home/me/0TP/bin/escript escript

Thel nst al | script should currently be invoked as followsin the directory where it resides (the top directory):
$./Install [-cross] [-minimal|-sasl] <ERL _ROOT>

where:

e« -mni nal Createsan installation that starts up a minimal amount of applications, i.e., only ker nel and
stdl i b are started. The minimal system is normally enough, and iswhat make i nstal | uses.

e -sasl Createsaninstalation that also starts up the sas| application.
e -cross For cross compilation. Informsthe install script that it is run on the build machine.
e <ERL_RQOOT> - The absolute path to the Erlang installation to use at run time. Thisis often the same asthe

current working directory, but does not have to be. It can follow any other path through the file system to
the same directory.

If neither - m ni mal , nor - sasl is passed as argument you will be prompted.

Testinstall using EXTRA_PREFI X. The content of the EXTRA _PREFI X variablewill prefix al installation paths
when doing nake i nst al | . Notethat EXTRA PREFI Xissimilar to DESTDI R, but it does not have the same
effect as DESTDI R. The installation can and have to be run from the location specified by EXTRA PREFI X.
That is, it can be useful if you want to try the system out, running test suites, etc, before doing the real install
without EXTRA PREFI X.

Symbolic Links in --bindir

When doing make i nst al | and the default installation prefix is used, relative symbolic links will be created from
/usr/ | ocal / bi ntoal public Erlang/OTP executablesin/ usr /1 ocal /1i b/ er| ang/ bi n. Theinstalation
phase will try to create relative symbolic links aslong as - - bi ndi r and the Erlang bin directory, located under - -
I i bdi r, both have - - exec- pr ef i x as prefix. Where - - exec- prefi x defaultsto - - prefi x. --prefix,

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 21

2.2 Building and Installing Erlang/OTP

--exec-prefix,--bindir,and--1i bdir areal argumentsthat can bepassedtoconfi gur e. Onecanforce
relative, or absolute links by passing Bl NDI R_SYML_I NKS=r el at i ve| absol ut e asargumentsto make during
theinstall phase. Note that such arequest might cause afailure if the request cannot be satisfied.
Running
Using HiPE
HiPE supports the following system configurations:
* x86: All 32-bit and 64-bit mode processors should work.
* Linux: Fedora Coreis supported. Both 32-bit and 64-bit modes are supported.

NPTL glibcis strongly preferred, or a LinuxThreads glibc configured for "floating stacks'. Old non-floating
stacks glibcs have a fundamental problem that makes HiPE support and threads support mutually exclusive.

» Solaris. Solaris 10 (32-bit and 64-hit) and 9 (32-bit) are supported. The build requiresaversion of the GNU C
compiler (gec) that has been configured to use the GNU assembler (gas). Sun's x86 assembler isemphatically
not supported.

* FreeBSD: FreeBSD 6.1 and 6.2 in 32-hit and 64-bit modes should work.
e OS X/Darwin: Darwin 9.8.0 in 32-bit mode should work.

e PowerPC: All 32-hit 6xx/7xx(G3)/74xx(G4) processors should work. 32-bit mode on 970 (G5) and POWERS
processors should work.

e Linux (Yellow Dog) and OS X 10.4 are supported.
* SPARC: All UltraSPARC processors running 32-bit user code should work.

e Solaris9issupported. The build requiresagcc that has been configured to use Sun's assembler and linker.
Using the GNU assembler but Sun's linker has been known to cause problems.

e Linux (Aurora) is supported.
« ARM: ARMV5TE (i.e. XScale) processors should work. Both big-endian and little-endian modes are supported.

e Linuxissupported.
HiPE is automatically enabled on the following systems:

e X86 in 32-bit mode: Linux, Solaris, FreeBSD
* X86 in 64-bit mode: Linux, Solaris, FreeBSD
e PowerPC: Linux, Mac OSX

e SPARC: Linux

e ARM: Linux

On other supported systems, see Advanced Configure on how to enable HiPE.

If you are running on a platform supporting HiPE and if you have not disabled HiPE, you can compile a module into
native code like this from the Erlang shell:

1> c(Module, native).
or

1> c(Module, [native|OtherOptions]).
Using the erlc program, write like this

$ erlc +native Module.erl

The native code will be placed into the beam file and automatically loaded when the beam file is |oaded.

22 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.3 Cross Compiling Erlang/OTP

To add hipe options, write like this from the Erlang shell:
1> c(Module, [native,{hipe,HipeOptions}|MoreOptions]).
Use hi pe: hel p_opti ons/ 0 to print out the available options.

1> hipe:help options().

2.3 Cross Compiling Erlang/OTP

Table of Contents

e Introduction
e otp_build Versus configure/make
* Cross Configuration
e What can be Cross Compiled?
e Compatibility
e Patches
e Buildand Install Procedure
e Building With configure/make Directly
e Building a Bootstrap System
e Cross Building the System
e Instaling
e Instaling Using Paths Determined by configure
e Installing Manually
e Building With the otp_build Script
e Building and Installing the Documentation
e Testing the cross compiled system
e Currently Used Configuration Variables
* Variablesfor otp_build Only
e Cross Compiler and Other Tools
e Dynamic Erlang Driver Linking
e LargeFile Support
e Other Tools
e Cross System Root Locations
e Optiona Feature, and Bug Tests

2.3.1 Introduction

This document describes how to cross compile Erlang/OTP-23. Y ou are advised to read the whole document before
attempting to cross compile Erlang/OTP. However, before reading this document, you should read the $ERL_TOP/
HOWTO/INSTALL.md document which describes building and installing Erlang/OTP in general. $ERL_TOP isthe
top directory in the source tree.

otp_build Versus configure/make

Building Erlang/OTP can be done either by using the $ERL_TOP/ ot p_bui | d script, or by invoking $ERL_TOP/
confi gure and make directly. Building using ot p_bui | d is easier since it involves fewer steps, but the
ot p_bui I d build procedure is not as flexible as the conf i gur e/make build procedure. Note that ot p_bui | d

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 23

2.3 Cross Compiling Erlang/OTP

conf i gur e will produce a default configuration that differs from what conf i gur e will produce by default. For
example, currently - - di sabl e- dynami c- ssl -1 i bisaddedtotheconf i gur e command lineargumentsunless
- -enabl e- dynani c- ssl - 1i b has been explicitly passed. The binary releases that we deliver are built using
ot p_bui I d. Thedefaultsused by ot p_bui | d confi gur e may change a any time without prior notice.

Cross Configuration

The $SERL_TOP/ xconp/ er | - xconp. conf . t enpl at e file contains all available cross configuration variables
and can be used as a template when creating a cross compilation configuration. All cross configuration
variables are aso listed at the end of this document. For examples of working cross configurations see the
$ERL_TOP/ xconp/ erl - xconp-Ti | eraMDE2. O-ti | epro. conf file and the $ERL_TOP/ xconp/ er| -
xconp- x86_64-saf -1 i nux- gnu. conf file. If the default behavior of a variable is satisfactory, the variable
does not need to be set. However, the conf i gur e script will issue a warning when a default value is used. When
avariable has been set, no warning will be issued.

A cross configuration file can be passed to ot p_bui | d confi gur e using the - - xconp- conf command line
argument. Note that conf i gur e does not accept this command line argument. When using the conf i gur e script
directly, pass the configuration variables as arguments to conf i gur e using a <VARI ABLE>=<VALUE> syntax.
Variables can also be passed as environment variablesto conf i gur e. However, if you pass the configuration in the
environment, make sureto unset all of these environment variables beforeinvoking mak e; otherwise, the environment
variables might set make variables in some applications, or parts of some applications, and you may end up with an
erroneously configured build.

What can be Cross Compiled?

All Erlang/OTP applications except the wx application can be cross compiled. The build of thewx driver will currently
be automatically disabled when cross compiling.

Compatibility

The build system, including cross compilation configuration variables used, may be subject to non backward
compatible changes without prior notice. Current cross build system has been tested when cross compiling some
Linux/GNU systems, but has only been partly tested for more esoteric platforms. The VxWorks examplefileishighly
dependent on our environment and is here more or less only for internal use.

Patches

Please submit any patches for cross compiling in away consistent with this system. All input is welcome as we have
avery limited set of cross compiling environments to test with. If a new configuration variable is needed, add it to
$ERL_TOP/ xconp/ er | - xconp. conf . tenpl at e, and useitinconfi gur e. i n. Other files that might need
to be updated are:

e $ERL_TOP/ xconp/ erl -xconp-vars. sh

e S$ERL_TOP/erl-build-tool -vars. sh

« $ERL TOP/erts/aclocal .

e $ERL_TOP/ xconp/ README. nd

e $ERL_TOP/ xconp/ erl - xconp-*. conf

Note that this might be an incomplete list of files that need to be updated.

General information on how to submit patches can be found at: http://wiki.github.com/erlang/otp/submitting-
patches

2.3.2 Build and Install Procedure

If you are building in Git, you want to read the Building in Git section of $ERL_TOP/HOWTO/INSTALL.md before
proceeding.

24 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href

2.3 Cross Compiling Erlang/OTP

We will first go through the conf i gur e/make build procedure which people probably are most familiar with.

Building With configure/make Directly

1
Change directory into the top directory of the Erlang/OTP source tree.

$ cd $ERL TOP

In order to compile Erlang code, asmall Erlang bootstrap system has to be built, or an Erlang/OTP system of the same
release as the one being built has to be provided in the $PATH. The Erlang/OTP for the target system will be built
using this Erlang system, together with the cross compilation tools provided.

If you want to build using a compatible Erlang/OTP system in the $PATH, jump to (3).
Building a Bootstrap System
@

$./configure --enable-bootstrap-only
$ make

The- - enabl e- boot st rap- onl y argument to conf i gur e isn't strictly necessary, but will speed things up. It
will only run conf i gur e in applications necessary for the bootstrap, and will disable alot of things not needed by
the bootstrap system. If you run conf i gur e without - - enabl e- boost r ap- onl y you also have to run make as
make boot st r ap; otherwise, the whole system will be built.

Cross Building the System
(©)

$./configure --host=<HOST> --build=<BUILD> [Other Config Args]
$ make

<HOST> is the host/target system that you build for. It does not have to be a full CPU- VENDOR- OS triplet, but can
be. The full CPU- VENDOR- CS triplet will be created by executing $ERL_TOP/ ert s/ aut oconf/ confi g. sub
<HOST>. If conf i g. sub fails, you need to be more specific.

<BUI LD> should equal the CPU- VENDOR- CS triplet of the system that you build on. If you execute SERL_TOP/
erts/aut oconf/config. guess, it will in most cases print the triplet you want to use for this.

Pass the cross compilation variables as command line argumentsto conf i gur e using a<VARI ABLE>=<VALUE>
syntax.

Y ou can not passaconfigurationfileusingthe- - xconp- conf argumentwhenyouinvokeconf i gur e directly.
The - - xconp- conf argument can only be passedto ot p_bui | d confi gure.

make will verify that the Erlang/OTP system used when building is of the same release as the system being
built, and will fail if this is not the case. It is possible, however not recommended, to force the cross
compilation even though the wrong Erlang/OTP system is used. This by invoking make like this. nmake
ERL_XCOWP_FORCE_DI FFERENT_OTP=yes.

Invoking make ERL_XCOWP_FORCE DI FFERENT OTP=yes might fail, silently produce suboptimal code,
or silently produce erroneous code.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 25

2.3 Cross Compiling Erlang/OTP

Installing
You can either install using the installation paths determined by conf i gur e (4), or install manually using (5).
Installing Using Paths Determined by configure
(4)
$ make install DESTDIR=<TEMPORARY PREFIX>

make install will install at alocation specified when doing conf i gur e. conf i gur e arguments specifying
where the installation should reside are for example: - - prefi x, - - exec-prefi x,--1ibdir,--bindir,etc.
By default it will install under / usr /1 ocal . You typically do not want to install your cross build under / usr/

| ocal onyour build machine. Using DESTDIR will cause the installation paths to be prefixed by $DESTDI R. This
makes it possible to install and package the installation on the build machine without having to place the installation
in the same directory on the build machine as it should be executed from on the target machine.

When make i nstall hasfinished, change directory into $DESTDI R, package the system, move it to the target
machine, and unpack it. Note that theinstallation will only be working on the target machine at the location determined
by confi gure.

Installing Manually
©)
$ make release RELEASE ROOT=<RELEASE DIR>
make rel ease will copy what you have built for the target machine to <RELEASE DI R>. Thel nst al | script
will not be run. The content of <RELEASE DI R> iswhat by default endsupin/ usr/ | ocal /i b/ erl ang.

Thel nst al | script used when installing Erlang/OTP requires common Unix tools such assed to be present in your
$PATH. If your target system does not have such tools, you need to run the | nst al | script on your build machine
before packaging Erlang/OTP. The | nst al | script should currently be invoked as follows in the directory where
it resides (the top directory):

$./Install [-cross] [-minimal|-sasl] <ERL ROOT>

where:

e« -mni mal Createsan installation that starts up aminimal amount of applications, i.e., only ker nel and
st dl i b are started. The minimal system is normally enough, and iswhat make i nstal | uses.

e -sasl Createsaninstalation that also starts up the sas| application.

e -cross For cross compilation. Informs the install script that it is run on the build machine.

e <ERL_ROQOOT> - The absolute path to the Erlang installation to use at run time. Thisis often the same as the
current working directory, but does not have to be. It can follow any other path through the file system to the
same directory.

If neither - m ni mal , nor - sasl is passed as argument you will be prompted.

Y ou can now either do:

(6)

» Decide where the installation should be located on the target machine, run the | nst al | script on the build

machine, and package the installed installation. The installation just need to be unpacked at the right location on
the target machine:

$ cd <RELEASE DIR>
$./Install -cross [-minimal|-sasl] <ABSOLUTE_ INSTALL DIR ON TARGET>

or:

26 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

2.3 Cross Compiling Erlang/OTP

()
« Packagetheinstallation in <RELEASE_DI R>, place it wherever you want on your target machine, and run the
I nst al | script on your target machine:

$ cd <ABSOLUTE INSTALL DIR ON TARGET>
$./Install [-minimal|-sasl] <ABSOLUTE_INSTALL DIR ON_TARGET>

Building With the otp_build Script
)
$ cd $ERL TOP
9)
$./otp build configure --xcomp-conf=<FILE> [Other Config Args]
aternatively:
$./otp build configure --host=<HOST> --build=<BUILD> [Other Config Args]

If you have your cross compilation configuration in afile, pass it using the - - xconp- conf =<FI LE> command
line argument. If not, pass - - host =<HOST>, - - bui | d=<BUI LD>, and the configuration variables using a
<VARI ABLE>=<VALUE> syntax on the command line (same asin (3)). Note that <HOST> and <BUI LD> haveto be
passed one way or the other; either by using er | _xconp_host =<HOST> and er | _xconp_bui | d=<BUI LD>
in the configuration file, or by using the - - host =<HOST>, and - - bui | d=<BUI LD> command line arguments.

ot p_bui I d confi gur e will configure both for the boostrap system on the build machine and the crosshost system.
(10)
$./otp build boot -a

otp_build boot -a will first build a bootstrap system for the build machine and then do the cross build of the
system.

(11)

$./otp build release -a <RELEASE DIR>
otp_build rel ease -a will dothe same as (5), and you will after this have to do a manual install either by
doing (6), or (7).

2.3.3 Building and Installing the Documentation

After the system has been cross built you can build and install the documentation the same way as after a native build
of the system. See the How to Build the Documentation section in the SERL_TOP/HOWTO/INSTALL.md document
for information on how to build the documentation.

2.3.4 Testing the cross compiled system

Some of the tests that come with erlang use native code to test. This means that when cross compiling erlang you
also have to cross compile test suites in order to run tests on the target host. To do this you first have to release the
tests as usual.

$ make release tests

or

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 27

2.3 Cross Compiling Erlang/OTP

$./otp build tests

The tests will be released into $ERL_TOP/ r el ease/ t est s. After releasing the tests you have to install the tests
on the build machine. Y ou supply the same xcomp fileasto. / ot p_bui | d in (9).

$ cd $ERL TOP/release/tests/test server/
$ $ERL_TOP/bootstrap/bin/erl -eval 'ts:install([{xcomp,"<FILE>"}])' -s ts compile testcases -s init stop

You should get alot of printouts as the testcases are compiled. Once done you should copy the entire SERL_TOP/
rel ease/ t est s folder to the cross host system.

Then go to the cross host system and setup the erlang installed in (4) or (5) to be in your $PATH. Then go to what
previously was SERL_TOP/ r el ease/ t est s/t est _ser ver and issue the following command.

$ erl -s ts install -s ts run all tests -s init stop
The configure should be skipped and all tests should hopefully pass. For more details about how to use ts run er |
-s ts help -s init stop

2.3.5 Currently Used Configuration Variables

Note that you cannot define arbitrary variables in a cross compilation configuration file. Only the ones listed below
will be guaranteed to be visible throughout the whole execution of al conf i gur e scripts. Other variables needs to
be defined as argumentsto conf i gur e or exported in the environment.

Variables for otp_build Only

Variables in this section are only used, when configuring Erlang/OTP for cross compilation using $ERL_TOP/
otp_build configure.

These variables currently have no effect if you configure using the conf i gur e script directly. ‘

e erl_xconp_buil d-Thebuild system used. Thisvalue will be passed as- - bui | d=$er| _xconp_bui Il d
argument to the confi gure script. It does not have to be a full CPU- VENDOR- OS triplet, but can
be. The full CPU- VENDOR- CS triplet will be created by $ERL_TOP/ ert s/ aut oconf/ confi g. sub
$erl _xconp_build. If set to guess, the build system will be guessed using $ERL_TOP/ ert s/
aut oconf/confi g. guess.

« erl_xconp_host - Cross host/target system to build for. This value will be passed as - - host =
$er| _xconp_host argument to the confi gur e script. It does not have to be a full CPU- VENDOR- OS
triplet, but can be. The full CPU- VENDOR- CS triplet will be created by $ERL_TOP/ ert s/ aut oconf/
config.sub $erl _xconp_host.

« erl_xconp_configure_fl ags - Extraconfigure flagsto passto theconf i gur e script.
Cross Compiler and Other Tools

If the crosscompilation toolsareprefixed by <HOST>- you probably do not need to set these variables (where<HOST>
iswhat has been passed as - - host =<HOST> argument to conf i gur e).

All variables in this section can also be used when native compiling.
e CC-Ccompiler.

* CFLAGS - C compiler flags.

e STATI C_CFLAGS - Static C compiler flags.

28 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.3 Cross Compiling Erlang/OTP

e« CFLAG _RUNTI ME_LI BRARY_PATH - Thisflag should set runtime library search path for the shared libraries.
Note that this actually isalinker flag, but it needs to be passed via the compiler.

e CPP- C pre-processor.

e CPPFLAGS - C pre-processor flags.
e CXX- C++ compiler.

e CXXFLAGS - C++ compiler flags.

e LD-Linker.

e LDFLAGS - Linker flags.

e LIBS-Libraries.

Dynamic Erlang Driver Linking

Either set all or none of the DED_LD* variables. |

 DED_LD- Linker for Dynamically loaded Erlang Drivers.
e« DED _LDFLAGS - Linker flagsto usewith DED LD.

e DED LD FLAG RUNTI ME_LI BRARY_PATH - This flag should set runtime library search path for shared
libraries when linking with DED_LD.

Large File Support

Either set all or none of the LFS_* variables.

* LFS_CFLAGS - Large file support C compiler flags.
e LFS LDFLAGS - Largefile support linker flags.

e LFS LI BS- Largefilesupport libraries.

Other Tools

* RANLIB-ranli b archiveindex tool.

e« AR-ar archiving tool.

e CETCONF - get conf system configuration inspectiontool. get conf iscurrently used for finding out largefile
support flags to use, and on Linux systems for finding out if we have an NPTL thread library or not.

Cross System Root Locations

e« erl_xconp_sysroot - Theabsolute path to the system root of the cross compilation environment. Currently,
the cr ypt o, odbc, ssh and ssl applications need the system root. These applications will be skipped if the
system root has not been set. The system root might be needed for other things too. If this is the case and the
system root has not been set, conf i gur e will fail and request you to set it.

e erl_xconp_isysroot - The absolute path to the system root for includes of the cross compilation
environment. If not set, this value defaults to $er | _xconp_sysr oot , i.e, only set this value if the include
system root path is not the same as the system root path.

Optional Feature, and Bug Tests

Thesetests cannot (always) be done automatically when cross compiling. Y ou usually do not need to set thesevariabl es.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 29

2.3 Cross Compiling Erlang/OTP

Warning:

Setting these variables wrong may cause hard to detect runtime errors. If you need to change these values, really
make sure that the values are correct.

Note:

Some of these values will override results of tests performed by conf i gur e, and some will not be used until
confi gur e issurethat it cannot figure the result out.

Theconf i gur e script will issue awarning when a default value is used. When a variable has been set, no warning
will be issued.

erl _xconp_after_norecore_hook - yes| no. Defaults to no. If yes, the target system must have a
working __after_norecore_hook that can be used for tracking used mal | oc() implementations core
memory usage. Thisis currently only used by unsupported features.

erl _xconp_bi gendi an - yes| no. No default. If yes, the target system must be big endian. If no, little
endian. This can often be automatically detected, but not always. If not automatically detected, conf i gur e will
fail unlessthisvariableisset. Since no default valueisused, conf i gur e will try to figurethis out automatically.

erl _xconp_doubl e_mi ddl e - yes| no. Defaults to no. If yes, the target system must have doubles in
"middle-endian" format. If no, it has "regular" endianness.

erl _xconp_cl ock_gettime_cpu_tine-yes| no. Defaultsto no. If yes, the target system must have
aworkingcl ock_getti me() implementation that can be used for retrieving process CPU time.

er| _xconp_get addri nfo - yes| no. Defaults to no. If yes, the target system must have a working
get addri nf o() implementation that can handle both 1Pv4 and 1Pv6.

erl _xconp_get hrvtime_procfs_ioctl -yes| no.Defaultstono. If yes, thetarget system must have
aworking get hr vt i ne() implementation and is used with procfsi oct | ().

erl _xconp_dl sym brk_wrappers - yes| no. Defaults to no. If yes, the target system must have a
workingdl sym(RTLD_NEXT, <S>) implementation that can be used on br k and sbr k symbols used by the
mal | oc() implementation in use, and by thistrack thermal | oc() implementations core memory usage. This
iscurrently only used by unsupported features.

erl _xconp_kqueue - yes| no. Defaultsto no. If yes, the target system must have a working kqueue()
implementation that returns a file descriptor which can be used by pol | () and/or sel ect () . If no and the
target system has not got epol | () or/ dev/ pol I , the kernel-poll feature will be disabled.

erl _xconp_linux_clock_gettime_correction - yes| no. Defaults to yes on Linux; otherwise,
no. If yes, cl ock_getti me(CLOCK_MONOTONI C,) on the target system must work. This variable is
recommended to be set to no on Linux systems with kernel versions less than 2.6.

erl _xconp_Ilinux_nptl -yes| no. Defaultsto yes on Linux; otherwise, no. If yes, the target system
must have NPTL (Native POSIX Thread Library). Older Linux systems have LinuxThreads instead of NPTL
(Linux kernel versionstypically lessthan 2.6).

erl _xconp_Ilinux_usabl e_sigal tstack -yes| no. Defaultstoyes on Linux; otherwise, no. If yes,
si gal t st ack() must be usable on the target system. si gal t st ack() on Linux kernel versions less than
2.4 are broken.

erl _xconp_Ilinux_usabl e_si gusrx -yes| no. Defaultstoyes. If yes, the SI GUSR1 and SI GUSR2
signals must be usable by the ERTS. Old LinuxThreads thread libraries (Linux kernel versionstypically lessthan
2.2) used these signals and made them unusable by the ERTS.

erl _xconp_pol | -yes| no. Defaultsto no on Darwin/MacOSX; otherwise, yes. If yes, the target system

must have a working pol | () implementation that also can handle devices. If no, sel ect () will be used
instead of pol | () .

30 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.4 How to Build Erlang/OTP on Windows

e erl_xconp_put env_copy - yes| no. Defaults to no. If yes, the target system must have a put env ()
implementation that stores a copy of the key/value pair.

e erl_xconp_reliable fpe-yes|no.Defaultstono. If yes, thetarget system must have reliable floating
point exceptions.

« erl_xconp_posi x_memnal i gn - yes| no. Defaults to yes if posi x_nemal i gn system call exists;
otherwise no. If yes, thetarget system must haveaposi x_nmenal i gn implementation that accepts larger than
page size alignment.

e erl_xconp_code_nodel snall - yes| no. Default to no. If yes, the target system must place the
beam.smp executable in the lower 2 GB of memory. That is it should not use position independent executable.

2.4 How to Build Erlang/OTP on Windows

Table of Contents

* Introduction

e Short Version

e Toolsyou Need and Their Environment
e The Shell Environment

e Building and Installing

e Development

* Frequently Asked Questions

2.4.1 Introduction

This section describes how to build the Erlang emulator and the OTP libraries on Windows. Note that the Windows
binary releases are still a preferred alternative if one does not have Microsoft’ s development tools and/or don’t want
to install WSL.

The instructions apply to Windows 10 (v.1809 and later) supporting the WSL.1 (Windows Subsystem for Linux v.1)
and using Ubuntu 18.04 release.

The procedure described uses WSL as a build environment. Y ou run the bash shell in WSL and use the gnu make/
configure/autoconf etc to do the build. The emulator C-source code is, however, mostly compiled with Microsoft
Visual C++™ producing anative Windows binary. Thisisthe same procedure aswe useto build the pre-built binaries.
Why we use VC++ and not gcc is explained further in the FAQ section.

These instructions apply for both 32-bit and 64-bit Windows. Note that even if you build a 64-bit version of Erlang,
most of the directories and files involved are till named win32. Some occurrences of the name win64 are however
present. The installation file for a 64-bit Windows version of Erlang, for example, isot p_w n64_23. exe.

If you feel comfortable with the environment and build system, and have all the necessary tools, you have a great
opportunity to make the Erlang/OTP distribution for Windows better. Please submit any suggestions to our JIRA
and patches to our git project to let them find their way into the next version of Erlang. If making changes to
the build system (like makefiles etc) please bear in mind that the same makefiles are used on Unix/VxWorks, so
that your changes don't break other platforms. That of course goes for C-code too; system specific code resides
inthe$ERL_TOP/ ert s/ enul at or/ sys/w n32 and SERL_TOP/ ert s/ et ¢/ wi n32 directoriesmostly. The
$ERL_TOP/ ert s/ enul at or / beamdirectory isfor common code.

2.4.2 Short Version

In the following sections, we've described as much as we could about the installation of the tools needed. Once the
tools are installed, building is quite easy. We have also tried to make these instructions understandable for people
with limited Unix experience. WSL is awhole new environment to some Windows users, why careful explanation of
environment variables etc seemed to be in place.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 31

href
href

2.4 How to Build Erlang/OTP on Windows

Thisisthe short story though, for the experienced and impatient:

Get and install complete WSL environment

e Instal Visua Studio 2019

* Get and install windows JDK-8

e Get andinstal windows NSIS 3.05 or later (3.05 tried and working)

* Get, build and install OpenSSL v1.1.1d or later (up to 1.1.1d tried & working) with static libs.
e Get, build and install wxWidgets-3.1.3 or later (up to 3.1.3 tried & working) with static libs.

* Get the Erlang source distribution (from http://www.er lang.or g/download.html) and unpack with t ar to
the windows disk for example to: /mnt/c/src/

« Install mingw-gcc, make and autoconf: sudo apt install gcc-m ngw w64 nmake aut oconf
* $ cd UNPACK DR

* Modify PATH and other environment variables so that all these tools are runnable from a bash shell. Still
standing in SERL_ TOPR, issue the following commands (for 32-bit Windows, remove the x64 from the first
row and changeot p_wi n64_23 toot p_w n32_23 onthelast row):

$ eval "./otp build env win32 x64°
$./otp build autoconf

$./otp build configure

$./otp build boot -a

$./otp build release -a

$./otp build installer win32

$ release/win32/otp win64 23 /S

Voilal St art->Prograns->Erl ang OTP 23- >Er| ang starts the Erlang Windows shell.

2.4.3 Tools you Need and Their Environment

Y ou need sometoolsto be ableto build Erlang/OTP on Windows. Most notably you'll need WSL (with ubuntu), Visual
Studio and Microsofts Windows SDK, but you might also want a Java compiler, the NSIS install system, OpenSSL
and wxWidgets. Well, here's some information about the different tools:

WSL: Install WSL and Ubuntu in Windows 10 https://docs.micr osoft.com/en-us/windows/wsdl/install-win10

We have used and tested with WSL-1, WSL -2 was not available and may not be prefered when building Erlang/
OTP since access to the windows disk is (currently) slower WSL-2.

Visual Studio 2019 Download and run the installer from: http://visualstudio.micr osoft.com/downloads Install
C++ and SDK packages to the default installation directory.

Java JDK 8 or later (optional) If you don't care about Java, you can skip this step. The result will bethat jinterface
is not built.

Our Java code (jinterface, ic) is tested on windows with JDK 8. Get it for Windows and install it, the JRE is
not enough.

URL: http://www.or acle.com/java/technol ogies/javase-downloads.html

Add javac to your path environment, in my case this means:
"PATH="/mnt/c/Program\ Files/Java/jdk1.8.0 241/bin:$PATH"

No CLASSPATH or anything is needed. Type j avac. exe in the bash prompt and you should get a list of
available Java options.

Nullsoft NSIS installer system (optional) Y ou need thisto build the self installing package.
Download and run the installer from: URL.: http://nsis.sour cefor ge.net/download
Add 'makensis.exe' to your path environment:

32 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href
href
href
href

2.4 How to Build Erlang/OTP on Windows

"PATH="/mnt/c/Program\ Files/NSIS/Bin:$PATH"
Typewhi ch nmakensi s. exe inthe bash prompt and you should get the path to the program.
e OpenSSL (optional) Y ou need thisto build crypto, ssh and sdl libs.

We recommend v1.1.1d or later. There are prebuilt avaiable binaries, which you can just download and install,
available here: URL: http://wiki.openssl.or g/index.php/Binaries

Install into C: / OQpenSSL- W n64 (or C. / QpenSSL- W n32)
* wxWidgets (optional) Y ou need thisto build wx and use gui's in debugger and observer.
We recommend v3.1.3 or later. Unpack intoc: / opt / | ocal 64/ pgm wxW dgets-3.1.3

If the wxUSE_PQOSTSCRI PT isn't enabled in c: / opt/ | ocal 64/ pgnml wxW dget s-3. 1. 3/i ncl ude/
wx/ nsw set up. h, enableit.

Build with:

C:\...\> cd c:\opt\local64\pgm\wxWidgets-3.1.3\build\msw
C:\...\> nmake TARGET CPU=amd64 BUILD=release SHARED=0 DIR SUFFIX CPU= -f makefile.vc

Remove the TARGET _CPU=antd64 for 32bit build.

e Get the Erlang source distribution (from http://www.erlang.or g/download.html). The same as for Unix
platforms. Preferably use tar to unpack the source tar.gz (t ar zxf otp_src_23.tar. gz) to somewhere
onthewindowsdisk,/ mt/c/ path/to/otp_src

NOTE: It isimportant that source on the windows disk.
Set the environment ERL_ TOP to point to the root directory of the source distribution. Let'ssay | stood in/ it /
¢/ src andunpackedot p_src_23. tar. gz, | then add thefollowingto . profi | e:

ERL TOP=/mnt/c/src/otp src 23
export ERL_TOP

2.4.4 The Shell Environment

The path variable should now contain the windows paths to javac.exe and makensis.exe.

Setup the environment with:

$ export PATH
$ cd /mnt/c/path/to/otp src/
$ eval "./otp build env_win32 x64°

This should setup the additional environment variables.

This should do thefinal touch to the environment and building should be easy after this. Youcouldrun. / ot p_bui | d
env_w n32 without eval just to see what it does, and to see that the environment it sets seems OK. The path
is cleaned of spaces if possible (using DOS style short names instead), the variables OVERRI DE_TARGET, CC,
CXX, AR and RANLI B are set to their respective wrappers and the directories SERL_TOP/ ert s/ et ¢/ wi n32/
wsl _tool s/vcand$ERL_TOP/ ert s/ etc/wi n32/wsl _t ool s areadded first in the PATH.

Now you can check which erlc you have by writingt ype er | ¢ inyour shell. It should residein SERL_TOP/ ert s/
et c/wi n32/ wsl _tools.

And running cl . exe should print the Microsoft compiler usage message.

The needed compiler environment variables are setup inside ot p_bui | d viaert s/ et c/ wi n32/ wsl _t ool s/
Set upWBLcr oss. bat . It contains some hardcoded paths, if your installation path is different it can be added to
that file.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 33

href
href

2.4 How to Build Erlang/OTP on Windows

2.4.5 Building and Installing
Building is easiest using the ot p_bui | d script:

#H A A A A

./otp build autoconf # Ignore the warning blob about versions of autoconf
./otp build configure <optional configure options>

./otp build boot -a

./otp build release -a <installation directory>

./otp build installer win32 <installation directory> # optional

Now you will have a file called ot p_wi n32_23. exe or ot p_w n64_23. exe in the <install ation
directory>,i.e SERL_TOP/ r el ease/ wi n32.

Lets get into more detail:

$./otp_build autoconf - Thisstep rebuildsthe configure scriptsto work correctly in your environment.
In anidea world, this would not be needed, but aas, we have encountered several incompatibilities between our
distributed configure scripts (generated on aLinux platform) and the Cygwin/MSY SIMSY S2/WSL environment
over the years. Running autoconf in WSL ensures that the configure scripts are generated in a compatible way
and that they will work well in the next step.

$./otp_build confi gure-Thisrunsthe newly generated configure scriptswith options making configure
behave nicely. Thetarget machinetypeisplainly wi n32, so alot of the configure-scripts recognize this awkward
target name and behave accordingly. The CC variable also makes the compiler becc. sh, which wrapsMSVC+
+, so all configure tests regarding the C compiler gets to run the right compiler. A lot of the tests are not needed
on Windows, but we thought it best to run the whole configure anyway.

$./otp_build boot -a - This uses the bootstrap directory (shipped with the source, $ERL_TOP/
boot st r ap) to build a complete OTP system. When this is done you can run erl from within the source tree;
just type SERL_TOP/ bi n/ er | and you should have the prompt.

$./otp_build rel ease -a - Buildsacommercia release tree from the source tree. The default isto
put itin SERL_TOP/ r el ease/ wi n32. You can give any directory as parameter, but it doesn't really matter
if you're going to build a self extracting installer too.

$./otp_build installer_w n32 - Creates the self extracting installer executable. The executable
ot p_w n32_23. exe or ot p_wi n64_23. exe will be placed in the top directory of the release created in
the previous step. If no release directory is specified, the release is expected to have been built to $ERL_TOP/

rel ease/ wi n32, which also will be the place where the installer executable will be placed. If you specified
some other directory for the release (i.e. . /otp_build release -a /tnp/erl _rel ease), youre
expected to givethe same parameter here, (i.e.. /ot p_buil d i nstall er_wi n32 /tnp/ erl _rel ease).
You need to have a full NSIS installation and nakensi s. exe in your path for this to work. Once you have
created the installer, you can run it to install Erlang/OTP in the regular way, just run the executable and follow
the stepsin the installation wizard. To get all default settings in the installation without any questions asked, you
run the executable with the parameter / S (capital S) likein:

$ cd $ERL_TOP
$ release/win32/otp win32 23 /S

or
$ cd $ERL TOP
$ release/win32/otp win64 23 /S

and after a while Erlang/OTP-23 will have been installed in C:\ Program Fil es\erl 11. 1. 4\, with
shortcuts in the menu etc.

34 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.4 How to Build Erlang/OTP on Windows

2.4.6 Development

Once the system is built, you might want to change it. Having a test release in some nice directory might be useful,
but you can also run Erlang from within the sourcetree. Thetarget | ocal _set up, makesthe program SERL_TOP/
bi n/ erl . exe usableand it also usesal the OTP librariesin the source tree.

If you hack the emulator, you can build the emulator executable by standing in $ERL_TOP/ er t s/ ermul at or and
doasimple

$ make opt

Note that you need to haverun (cd $ERL_TOP && eval ~./otp_build env_wi n32") intheparticular
shell before building anything on Windows. After doing a make opt you can test your result by running SERL_ TOP/
bi n/ erl . If you want to copy the result to a release directory (say / t np/ er| _r el ease), you do this (still in
$ERL_TOP/ ert s/ enul at or)

$ make TESTROOT=/tmp/erl release release

That will copy the emulator executables.

To make a debug build of the emulator, you need to recompile both beam dl | (the actual runtime system) and
erl exec. dl | . Dolikethis

$ cd $ERL_TOP

$ rm bin/win32/erlexec.dll
$ cd erts/emulator

$ make debug

$ cd ../etc

$ make debug

and sometimes

$ cd $ERL_TOP
$ make local setup

So now when you run $ERL_TOP/ er | . exe, you should have a debug compiled emulator, which you will see if
you do &

1> erlang:system info(system version).

in the erlang shell. If the returned string contains [debug] , you got a debug compiled emulator.
To hack the erlang libraries, you simply do anake opt inthe specific "applications” directory, like:

$ cd $ERL TOP/lib/stdlib
$ make opt

or even in the source directory...

$ cd $ERL TOP/lib/stdlib/src
$ make opt

Note that you're expected to have a fresh Erlang in your path when doing this, preferably the plain 23 you have
built in the previous steps. You could aso add $ERL_TOP/ boot st r ap/ bi n to your PATH before rebuilding
specific libraries. That would give you a good enough Erlang system to compile any OTP erlang code. Setting up the
path correctly is a little bit tricky. You still need to have $ERL_TOP/ ert s/ et ¢/ wi n32/ wsl _t ool s/ vc and
$ERL_TOP/ ert s/ et c/ wi n32/ wsl _t ool s beforethe actual emulator in the path. A typical setting of the path
for using the bootstrap compiler would be:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 35

2.4 How to Build Erlang/OTP on Windows

$ export PATH=$ERL TOP/erts/etc/win32/wsl tools/vc\
:$ERL_TOP/erts/etc/win32/wsl tools:$ERL TOP/bootstrap/bin:$PATH

That should make it possible to rebuild any library without hassle...

If you want to copy alibrary (an application) newly built, to arelease area, you do like with the emulator:

$ cd $ERL_TOP/lib/stdlib
$ make TESTROOT=/tmp/erlang release release

Remember that:

Windows specific C-code goes in the $ERL_TOP/ ert s/ enul at or/ sys/w n32, $ERL_TOP/ ert s/
ermul ator/drivers/w n32or$ERL_TOP/ ert s/ et c/w n32.

Windows specific erlang code should be used conditionally and the host OS tested in runtime, the exactly same
beam files should be distributed for every platform! So write code like:

case os:type() of
{win32, } ->
do windows specific();
Other ->
do_fallback or exit()
end,

That's basically all you need to get going.

2.4.7 Frequently Asked Questions

Q: So, now | can build Erlang using GCC on Windows?

A: No, unfortunately not. Y ou'll need Microsoft's Visual C++ till. A Bourne-shell script (cc.sh) wrapsthe Visual
C++ compiler and runsit from within the WSL environment. All other tools needed to build Erlang are free-ware/
open source, but not the C compiler.

Q: Why haven't you got rid of VC++ then, you ******?

A: Weéll, partly becauseit's agood compiler - really! Actualy it's been possiblein late R11-rel easesto build using
mingw instead of visual C++ (you might see the remnants of that in some scripts and directories). Unfortunately
the development of the SMP version for Windows broke the mingw build and we chose to focus on the VC++
build as the performance has been much better in the VC++ versions. The mingw build will possibly be back, but
as long as VC++ gives better performance, the commercial build will be aVC++ one.

Q: Hah, | saw you, you used GCC even though you said you didn't!

A: OK, | admit, one of thefilesis compiled using MinGW's GCC and the resulting object code is then converted
to MS VC++ compatible coff using a small C hack. It's because that particular file, beam emu. ¢ benefits
immensely from being able to use the GCC |abels-as-values extension, which boosts emulator performance by
up to 50%. That does unfortunately not (yet) mean that all of OTP could be compiled using GCC. That particular
source code does not do anything system specific and actually is adopted to the fact that GCC is used to compile
it on Windows.

Q: So now there'saMS VC++ project file somewhere and | can build OTP using the nifty VC++ GUI?

A: No, never. The hassle of keeping the project files up to date and do all the steps that constitute an OTP build
from within the VC++ GUI is simply not worth it, maybe even impossible. A VC++ project file for Erlang/OTP
will never happen.

Q: So how doesit all work then?
A: WSL/Ubuntu is the environment, it's almost like you had a virtual Unix machine inside Windows. Configure,

given certain parameters, then creates makefiles that are used by the environment's gnu-make to built the system.
Most of the actual compilers etc are not, however, WSL tools, so we've written a couple of wrappers (Bourne-

36 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.5 Patching OTP Applications

shell scripts), which reside in $ERL_TOP/ et ¢/ wi n32/ wsl _t ool s. They all do conversion of parameters
and switches common in the Unix environment to fit the native Windowstools. Most notableisof coursethe paths,
which in WSL are Unix-like paths with "forward slashes" (/) and no drive letters. The WSL specific command
ws| pat h isused for most of the path conversionsin aWSL environment. Luckily most compilers accept forward
slashes instead of backslashes as path separators, but one till have to get the drive letters etc right, though. The
wrapper scripts are not general in the sense that, for example, cc.sh would understand and translate every possible
gcc option and pass correct optionsto cl.exe. The principleisthat the scriptsare powerful enough to allow building
of Erlang/OTP, no more, no less. They might need extensions to cope with changes during the development of
Erlang, and that's one of the reasons we made them into shell-scripts and not Perl-scripts. We believe they are
easier to understand and change that way.

INSERL_TOP, thereisascriptcaledot p_bui | d. That script handlesthe hassle of giving all theright parameters
toconfi gur e/make and aso helpsyou set up the correct environment variablesto work with the Erlang source
under WSL.

e Q: Can| build something that looks exactly asthe commercia release?

A: Yes, we use the exact same build procedure.
e Q: Which version of WSL and other tools do you use then?

A: We use WSL 1 with Ubuntu 18.04. The GCC we used for 23 was version 7.3-win32. We used Visua studio
2019, Sun's JDK 1.8.0 241, NSIS 3.05, Win32 OpenSSL 1.1.1d and wxWidgets-3.1.3.

2.5 Patching OTP Applications
2.5.1 Introduction

This document describes the process of patching an existing OTP installation with one or more Erlang/OTP
applications of newer versions than aready installed. The tool ot p_pat ch_appl y is available for this specific
purpose. It resides in the top directory of the Erlang/OTP source tree.

Theot p_pat ch_appl y tool utilizestheruntime_dependenciestag in the application resourcefile. Thisinformation
is used to determine if the patch can be installed in the given Erlang/OTP installation directory.

Read more about the version handling introduced in Erlang/OTP release 17, which also describes how to determine
if an installation includes one or more patched applications.

If you want to apply patches of multiple OTP applications that resides in different OTP versions, you have to apply
these patches in multiple steps. It is only possible to apply multiple OTP applications from the same OTP version
at once.

2.5.2 Prerequisites

It's assumed that the reader is familiar with building and installing Erlang/OTP. To be able to patch an application,
the following must exist:

e An Erlang/OTP installation.
* An Erlang/OTP source tree containing the updated applications that you want to patch into the existing Erlang/

OTPinstalation.
2.5.3 Using otp patch_apply

‘ Patching applicationsis a one-way process. Create a backup of your OTP installation directory before proceeding.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 37

2.5 Patching OTP Applications

First of all, build the OTP source tree at $ERL_ TOP containing the updated applications.

| Before applying a patch you need to do afull build of OTP in the source directory. |

If you arebuildingingi t you first need to generate the conf i gur e scripts:
$./otp build autoconf
Configure and build all applicationsin OTP:

$ configure
$ make

or

$./otp build configure
$./otp build boot -a

If you have installed documentation in the OTP installation, also build the documentation:
$ make docs

After the successful build it's time to patch. The source tree directory, the directory of the installation and the
applications to patch are given as arguments to ot p_pat ch_appl y. The dependencies of each application are
validated against the applications in the installation and the other applications given as arguments. If a dependency
error is detected, the script will be aborted.

Theot p_pat ch_appl y syntax:

$ otp patch apply -s <Dir> -i <Dir> [-1 <Dir>] [-c] [-f] [-h] \
[-n] [-v] <Appl> [... <AppN>]

-s <Dir> -- OTP source directory that contains build results.
-1 <Pir> -- OTP installation directory to patch.
-1 <Dir> -- Alternative OTP source library directory path(s)

containing build results of OTP applications.
Multiple paths should be colon separated.

-C -- Cleanup (remove) old versions of applications
patched in the installation.
-f -- Force patch of application(s) even though

dependencies are not fulfilled (should only be
considered in a test environment).

-h -- Print help then exit.

-n -- Do not install documentation.
-V -- Print version then exit.
<AppX> -- Application to patch.

Environment Variable:
ERL LIBS -- Alternative OTP source library directory path(s)
containing build results of OTP applications.
Multiple paths should be colon separated.

| The complete build environment is required while running ot p_pat ch_appl y. |

38 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.5 Patching OTP Applications

All source directoriesidentified by - s and - | should contain build results of OTP applications.

For example, if the user wants to install patched versions of mesi a and ssl built in/ hone/ me/ gi t / ot p into
the OTPinstallation located in/ opt / er | ang/ ny_ot p type

$ otp patch apply -s /home/me/git/otp -i /opt/erlang/my otp \
mnesia ssl

If the list of applications contains core applications, i.eert s, kernel ,stdli b orsasl,thel nstal | script
in the patched Erlang/OTP installation must be rerun.

The patched applications are appended to the list of installed applications. Take a look at <I nstal | Di r >/
rel eases/ OTP- REL/ i nst al | ed_appl i cati on_versions.

2.5.4 Sanity check

The application dependencies can be checked using the Erlang shell. Application dependencies are verified among
installed applications by ot p_pat ch_appl y, but these are not necessarily those actualy loaded. By calling
system i nfornati on: sanity_check() onecan validate dependencies among applications actually |oaded.

1> system information:sanity check().
ok

Please take alook at the reference of sanity _check() for more information.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 39

3.1 System Principles

3 System Principles

3.1 System Principles
3.1.1 Starting the System

An Erlang runtime system is started with command er | :

% erl
Erlang/0TP 17 [erts-6.0] [hipe] [smp:8:8]

Eshell V6.0 (abort with "G)
1>

er | understands a number of command-line arguments, see the erl(1) manual pagein ERTS. Some of them are also
described in this chapter.

Application programs can access the values of the command-line arguments by caling the function
i nit:get_argunent (Key) orinit:get_argunents().Seetheinit(3) manual pagein ERTS.

3.1.2 Restarting and Stopping the System
The runtime system is halted by calling hal t / 0, 1. For details, see the erlang(3) manual page in ERTS.
Themodulei ni t contains functions for restarting, rebooting, and stopping the runtime system:

init:restart()
init:reboot()
init:stop()

For details, see the init(3) manual pagein ERTS.
The runtime system terminates if the Erlang shell is terminated.

3.1.3 Boot Scripts

The runtime system is started using a boot script. The boot script contains instructions on which code to load and
which processes and applicationsto start.

A boot script file has the extension . scri pt . The runtime system uses a binary version of the script. This binary
boot script file has the extension . boot .

Which boot script to use is specified by the command-line flag - boot . The extension . boot isto be omitted. For
example, using the boot script st art _al | . boot :

% erl -boot start all

If no boot script is specified, it defaultsto ROOT/ bi n/ st ar t , see Default Boot Scripts.

The command-line flag - i ni t _debug makesthei ni t process write some debug information while interpreting
the boot script:

40 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.1 System Principles

% erl -init debug
{progress,preloaded}
{progress,kernel load completed}
{progress,modules loaded}
{start,heart}

{start, logger}

For a detailed description of the syntax and contents of the boot script, seethescri pt (4) manual pagein SASL.

Default Boot Scripts
Erlang/OTP comes with these boot scripts:
e« start_cl ean. boot - Loadsthe codefor and starts the applications Kernel and STDLIB.

e start_sasl. boot - Loadsthe codefor and starts the applications Kernel, STDLIB, and SASL).

* no_dot _erl ang. boot - Loadsthe code for and starts the applications Kernel and STDLIB. Skips
loading thefile . er | ang. Useful for scripts and other tools that are to behave the same irrespective of user
preferences.

Which of start_cl ean and st art _sasl to use as default is decided by the user when installing Erlang/OTP
using I nst al | . The user isasked "Do you want to use aminimal system startup instead of the SASL startup”. If the
answer isyes, thenst art _cl ean isused, otherwise st art _sasl| isused. A copy of the selected boot script is
made, named st art . boot and placed in directory ROOT/ bi n.

User-Defined Boot Scripts

It is sometimes useful or necessary to create a user-defined boot script. Thisis true especially when running Erlang
in embedded mode, see Code Loading Strategy.

A boot script can be written manually. However, it is recommended to create a boot script by generating it from a
releaseresourcefileName. r el , using thefunctionsyst ool s: make_scri pt/ 1, 2. Thisrequiresthat the source
code is structured as applications according to the OTP design principles. (The program does not have to be started
in terms of OTP applications, but can be plain Erlang).

For moreinformation about . r el files, see OTP Design Principles and the rel(4) manual pagein SASL.

The binary boot script file Nare. boot is generated from the boot script file Nane. scri pt, using the function
syst ool s: scri pt 2boot (Fil e).

3.1.4 Code Loading Strategy

The runtime system can be started in either embedded or inter active mode. Which one is decided by the command-
lineflag - node.

% erl -mode embedded

Default modeisi nt er act i ve and extra- node flags are ignored.
The mode properties are as follows:

* Inembedded mode, al code isloaded during system startup according to the boot script. (Code can also be
loaded |ater by explicitly ordering the code server to do so.)

* Ininteractive mode, the code is dynamically loaded when first referenced. When acall to afunction in amodule
is made, and the module is not loaded, the code server searches the code path and |oads the module into the
system.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 41

3.2 Error Logging

Initialy, the code path consists of the current working directory and all object code directories under ROOT/ | i b,
where ROOT is the installation directory of Erlang/OTP. Directories can be named Nare|[- Vsn] . The code server,
by default, chooses the directory with the highest version number among those which have the same Nane. The -

Vsn suffix is optiona. If an ebi n directory exists under the Narre[- Vsn] directory, this directory is added to the
code path.

The code path can be extended by using the command-line flags-pa Directories and-pz Directories.
Theseadd Di r ect ori es to the head or the end of the code path, respectively. Example:

% erl -pa /home/arne/mycode

The code server module code contains a number of functions for modifying and checking the search path, see the
code(3) manual pagein Kerndl.

3.1.5 File Types
The following file types are defined in Erlang/OTP:

File Type File Name/Extension Documented in

Module .erl Erlang Reference Manual
Includefile .hrl Erlang Reference Manual
Release resource file .rel rel(4) manual pagein SASL
Application resource file .app app(4) manual page in Kernel
Boot script .script script(4) manual pagein SASL
Binary boot script . boot -

Configuration file .config config(4) manual pagein Kernel
Application upgradefile . appup appup(4) manual pagein SASL
Release upgrade file relup relup(4) manual pagein SASL

Table 1.1: File Types

3.2 Error Logging

3.2.1 Error Information From the Runtime System

Error information from the runtime system, that is, information about a process terminating because of an uncaught
error exception, is by default written to terminal (tty):

=ERROR REPORT==== 9-Dec-2003::13:25:02 ===
Error in process <0.27.0> with exit value: {{badmatch,[1,2,3]},[{m,f,1},{shell,eval loop,2}]}

The error information is handled by Logger, which is part of the Kernel application.
The exit reasons (such asbadar g) used by the runtime system are described in Errors and Error Handling.

42 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.3 Creating and Upgrading a Target System

For information about Logger and its user interface, see the logger(3) manual page and the Logging section in the
Kernel User's Guide. The system can be configured so that log events are written to file or to tty, or both. In addition,
user-defined applications can send and format log events using Logger.

3.2.2 Log events from OTP behaviours

The standard behaviours (super vi sor, gen_ser ver, and so on) send progress and error information to Logger.
Progress reports are by default not logged, but can be enabled by setting the primary log level to i nf o, for example
by using the Kernel configuration parameter | ogger _| evel . Supervisor reports, crash reports and other error and
information reportsare by default logged through thelog handler which is set up when the Kernel application is started.

Prior to Erlang/OTP 21.0, supervisor, crash, and progress reports were only logged when the SASL application was
running. This behaviour can, for backwards compatibility, be enabled by setting the Kernel configuration parameter
ogger _sasl _conpati bl e tot r ue. For moreinformation, see SASL Error Logging inthe SASL User's Guide.

% erl -kernel logger level info
Erlang/0TP 21 [erts-10.0] [source-13c50db] [64-bit] [smp:4:4] [ds:4:4:10] [async-threads:1] [hipe]

=PROGRESS REPORT==== 8-Jun-2018::16:54:19.916404 ===
application: kernel
started at: nonode@nohost
=PROGRESS REPORT==== 8-Jun-2018::16:54:19.922908 ===
application: stdlib
started at: nonode@nohost
=PROGRESS REPORT==== 8-Jun-2018::16:54:19.925755 ===
supervisor: {local,kernel safe sup}
started: [{pid,<0.74.0>},
{id,disk log sup},
{mfargs,{disk log sup,start link,[]}},
{restart type,permanent},
{shutdown, 1000},
{child type,supervisor}]
=PROGRESS REPORT==== 8-Jun-2018::16:54:19.926056 ===
supervisor: {local,kernel safe sup}
started: [{pid,<0.75.0>},
{id,disk log server},
{mfargs,{disk log server,start link,[]}},
{restart type,permanent},
{shutdown, 2000},
{child type,worker}]
Eshell V10.0 (abort with "G)
1>

3.3 Creating and Upgrading a Target System

When creating a system using Erlang/OTP, the simplest way is to install Erlang/OTP somewhere, install the
application-specific code somewhere else, and then start the Erlang runtime system, making sure the code path includes
the application-specific code.

It is often not desirable to use an Erlang/OTP system as is. A developer can create new Erlang/OTP-compliant
applications for a particular purpose, and several original Erlang/OTP applications can be irrelevant for the purpose
in question. Thus, there is a need to be able to create a new system based on a given Erlang/OTP system, where
dispensable applications are removed and new applications are included. Documentation and source code isirrelevant
and is therefore not included in the new system.

This chapter is about creating such a system, which is called atarget system.
The following sections deal with target systems with different requirements of functionality:
e A basictarget system that can be started by calling the ordinary er | script.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 43

3.3 Creating and Upgrading a Target System

* A simpletarget system where aso code replacement in runtime can be performed.

« Anembedded target system where there is also support for logging output from the system to file for later
inspection, and where the system can be started automatically at boot time.

Hereisonly considered the case when Erlang/OTP is running on a UNIX system.

The sas| application includes the example Erlang module t ar get _syst em er |, which contains functions for
creating and installing atarget system. Thismodule is used in the following examples. The source code of the module
islisted in Listing of target_system.erl

3.3.1 Creating a Target System
It is assumed that you have aworking Erlang/OTP system structured according to the OTP design principles.

Step 1. Create a . r el file (see the rel(4) manual page in SASL), which specifies the ERTS version and lists all
applicationsthat are to beincluded in the new basic target system. An exampleisthefollowingnysyst em r el file

%% mysystem.rel
{release,
{"MYSYSTEM", "FIRST"},
{erts, "5.10.4"},
[{kernel, "2.16.4"},
{stdlib, "1.19.4"},
{sasl, "2.3.4"},
{pea, "1.0"}1}.

Thelisted applications are not only original Erlang/OTP applications but possibly also new applications that you have
written (here exemplified by the application Pea (pea)).
Step 2. Start Erlang/OTP from the directory wherethe nysyst em r el fileresides:

os> erl -pa /home/user/target system/myapps/pea-1.0/ebin

Here also the path to the pea- 1. 0 ebin directory is provided.
Step 3. Create the target system:

1> target system:create("mysystem").

Thefunctiont ar get _syst em cr eat e/ 1 performs the following:

* Readsthefilenysyst em r el and createsanew filepl ai n. r el that isidentical to the former, except that
it only liststhe Kernel and STDLIB applications.

 Fromthefilesnysystem rel andpl ai n. rel createsthefilesnmysyst em scri pt, mysyst em boot,
pl ai n.scri pt,andpl ai n. boot throughacall tosyst ool s: make_scri pt/ 2.

* Creates the file nysystem tar. gz by acal to syst ool s: make_t ar/ 2. That file has the following
contents:

erts-5.10.4/bin/
releases/FIRST/start.boot
releases/FIRST/mysystem.rel
releases/mysystem.rel
lib/kernel-2.16.4/
lib/stdlib-1.19.4/
lib/sasl-2.3.4/
lib/pea-1.0/

Thefiler el eases/ FI RST/ st art . boot isacopy of our nysyst em boot

44 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.3 Creating and Upgrading a Target System

The release resource file mysyst em r el is duplicated in the tar file. Originally, this file was only stored in
ther el eases directory to make it possible for ther el ease_handl er to extract this file separately. After
unpacking thetar file, r el ease_handl er would automatically copy thefiletor el eases/ FI RST. However,
sometimes the tar file is unpacked without involving ther el ease_handl er (for example, when unpacking
thefirst target system). The fileistherefore now instead duplicated in the tar file so no manual copying is needed.

e Createsthetemporary directory t mp and extractsthe tar filemysyst em t ar . gz into that directory.

* Deletesthefileser| andstart fromt np/ erts-5. 10. 4/ bi n. Thesefiles are created again from source
when installing the release.

* Createsthedirectory t np/ bi n.

» Copiesthe previously created filepl ai n. boot tot np/ bi n/ start. boot .

» Copiesthefilesepnd,run_erl ,andt o_erl| fromthedirectory t np/ erts-5. 10. 4/ bi n to the directory
t np/ bi n.

e Createsthedirectory t np/ | 0g, which is used if the system is started as embedded with the bi n/ st ar t
script.

* Createsthefilet np/ rel eases/ start _er| . dat a with the contents "5.10.4 FIRST". Thisfileisto be
passed as datafiletothest art _er| script.

* Recreatesthefilenysyst em t ar. gz from the directoriesin the directory t np and removest np.

3.3.2 Installing a Target System
Step 4. Install the created target system in a suitable directory.

2> target system:install("mysystem", "/usr/local/erl-target").

Thefunctiont ar get _system i nstal | / 2 performsthe following:

» Extractsthetar filemysyst em t ar. gz into thetarget directory / usr/ 1 ocal / erl -t ar get .

* Inthetarget directory readsthefiler el eases/ start _er| . dat a tofind the Erlang runtime system
version ("5.10.4").

* Substitutes %1 NAL_ROOTDI R%and ¥&EMJ>%for / usr/ |1 ocal / er| -t ar get and beam respectively, in
thefileserl . src,start.src,andstart _erl.src of thetargetert s-5. 10. 4/ bi n directory, and
putstheresulting fileser | ,start,andrun_er| inthetarget bi n directory.

e Findlythetargetr el eases/ RELEASES fileis created from datain thefiler el eases/ mysystemrel .

3.3.3 Starting a Target System

Now we have atarget system that can be started in various ways. We start it as abasic tar get system by invoking:

os> /usr/local/erl-target/bin/erl

Here only the Kernel and STDLIB applications are started, that is, the system is started as an ordinary devel opment
system. Only two files are needed for all thisto work:

* bin/erl (obtainedfromerts-5.10.4/bin/erl.src)
e bin/start.boot (acopy of pl ai n. boot)

We can aso start a distributed system (requires bi n/ epnd).
To start all applications specified inthe origina nysyst em r el file, useflag - boot asfollows:

os> /usr/local/erl-target/bin/erl -boot /usr/local/erl-target/releases/FIRST/start

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 45

3.3 Creating and Upgrading a Target System

We start asimpletarget system asabove. The only differenceisthat also thefiler el eases/ RELEASES is present
for code replacement in runtime to work.

To start an embedded target system, the shell script bi n/ st art isused. The script callsbi n/ run_er |, which
inturncallsbi n/ start _er| (roughly,start _er!| isanembedded variant of er |).

The shell script st ar t , which is generated from erts-5.10.4/bin/start.src during installation, is only an example. Edit
it to suite your needs. Typicaly it is executed when the UNIX system boots.

run_erl isawrapper that provides logging of output from the runtime system to file. It also provides a simple
mechanism for attaching to the Erlang shell (t o_er |).

start _erl requires:

e Theroot directory ("/ usr/ 1l ocal /erl-target")

e Thereleasesdirectory ("/ usr/ | ocal /erl-target/rel eases"

e Thelocation of thefilestart _erl . data

It performs the following:

* Readsthe runtime system version (" 5. 10. 4") and release version (" FI RST") from thefile
start_erl . data.

» Startsthe runtime system of the version found.

* Providestheflag - boot specifying the boot file of the release version found (" r el eases/ FI RST/
start. boot").

start _erl also assumes that there is sys. confi g in the release version directory (" r el eases/ FI RST/
sys. confi g"). That isthetopic of the next section.

Thestart _er| shel scriptisnormally not to be altered by the user.

3.3.4 System Configuration Parameters

As was mentioned in the previous section, st art _er| requiresasys. confi g in the release version directory
("rel eases/ FI RST/ sys. confi g"). If there is no such file, the system start fails. Such a file must therefore
also be added.

If you have system configuration datathat is neither file-location-dependent nor site-dependent, it can be convenient to
createsys. confi g early, soit becomespart of thetarget systemtar filecreatedby t ar get _system create/ 1.
Infact, if youinthe current directory create not only thefilenysyst em r el , but alsofilesys. confi g, thelatter
fileistacitly put in the appropriate directory.

However, it can also be convenient to replace variables in within asys. conf i g on the target after unpacking but
beforerunning therelease. If you haveasys. confi g. sr c itwill beincluded andisnot requiredto beavalid Erlang
termfilelike sys. conf i g. Before running the release you must have avalid sys. conf i g in the same directory,
sousing sys. confi g. src requires having some tool to populate what is needed and write sys. conf i g to disk
before booting the release.

3.3.5 Differences From the Install Script

The previous i nst al | / 2 procedure differs somewhat from that of the ordinary | nst al | shell script. In fact,
cr eat e/ 1 makesthe release package as complete as possible, and leave to thei nst al | / 2 procedure to finish by
only considering |ocation-dependent files.

3.3.6 Creating the Next Version

In this exampl e the Pea application has been changed, and so are the applications ERTS, Kernel, STDLIB and SASL.
Step 1. Create thefile. rel :

46 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.3 Creating and Upgrading a Target System

%% mysystem2.rel
{release,
{"MYSYSTEM", "SECOND"},
{erts, "6.0"},
[{kernel, "3.0"},
{stdlib, "2.0"},
{sasl, "2.4"},
{pea, "2.0"}1}.

Step 2. Create the application upgrade file (see the appup(4) manual pagein SASL) for Pea, for example:

{II2
[{"1.0",[{load module,pea lib}]1}1,
[{"1.0",[{load module,pea lib}]1}1}.

pea.appup
0

n
. ’

Step 3. From the directory where the file mysyst en®. r el resides, start the Erlang/OTP system, giving the path
to the new version of Pea:

os> erl -pa /home/user/target system/myapps/pea-2.0/ebin

Step 4. Create the release upgrade file (see the relup(4) manual pagein SASL):

1> systools:make relup("mysystem2",["mysystem"],["mysystem"],
[{path, ["/home/user/target system/myapps/pea-1.0/ebin",
"/my/old/erlang/lib/*/ebin"]}1).

Here" nmysyst ent' isthebasereleaseand " mysyst enR" isthe release to upgrade to.

Thepat h option isused for pointing out the old version of all applications. (The new versions are already in the code
path - assuming of course that the Erlang node on which thisis executed is running the correct version of Erlang/OTP.)

Step 5. Create the new release:

2> target system:create("mysystem2").
Given that the filer el up generated in Step 4 is now located in the current directory, it is automatically included in
the release package.
3.3.7 Upgrading the Target System

This part is done on the target node, and for this example we want the node to be running as an embedded system with
the- heart option, allowing automatic restart of the node. For more information, see Starting a Target System.

Weadd - heart tobi n/start:

#!/bin/sh
ROOTDIR=/usr/local/erl-target/

if [-z "$RELDIR"]
then
RELDIR=$RO0OTDIR/releases
fi
START ERL DATA=${1:-$RELDIR/start erl.data}

$ROOTDIR/bin/run_erl -daemon /tmp/ $ROOTDIR/log "exec $ROOTDIR/bin/start erl $ROOTDIR\
$RELDIR $START ERL DATA -heart"

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 47

3.3 Creating and Upgrading a Target System

We use the simplest possible sys. conf i g, whichwe storeinr el eases/ Fl RST:

%% Ssys.config
[1.

Finaly, to prepare the upgrade, we must put the new release package in ther el eases directory of the first target
system:

0s> cp mysystem2.tar.gz /usr/local/erl-target/releases

Assuming that the node has been started as follows:

os> /usr/local/erl-target/bin/start

It can be accessed as follows:

os> /usr/local/erl-target/bin/to _erl /tmp/erlang.pipe.l

Logscanbefoundin/ usr/| ocal / erl -target/| og. Thisdirectory is specified asan argumenttor un_er | in
the start script listed above.

Step 1. Unpack the release:

1> {ok,Vsn} = release handler:unpack release("mysystem2").

Step 2. Install the release:

2> release handler:install release(Vsn).

{continue after restart,"FIRST",[]}

heart: Tue Apr 1 12:15:10 2014: Erlang has closed.

heart: Tue Apr 1 12:15:11 2014: Executed "/usr/local/erl-target/bin/start /usr/local/erl-target/releases/new :
[End]

The above return value and output after the call tor el ease_handl er: i nstal | _rel ease/ 1 means that the
rel ease_handl er has restarted the node by using heart . This is always done when the upgrade involves a
change of the applications ERTS, Kernel, STDLIB, or SASL. For more information, see Upgrade when Erlang/OTP
has Changed.

The node is accessible through a new pipe:

os> /usr/local/erl-target/bin/to erl /tmp/erlang.pipe.2

Check which releases there are in the system:

1> release handler:which releases().

[{"MYSYSTEM", "SECOND",
["kernel-3.0","stdlib-2.0","sasl-2.4","pea-2.0"],
current},

{"MYSYSTEM" , "FIRST",
["kernel-2.16.4","stdlib-1.19.4","sasl-2.3.4","pea-1.0"],
permanent}]

Our new release, "SECOND", isnow the current release, but we can also seethat our "FIRST" releaseis still permanent.
Thismeansthat if the node would be restarted now, it would come up running the "FIRST" release again.

48 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.3 Creating and Upgrading a Target System

Step 3. Make the new release permanent:

2> release handler:make permanent("SECOND").

Check the releases again:

3> release handler:which releases().

[{"MYSYSTEM", "SECOND",
["kernel-3.0","stdlib-2.0","sasl-2.4","pea-2.0"],
permanent},

{"MYSYSTEM", "FIRST",
["kernel-2.16.4","stdlib-1.19.4","sas1-2.3.4","pea-1.0"],
old}]

We see that the new release version isper manent , so it would be safe to restart the node.

3.3.8 Listing of target_system.erl
This module can also be found in the exanpl es directory of the SASL application.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 49

3.3 Creating and Upgrading a Target System

-module(target system).
-export([create/1l, create/2, install/2]).

Note: RelFileName below is the *stem* without trailing .rel,
.script etc.

o o o°
o® o° o°

create(RelFileName)

o o°
o® o°

create(RelFileName) ->
create(RelFileName,[]).

create(RelFileName,SystoolsOpts) ->
RelFile = RelFileName ++ ".rel",
Dir = filename:dirname(RelFileName),
PlainRelFileName = filename:join(Dir,"plain"),
PlainRelFile = PlainRelFileName ++ ".rel",

io:fwrite("Reading file: ~tp ...~n", [RelFile]),
{ok, [RelSpec]} = file:consult(RelFile),
io:fwrite("Creating file: ~tp from ~tp ...~n",

[PlainRelFile, RelFile]),
{release,
{RelName, RelVsn},
{erts, ErtsVsn},
AppVsns} = RelSpec,
PlainRelSpec = {release,
{RelName, RelVsn},
{erts, ErtsVsn},
lists:filter(fun({kernel, }) ->
true;
({stdlib, }) ->
true;
() ->
false
end, AppVsns)
}I
{ok, Fd} = file:open(PlainRelFile, [write]),
io:fwrite(Fd, "~p.~n", [PlainRelSpec]),
file:close(Fd),
io:fwrite("Making \"~ts.script\" and \"~ts.boot\" files ...~n",
[PlainRelFileName,PlainRelFileName]),
make script(PlainRelFileName,SystoolsOpts),
io:fwrite("Making \"~ts.script\" and \"~ts.boot\" files ...~n",
[RelFileName, RelFileName]),
make script(RelFileName,SystoolsOpts),

TarFileName = RelFileName ++ ".tar.gz",
io:fwrite("Creating tar file ~tp ...~n", [TarFileName]),
make tar(RelFileName,SystoolsOpts),

TmpDir = filename:join(Dir,"tmp"),

io:fwrite("Creating directory ~tp ...~n",[TmpDir]),

file:make dir(TmpDir),

io:fwrite("Extracting ~tp into directory ~tp ...~n", [TarFileName,TmpDir]),
extract tar(TarFileName, TmpDir),

TmpBinDir = filename:join([TmpDir, "bin"1),

ErtsBinDir = filename:join([TmpDir, "erts-" ++ ErtsVsn, "bin"]),

io:fwrite("Deleting \"erl\" and \"start\" in directory ~tp ...~n",
[ErtsBinDir]),

file:delete(filename:join([ErtsBinDir, "erl"]))

file:delete(filename:join([ErtsBinDir, "start"])),

50 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.3 Creating and Upgrading a Target System

io:fwrite("Creating temporary directory ~tp ...~n", [TmpBinDir]),
file:make dir(TmpBinDir),

io:fwrite("Copying file \"~ts.boot\" to ~tp ...~n",
[PlainRelFileName, filename:join([TmpBinDir, "start.boot"])1),
copy file(PlainRelFileName++".boot",filename:join([TmpBinDir, "start.boot"])),

io:fwrite("Copying files \"epmd\", \"run_erl\" and \"to_erl\" from \n"
"~tp to ~tp ...~n",
[ErtsBinDir, TmpBinDir]),

copy file(filename:join([ErtsBinDir, "epmd"]),
filename:join([TmpBinDir, "epmd"]), [preservel),

copy file(filename:join([ErtsBinDir, "run_erl"]),
filename:join([TmpBinDir, "run erl"]), [preserve]),

copy file(filename:join([ErtsBinDir, "to erl"]),
filename:join([TmpBinDir, "to erl"]), [preserve]),

%% This is needed if 'start' script created from 'start.src' shall
%% be used as it points out this directory as log dir for 'run erl'
TmpLogDir = filename:join([TmpDir, "log"l),

io:fwrite("Creating temporary directory ~tp ...~n", [TmpLogDir]),
ok = file:make dir(TmpLogDir),

StartErlDataFile = filename:join([TmpDir, "releases", "start erl.data"]),
io:fwrite("Creating ~tp ...~n", [StartErlDataFile]),

StartErlData = io lib:fwrite("~s ~s~n", [ErtsVsn, RelVsn]),

write file(StartErlDataFile, StartErlData),

io:fwrite("Recreating tar file ~tp from contents in directory ~tp ...~n",
[TarFileName, TmpDir]),

{ok, Tar} = erl tar:open(TarFileName, [write, compressed]),

%% {0k, Cwd} = file:get cwd(),

%% file:set cwd("tmp"),

ErtsDir = "erts-"++ErtsVsn,

erl tar:add(Tar, filename:join(TmpDir,"bin"), "bin", [1),

erl tar:add(Tar, filename:join(TmpDir,ErtsDir), ErtsDir, []),

erl tar:add(Tar, filename:join(TmpDir,"releases"), "releases", []),

erl tar:add(Tar, filename:join(TmpDir,"lib"), "lib", [1),

erl tar:add(Tar, filename:join(TmpDir,"log"), "log", [1),

erl_tar:close(Tar),

%% file:set cwd(Cwd),

io:fwrite("Removing directory ~tp ...~n",[TmpDir]),

remove dir tree(TmpDir),

ok.

install(RelFileName, RootDir) ->
TarFile = RelFileName ++ ".tar.gz",

io:fwrite("Extracting ~tp ...~n", [TarFilel]),
extract tar(TarFile, RootDir),
StartErlDataFile = filename:join([RootDir, "releases", "start erl.data"]),

{ok, StartErlData} = read txt file(StartErlDataFile),

[ErlVsn, RelVsn| 1 = string:tokens(StartErlData, " \n"),

ErtsBinDir = filename:join([RootDir, "erts-" ++ ErlVsn, "bin"]),

BinDir = filename:join([RootDir, "bin"]),

io:fwrite("Substituting in erl.src, start.src and start_erl.src to "

"form erl, start and start erl ...\n"),

subst src_scripts(["erl", "start", "start erl"], ErtsBinDir, BinDir,
[{"FINAL ROOTDIR", RootDir}, {"EMU", "beam"}],
[preserve]),

%%! Workaround for pre OTP 17.0: start.src and start erl.src did

%%! not have correct permissions, so the above 'preserve' option did not help
ok = file:change mode(filename:join(BinDir,"start"),b8#0755),

ok = file:change mode(filename:join(BinDir,"start erl"),8#0755),

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 51

3.3 Creating and Upgrading a Target System

io:fwrite("Creating the RELEASES file ...\n"),
create RELEASES(RootDir, filename:join([RootDir, "releases",
filename:basename(RelFileName)])).
%% LOCALS

% make script(RelFileName,Opts)

o o°
o°

make script(RelFileName,Opts) ->
systools:make script(RelFileName, [no_module tests,
{outdir, filename:dirname(RelFileName)}
|Opts]).

%% make_tar(RelFileName,Opts)

o°
o°

make tar(RelFileName,Opts) ->
RootDir = code:root dir(),
systools:make tar(RelFileName, [{erts, RootDir},
{outdir,filename:dirname(RelFileName)}
|Opts]).

extract tar(TarFile, DestDir)

o of
o° o°

extract tar(TarFile, DestDir) ->
erl tar:extract(TarFile, [{cwd, DestDir}, compressed]).

create RELEASES(DestDir, RelFileName) ->
release handler:create RELEASES(DestDir, RelFileName ++ ".rel").

subst src_scripts(Scripts, SrcDir, DestDir, Vars, Opts) ->
lists:foreach(fun(Script) ->
subst src_script(Script, SrcDir, DestDir,
Vars, Opts)
end, Scripts).

subst src_script(Script, SrcDir, DestDir, Vars, Opts) ->
subst file(filename:join([SrcDir, Script ++ ".src"]),
filename:join([DestDir, Scriptl]),
Vars, Opts).

subst file(Src, Dest, Vars, Opts) ->
{ok, Conts} = read txt file(Src),
NConts = subst(Conts, Vars),
write file(Dest, NConts),
case lists:member(preserve, Opts) of
true ->
{ok, FileInfo} = file:read file info(Src),
file:write file info(Dest, FileInfo);
false ->
ok
end.

% subst(Str, Vars)

Vars = [{Var, Val}]

Var = Val = string()

Substitute all occurrences of %Var% for Val in Str, using the list
of variables in Vars.

o d° o° o o of

o® o® o° o° o°

1]

ubst(Str, Vars) ->
subst(Str, Vars, []).

subst([$%, C| Rest], Vars, Result) when $A =< C, C =< $Z ->

subst var([C| Rest], Vars, Result, []);
subst([$%, C| Rest], Vars, Result) when $a =< C, C =< $z ->

52 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.3 Creating and Upgrading a Target System

subst var([C| Rest], Vars, Result, []);
subst([$%, C| Rest], Vars, Result) when C == $ ->

subst var([C| Rest], Vars, Result, []);
subst([C| Rest], Vars, Result) ->

subst(Rest, Vars, [C| Result]);
subst([], Vars, Result) ->

lists:reverse(Result).

subst var([$%| Restl], Vars, Result, VarAcc) ->
Key = lists:reverse(VarAcc),
case lists:keysearch(Key, 1, Vars) of
{value, {Key, Value}} ->
subst(Rest, Vars, lists:reverse(Value, Result));
false ->
subst(Rest, Vars, [$%| VarAcc ++ [$%| Result]])
end;
subst var([C| Rest], Vars, Result, VarAcc) ->
subst var(Rest, Vars, Result, [C| VarAcc]l);
subst var([], Vars, Result, VarAcc) ->
subst([], Vars, [VarAcc ++ [$%| Result]]).

copy_file(Src, Dest) ->
copy file(Src, Dest, []).

copy file(Src, Dest, Opts) ->
{ok, } = file:copy(Src, Dest),
case lists:member(preserve, Opts) of
true ->
{ok, FileInfo} = file:read file info(Src),
file:write file info(Dest, FileInfo);
false ->
ok
end.

write file(FName, Conts) ->
Enc = file:native name_encoding(),
{ok, Fd} = file:open(FName, [write]),
file:write(Fd, unicode:characters to binary(Conts,Enc,Enc)),
file:close(Fd).

read txt file(File) ->
{ok, Bin} = file:read file(File),
{ok, binary to list(Bin)}.

remove dir tree(Dir) ->
remove all files(".", [Dir]).

remove all files(Dir, Files) ->
lists:foreach(fun(File) ->
FilePath = filename:join([Dir, File]),
case filelib:is dir(FilePath) of
true ->
{ok, DirFiles} = file:list dir(FilePath),
remove all files(FilePath, DirFiles),
file:del dir(FilePath);
->
file:delete(FilePath)
end
end, Files).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 53

3.4 Upgrade when Erlang/OTP has Changed

3.4 Upgrade when Erlang/OTP has Changed

3.4.1 Introduction

As of Erlang/OTP 17, most applications deliver a valid application upgrade file (appup). In earlier releases,
a majority of the applications in Erlang/OTP did not support upgrade. Many of the applications use the
restart_applicati oninstruction. These are applicationsfor whichit isnot crucial to support real soft upgrade,
for example, tools and library applications. Ther est art _appl i cat i on instruction ensures that all modulesin
the application are reloaded and thereby running the new code.

3.4.2 Upgrade of Core Applications

ThecoreapplicationsERTS, Kernel, STDLIB, and SASL never allow real soft upgrade, but requirethe Erlang emul ator
toberestarted. Thisisindicatedtother el ease_handl er by theupgradeinstructionr est art _new_enul at or.
Thisinstruction is always the very first instruction executed, and it restarts the emulator with the new versions of the
above mentioned core applications and the old versions of all other applications. When the node is back up, all other
upgrade instructions are executed, making sure each application is finally running its new version.

It might seem strange to do a two-step upgrade instead of just restarting the emulator with the new version of all
applications. The reason for this design decision is to alow code_change functions to have side effects, for
example, changing data on disk. It also guarantees that the upgrade mechanism for non-core applications does not
differ depending on whether or not core applications are changed at the same time.

If, however, the more brutal variant is preferred, the the rel ease upgrade file can be handwritten using only the single
upgradeinstructionr est art _ermul at or . Thisinstruction, in contrasttor est art _new_emnul at or , causesthe
emulator to restart with the new versions of all applications.

Note: If other instructions are included before r est art _enul at or in the handwritten r el up file, they are
executed in the old emulator. This is a big risk since there is no guarantee that new beam code can be loaded into
the old emulator. Adding instructions after r est art _erul at or has no effect asther el ease_handl er will
not execute them.

For information about the release upgrade file, see the relup(4) manual page in SASL. For more information about
upgrade instructions, see the appup(4) manual pagein SASL.

3.4.3 Applications that Still do Not Allow Code Upgrade

A few applications, such as HiPE, do not support upgrade. Thisisindicated by an application upgrade file containing
only {Vsn,[],[]}.Any attempt at creating arelease upgrade file with such input fails. The only way to force an
upgrade involving applications like thisis to handwrite the file r el up, preferably as described above with only the
restart_emul at or instruction.

3.5 Versions

3.5.1 OTP Version

Asof OTPrelease 17, the OTP release number corresponds to the major part of the OTP version. The OTP version as
aconcept was introduced in OTP 17. The version scheme used is described in detail in Version Scheme.

OTP of a specific version is a set of applications of specific versions. The application versions identified by an OTP
version corresponds to application versions that have been tested together by the Erlang/OTP team at Ericsson AB.
An OTP system can, however, be put together with applications from different OTP versions. Such a combination
of application versions has not been tested by the Erlang/OTP team. It is therefore always preferred to use OTP
applicationsfrom onesingle OTP version.

54 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.5 Versions

Release candidates have an - r c<N> suffix. The suffix - r cO is used during development up to the first release
candidate.

Retrieving Current OTP Version

Inan OTP source code tree, the OTP version can beread from the text file<OTP sour ce r oot >/ OTP_VERSI ON.
The absolute path to the file can be constructed by calling fil ename:join([code:root _dir(),
"OTP_VERSI ON']) .

In an installed OTP development system, the OTP version can be read from the text file <OTP
installation root>/releases/<OIP release nunber>/ OTP_VERSI ON. The absolute path
to the file can by constructed by caling fil enane:join([code:root _dir(), "rel eases"”,
erl ang: systeminfo(otp_release), "OIP_VERSION']).

If the version read from the OTP_VERSI ONfilein adevelopment system hasa* * suffix, the system has been patched
using the ot p_pat ch_appl y tool. In this case, the system consists of application versions from multiple OTP
versions. Theversion preceding the* * suffix correspondsto the OTP version of the base system that has been patched.
Notice that if a development system is updated by other meansthan ot p_pat ch_appl y, the file OTP_VERSI ON
can identify an incorrect OTP version.

No OTP_VERSI ONfileis placed in a target system created by OTP tools. This since one easily can create a target
system where it is hard to even determine the base OTP version. You can, however, place such afile there if you
know the OTP version.

OTP Versions Table

The text file <OTP source root>/otp_versions.table, whichis part of the source code, contains
information about all OTP versions from OTP 17.0 up to the current OTP version. Each line contains information
about application versions that are part of a specific OTP version, and has the following format:

<0tpVersion> : <ChangedAppVersions> # <UnchangedAppVersions> :

<Ot pVer si on> hasthe format OTP- <VSN>, that is, the same as the git tag used to identify the source.

<ChangedAppVer si ons> and <UnchangedAppVer si ons> are space-separated lists of application versions
and has the format <appl i cat i on>- <vsn>.

e <ChangedAppVer si ons> corresponds to changed applications with new version numbersin this OTP
version.

e <UnchangedAppVer si ons> corresponds to unchanged application versionsin this OTP version.

Both of them can be empty, but not at the sametime. If <ChangedAppVer si ons> isempty, no changes have been
made that change the build result of any application. This could, for example, be a pure bug fix of the build system.
The order of lines is undefined. All white-space characters in this file are either space (character 32) or line-break
(character 10).

By using ordinary UNIX toolslike sed and gr ep one can easily find answers to various questions like:
e Which OTPversionsareker nel - 3. 0 part of?

$ grep ' kernel-3\.0 ' otp_versions.table
¢ Inwhich OTPversionwasker nel - 3. 0 introduced?

$ sed 's/#.*//;] kernel-3\.0 /!d" otp_versions.table

The above commands give a bit more information than the exact answers, but adequate information when manually
searching for answers to these questions.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 55

3.5 Versions

Theformat of theot p_ver si ons. t abl e might be subject to changes during the OTP 17 release.

3.5.2 Application Version

Asof OTP 17.0 application versions use the same version scheme as the OTP version. Application versions part of a
release candidate will however not have an - r c<N> suffix as the OTP version. Also note that a major increment in
an application version does not necessarily imply amajor increment of the OTP version. This depends on whether the
major change in the application is considered as a major change for OTP as awhole or not.

3.5.3 Version Scheme

The version scheme was changed as of OTP 17.0. Thisimplies that application versions used prior to OTP 17.0
do not adhere to this version scheme. A list of application versions used in OTP 17.0 is included at the end of
this section

In the normal case, a version is constructed as <Maj or >. <M nor >. <Pat ch>, where <Maj or > is the most
significant part.

However, more dot-separated parts than this can exist. The dot-separated parts consist of non-negative
integers. If al parts less significant than <M nor > equas 0, they are omitted. The three normal parts
<Mnj or >. <M nor >. <Pat ch> are changed as follows:

e <Mnj or > - Increases when major changes, including incompatibilities, are made.
e <M nor > - Increases when new functionality is added.
e <Pat ch> - Increases when pure bug fixes are made.

When apart in the version number increases, all less significant parts are set to 0.

An application version or an OTP version identifies source code versions. That is, it implies nothing about how the
application or OTP has been built.

Order of Versions

Version numbersin general are only partially ordered. However, normal version numbers (with three parts) asof OTP
17.0 have atotal or linear order. This applies both to normal OTP versions and normal application versions.

When comparing two version numbers that have an order, one compare each part as ordinary integers from the most
significant part to less significant parts. The order is defined by the first parts of the same significance that differ.
An OTP version with alarger version includes all changes that are part of a smaller OTP version. The same goes for
application versions.

In general, versions can have more than three parts. The versions are then only partialy ordered. Such versions are
only used when branching off from another branch. When an extra part (out of the normal three parts) is added to
a version number, a new branch of versions is made. The new branch has a linear order against the base version.
However, versions on different branches have no order, and therefore one can only conclude that they all include what
isincluded in their closest common ancestor. When branching multiple times from the same base version, 0 parts are
added between the base version and the least significant 1 part until a unique version is found. Versions that have an
order can be compared as described in the previous paragraph.

Anexampleof branched versions: Theversion6. 0. 2. 1 isabranched versionfromthebaseversion6. 0. 2. Versions
ontheform 6. 0. 2. <X> can be compared with normal versions smaller than or equal to 6. 0. 2, and other versions
on the form 6. 0. 2. <X>. The version 6. 0. 2. 1 will include all changesin 6. 0. 2. However, 6. 0. 3 will most

56 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.5 Versions

likely not include @l changesin 6. 0. 2. 1 (note that these versions have no order). A second branched version from
the base version 6. 0. 2 will beversion 6. 0. 2. 0. 1, and athird branched version will be 6. 0. 2. 0. 0. 1.

3.5.4 Releases and Patches

When a new OTP release is released it will have an OTP version on the form <Maj or >. 0 where the major OTP
version number equal stherelease number. The major version number isincreased one step sincethelast major version.
All other OTP versions with the same major OTP version number are patches on that OTP release.

Patches are either released as maintenance patch packages or emergency patch packages. The only difference is
that maintenance patch packages are planned and usually contain more changes than emergency patch packages.
Emergency patch packages are released to solve one or more specific issues when such are discovered.

The release of a maintenance patch package usually imply an increase of the OTP <M nor > version while the
release of an emergency patch package usually imply an increase of the OTP <Pat ch> version. Thisis however not
necessarily always the case since changes of OTP versions are based on the actual changesin the code and not based
on whether the patch was planned or not. For more information see the Version Scheme section above.

3.5.5 OTP Versions Tree

All released OTP versions can be found in the OTP Versions Tree which is automatically updated whenever we
release a new OTP version. Note that every version number as such explicitly define its position in the version tree.
Nothing more than the version numbers are needed in order to construct the tree. The root of the tree is OTP version
17.0 which is when we introduced the new version scheme. The green versions are normal versions released on the
main track. Old OTP releases will be maintained for awhileon mai nt branchesthat have branched off from the main
track. Old mai nt branches always branch off from the main track when the next OTP release is introduced into the
main track. Versionson theseold mai nt branches are marked blue. Besidesthe green and blue versions, there are also
gray versions. These are versions on branches introduced in order to fix a specific problem for a specific customer on
aspecific base version. Brancheswith gray versionswill typically become dead ends very quickly if not immediately.

3.5.6 OTP 17.0 Application Versions

The following list details the application versions that were part of OTP 17.0. If the normal part of an application
version number compares as smaller than the corresponding application versionin thelist, the version number does not
adhere to the version scheme introduced in OTP 17.0 and is to be considered as not having an order against versions
used as of OTP 17.0.

e asnl-3.0

e conmmon_test-1.8

e conpiler-5.0

» cosEvent-2.1.15

 cosEvent Domain-1.1. 14

+ cosFileTransfer-1.1.16

e cosNotification-1.1.21

e cosProperty-1.1.17

e cosTine-1.1.14

 cosTransactions-1.2.14

e cCrypto-3.3

 debugger-4.0

e dialyzer-2.7

e dianeter-1.6

*+ edoc-0.7.13

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 57

href

3.5 Versions

e eldap-1.0.3
e erl_docgen-0.3.5
e erl_interface-3.7.16

e erts-6.0

e et-1.5

e eunit-2.2.7
e (@gs-1.5.16

* hipe-3.10.3
e ic-4.3.5

e inets-5.10

e jinterface-1.5.9
e kernel-3.0

e nmegaco-3.17.1

e mesia-4.12

e observer-2.0

e odbc-2.10.20

e orber-3.6.27

e 0S_non-2.2.15

e o0se-1.0

e otp_mbs-1.0.9

e parsetools-2.0.11
e percept-0.8.9

* public_key-0.22

e reltool-0.6.5

e runtime_tools-1.8.14
e sasl-2.4

e snnp-4.25.1

e ssh-3.0.1

e ssl-5.3.4

e stdlib-2.0

e syntax_tools-1.6.14
e test_server-3.7

e tools-2.6.14

e typer-0.9.6

e webtool -0.8.10

e wx-1.2

e xmerl-1.3.7

58 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.6 Support, Compatibility, Deprecations, and Removal

3.6 Support, Compatibility, Deprecations, and Removal

3.6.1 Introduction

This document describes strategy regarding supported Releases, compatibility, deprecations and removal of
functionality. This document was introduced in OTP 21. Actions taken regarding these issues before OTP 21 did not
adhere this document.

3.6.2 Supported Releases

In general, bugs are only fixed on the latest release, and new features are introduced in the upcoming release that is
under development. However, when we, due to internal reasons, fix bugs on older releases, these will be available
and announced as well.

Dueto the above, pull requests are only accepted on the mai nt andthemast er branchesin our git repository. The
mai nt branch contains changes planned for the next maintenance patch package on the latest OTP release and the
mast er branch contain changes planned for the upcoming OTP release.

3.6.3 Compatibility

We always strive to remain as compatible as possible even in the cases where we give no compatibility guarantees.

Different parts of the system will be handled differently regarding compatibility. The following items describe how
different parts of the system are handled.

Erlang Distribution

Erlang nodes can communicate across at least two preceding and two subsequent rel eases.
Compiled BEAM Code, NIF Libraries and Drivers

Compiled code can be loaded on at least two subsequent rel eases.

Loading on previous releases is not supported.
Compiled HiPE Code

Compiled HiPE code can be loaded on the exact same build of ERTS that was used when compiling the code. It
might however work on other builds, the emulator verifies checksumsin order to determineif it can load the code
or not. Note that Hi PE has some limitations. For moreinformation see the documentation of the Hi PE application.

APIs

Compatible between releases.
Compiler Warnings

New warnings may be issued between rel eases.
Command Line Arguments

Incompatible changes may occur between releases.
OTP Build Procedures

Incompatible changes may occur between releases.

Under certain circumstances incompatible changes might be introduced even in parts of the system that should be
compatible between releases. Things that might trigger incompatible changes like this are;

Security Issues

It might be necessary to introduce incompatible changes in order to solve a security issue. This kind of
incompatibility might occur in a patch.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 59

href

3.6 Support, Compatibility, Deprecations, and Removal

Bug Fixes

We will not be bug-compatible. A bug fix might introduce incompatible changes. This kind of incompatibility
might occur in a patch.

Severe Previous Design I ssues

Some parts of OTP were designed a very long time ago and did not necessarily take today's computing
environmentsinto account. In some cases the consegquences of those design decisions are too severe. Thismay be
performance wise, scalability wise, etc. If we deem the consequencestoo severe, we might introduceincompatible
changes. Thiskind of incompatibility will not be introduced in a patch, but instead in the next release.

Peripheral, trace, and debug functionality isat greater risk of being changed in an incompatible way than functionality
in the language itself and core libraries used during operation.

3.6.4 Deprecation

Functionality is deprecated when new functionality is introduced that is preferred to be used instead of the old
functionality that isbeing deprecated. The deprecation does not imply removal of the functionality unlessan upcoming
removal is explicitly stated in the deprecation.

Deprecated functionality will be documented as deprecated, and compiler warnings will be issued, when appropriate,
asearly as possible. That is, the new preferred functionality will appear at the same time as the deprecation is issued.
A new deprecation will at least be announced in a rel ease note and the documentation.

3.6.5 Removal

Legacy solutions may eventually need to be removed. In such cases, they will be phased out on a long enough time
period to give users the time to adapt. Before removal of functionality it will be deprecated at least during one release
with an explicit announcement about the upcoming removal. A new deprecation will at least be announced in arelease
note and the documentation.

Peripheral, trace, and debug functionality is at greater risk of removal than functionality in the language itself and core
libraries used during operation.

60 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.1 Embedded Solaris

4 Embedded Systems User's Guide

This section describes the issues that are specific for running Erlang on an embedded system. It describes the
differencesin installing and starting Erlang compared to how it is done for a non-embedded system.

Thisis a supplementary section. Y ou also need to read Section 1 Installation Guide.

Thereis also target architecture-specific information in the top-level README file of the Erlang distribution.

4.1 Embedded Solaris

This section describes the operating system-specific parts of OTP that relate to Solaris.

4.1.1 Memory Use

Solaris takes about 17 MB of RAM on a system with 64 MB of total RAM. This leaves about 47 MB for the
applications. If the system uses swapping, these figures cannot be improved because unnecessary daemon processes
are swapped out. However, if swapping isdisabled, or if the swap spaceisof limited resourcein the system, it becomes
necessary to kill off unnecessary daemon processes.

4.1.2 Disk Space Use

The disk space required by Solaris can be minimized by using the Core User support installation. It requires about 80
MB of disk space. Thisinstalls only the minimum software required to boot and run Solaris. The disk space can be
further reduced by deleting unnecessary individual files. However, unless disk space is a critical resource the effort
required and the risks involved cannot be justified.

4.1.3 Installing an Embedded System
This section is about installing an embedded system. The following topics are considered:

* Creating user and installation directory

e Instaling an embedded system

« Configuring automatic start at boot

e Making a hardware watchdog available

* Changing permission for reboot

e Setting TERM environment variable

e Adding patches

e Installing module os_sup in application os_mon

Several of the procedures in this section require expert knowledge of the Solaris operating system. For most of them
super user privilege is needed.

Creating User and Installation Directory

It is recommended that the embedded environment is run by an ordinary user, that is, a user who does not have super
user privileges.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 61

4.1 Embedded Solaris

In this section, it is assumed that the username isot puser and that the home directory of that user is:

/export/home/otpuser

It is also assumed that in the home directory of ot puser , thereisadirectory named ot p, the full path of whichis:

/export/home/otpuser/otp
Thisdirectory istheinstallation directory of the embedded environment.

Installing an Embedded System

The procedure for installing an embedded system isthe same asfor an ordinary system (see I nstallation Guide), except
for the following:

* The (compressed) tape archivefile isto be extracted in the installation directory defined above.
e Itisnot needed to link the start script to a standard directory like/ usr /| ocal / bi n.
Configuring Automatic Start at Boot

A true embedded system must start when the system boots. This section accounts for the necessary configurations
needed to achieve that.

The embedded system and all the applications start automatically if the script file shown below is added to directory
/ et c/ rc3. d. Thefilemust be owned and readable by r oot . Its name cannot be arbitrarily assigned; the following
name is recommended:

S750tp.system

For more details on initialization (and termination) scripts, and naming thereof, see the Solaris documentation.

62 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.1 Embedded Solaris

#!/bin/sh
#
File name: S75o0tp.system
Purpose: Automatically starts Erlang and applications when the
system starts
Author: janne@erlang.ericsson.se
Resides in: /etc/rc3.d
#
if [! -d /usr/bin]
then # /usr not mounted
exit
fi
killproc() { # kill the named process(es)

pid="/usr/bin/ps -e |
/usr/bin/grep -w $1 |
/usr/bin/sed -e 's/~ *//' -e 's/ .*//"°
["$pid" !'= ""] && kill $pid
}

Start/stop processes required for Erlang

case "$1" in

'start')
Start the Erlang emulator
#

su - otpuser -c "/export/home/otpuser/otp/bin/start" &
'stop')

killproc beam
*) r

echo "Usage: $0 { start | stop }"

esac

File/ export/ hone/ ot puser/ ot p/ bi n/ st art referred to in the above script is precisely the st art script
described in Starting Erlang. The script variable OTP_ROOT in that st art script corresponds to the following
example path used in this section:

/export/home/otpuser/otp
Thest art scriptisto be edited accordingly.

Useof theki | | pr oc procedure in the above script can be combined withacall toer| _cal | , for example:

$SOME_PATH/erl call -n Node init stop

To take Erlang down gracefully, seetheer | _cal | (1) manual pageiner| _i nt er f ace for details on the use of
erl _cal I . However, that requires that Erlang runs as a distributed node, which is not always the case.

Theki | | pr oc procedureis not to be removed. The purpose is here to move from run level 3 (multi-user mode with
networking resources) to run level 2 (multi-user mode without such resources), in which Erlang is not to run.

Making Hardware Watchdog Available

For Solarisrunning on VM E boards from Force Computers, the onboard hardware watchdog can be activated, provided
aVME busdriver is added to the operating system (see a so Installation Problems).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 63

4.1 Embedded Solaris

Seedsotheheart (3) manual pagein Kernel.

Changing Permissions for Reboot

If the HEART _COVMAND environment variable isto be set inthe st ar t script in Starting Erlang, and if the value
isto be set to the path of the Solarisr eboot command, that is:

HEART COMMAND=/usr/sbin/reboot

then the ownership and file permissionsfor / usr/ sbi n/ r eboot must be changed as follows:

chown 0 /usr/sbin/reboot
chmod 4755 /usr/sbin/reboot

Seedsotheheart (3) manual pagein Kernel.

Setting TERM Environment Variable

When the Erlang runtime system is automatically started from the S750t p. syst emscript, the TERMenvironment
variable must be set. The following isaminimal setting:

TERM=sun
Thisisto be added to thest ar t script.

Adding Patches

For proper functioning of flushing file system data to disk on Solaris 2.5.1, the version-specific patch with number
103640-02 must be added to the operating system. Other patches might be needed, see the release README file
<ERL_I NSTALL_DI R>/ README.

Installing Module os_sup in Application os_mon
The following four installation procedures require super user privilege:

Installation
e Makea copy of the Solaris standard configuration filefor sysl ogd:

» Make acopy of the Solaris standard configuration file for sysl ogd. Thisfileis usually named
sysl og. conf and foundin directory / et c.

» Thefilename of the copy must besysl og. conf . ORI G Thedirectory location is optional; usualy itis/
et c. A simple way to do thisisto issue the following command:

cp /etc/syslog.conf /etc/syslog.conf.ORIG

* Makean Erlang-specific configuration filefor sysl ogd:
» Make an edited copy of the backup copy previously made.
» Thefilename must besysl og. conf . OTP. The path must be the same as the backup copy.

» Theformat of the configuration fileisfound inthesysl og. conf (5) manual page, by issuing the
command man sysl og. conf.

e Usudly alineisadded that is to state:
* Which types of information that is to be supervised by Erlang
e Thename of thefile (actually a named pipe) that is to receive the information

« If, for example, only information originating from the UNIX kernel isto be supervised, thelineisto begin
with ker n. LEVEL. For the possible values of LEVEL, seesysl og. conf (5).

64 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.1 Embedded Solaris

After at least one tab-character, the line added is to contain the full name of the named pipe where

sysl ogd writesitsinformation. The path must be the same asfor thefilessysl og. conf . ORI Gand
sysl og. conf . OTP. The filename must be sysl og. ot p.

If the directory for thefilessysl og. conf . ORI Gandsysl og. conf. OTPis/ et c, thelinein
sysl og. conf. OTPisasfollows:

kern.LEVEL /etc/syslog.otp

Check thefile privileges of the configuration files:

The configuration filesisto haver w-r - - r - - file privileges and be owned by root.
A simple way to do thisisto issue these commands:
chmod 644 /etc/syslog.conf

chmod 644 /etc/syslog.conf.ORIG
chmod 644 /etc/syslog.conf.OTP

Noticethat if thefilessysl og. conf . ORI Gandsysl og. conf . OTP are not in directory / et ¢, the
file path in the second and third command must be modified.

M odify file privileges and owner ship of thenod_sysl og utility:

Thefile privileges and ownership of the nod_sysl og utility must be modified.

The full name of the binary executable file is derived from the position of application os_ron in the file
system by adding / pri v/ bi n/ nod_sysl og. The generic full name of the binary executable fileisthus:

<0TP_RO0T>/1ib/0os_mon-<REV>/priv/bin/mod_syslog

Example: If thepathto ot p- r oot is/ usr/ ot p, thenthe pathtotheos_non applicationis/ usr/ ot p/
i b/ os_non-1. 0 (assuming revision 1.0) and the full name of the binary executablefileis/ usr/ ot p/
i b/ os_non-1.0/priv/bin/nmod_sysl og.

The binary executable file must be owned by root, haver wsr - xr - x file privileges, in particular the

set ui d bit of the user must be set.

A simple way to do thisisto issue the following commands:
cd <OTP_RO0T>/lib/0os_mon-<REV>/priv/bin/mod syslog

chmod 4755 mod syslog
chown root mod syslog

Testing the Application Configuration File

The following procedure does not require root privilege:

Ensure that the configuration parameters for the os_sup moduleinthe os_non application are correct.

Browse the application configuration file (do not edit it). The full name of the application configuration file is
derived from the position of the os_non application in the file system by adding / ebi n/ os_non. app.

The generic full name of thefileisthus:

<0TP_R0O0T>/1ib/0os_mon-<REV>/ebin/os_mon.app.

Example: If the path to ot p- r oot is/ usr/ ot p, then the path to the os_non application is/ usr/ ot p/
lib/os_non-1.0 (assuming revision 1.0) and the full name of the binary executable fileis/ usr/ ot p/
i b/ os_non-1. 0/ ebi n/ os_non. app.

Ensure that the following configuration parameters have correct values:

Parameter Function Standard value

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 65

4.1 Embedded Solaris

t r ue for thefirst instance on the
hardware; f al se for the other
instances

Specifiesif os_sup isto be started

start_os_sup of not

The directory for (1) back-up copy
0S_sup_own and (2) Erlang-specific configuration | "/ et c"
filefor sysl ogd

The full name for the Solaris

0s_sup_sysl ogconf standard configuration file for "/etc/sysl og.conf"
sysl ogd
The tag for the messages that are

error_tag sent to the error logger inthe Erlang |std_error

runtime system

Table 1.1: Configuration Parameters

If the values listed in 0s_non. app do not suit your needs, do not edit that file. Instead override the values in a
system configuration file, the full pathname of which is given on the command linetoer | .

Example: Contents of an application configuration file:

[{os_mon, [{start os sup, true}, {os sup own, "/etc"},
{os_sup _syslogconf, "/etc/syslog.conf"}, {os sup errortag, std error}]}].

Related Documents

Seetheos_non(3) application, theappl i cati on(3) manual pagein Kernel, andtheer| (1) manual pagein
ERTS.

Installation Problems

The hardware watchdog timer, which is controlled by the hear t port program, requires package FORCEv e, which
contains the VME bus driver, to be installed. However, this driver can clash with the Sun ncp driver and cause the
system to refuse to boot. To cure this problem, the following lines areto be added to / et ¢/ syst em

e« exclude: drv/ntp

e exclude: drv/ntpzsa

e exclude: drv/nctpp

It is recommended to add these lines to avoid a clash. The clash can make it impossible to boot the system.

4.1.4 Starting Erlang

This section describes how an embedded system is started. Four programs are involved and they normally residein the
directory <ERL_I NSTALL_DI R>/ bi n. Theonly exceptionisthest ar t program, which can be located anywhere,
and is also the only program that must be modified by the user.

In an embedded system, thereis usually no interactive shell. However, an operator can attach to the Erlang system by
commandt o_er | . The operator is then connected to the Erlang shell and can give ordinary Erlang commands. All
interaction with the system through this shell islogged in a special directory.

66 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.1 Embedded Solaris

Basically, the procedure is as follows:

e« Thestart programis called when the machineis started.
e ltcalsrun_erl , which setsup things so the operator can attach to the system.

 ltcalsstart_erl,whichcalsthe correct version of er | exec (whichislocated in
<ERL_I NSTALL_DI R>/ ert s- EVsn/ bi n) with the correct boot and conf i g files.

4.1.5 Programs

start

Thisprogram is called when the machineis started. It can be modified or rewritten to suit aspecia system. By defaullt,
it must be called st art and residein <ERL_I NSTALL_DI R>/ bi n. Another start program can be used, by using
configuration parameter st art _pr g in application SASL.

The start program must call r un_er | as shown below. It must also take an optiona parameter, which defaults to
<ERL_I NSTALL_DI R>/rel eases/start_erl . data.

This program is to set static parameters and environment variables such as - snane Name and HEART _COMVAND
to reboot the machine.

The<RELDI R> directory iswhere new rel ease packets are installed, and