| v

ERLANG

Kernel

Copyright © 1997-2016 Ericsson AB. All Rights Reserved.
Kernel 4.2
April 23, 2016

Copyright © 1997-2016 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

April 23, 2016

1 Reference Manual

The Kernel application has all the code necessary to run the Erlang runtime system itself: file servers and code servers
and so on.

Ericsson AB. All Rights Reserved.: Kernel | 1

kernel

kernel

Application

The Kernel application is the first application started. It is mandatory in the sense that the minimal system based on
Erlang/OTP consists of Kernel and STDLIB. The Kernel application contains the following services:

application controller, see application(3)
code

di sk_I og

di st _ac, distributed application controller
erl _boot server

erl _ddlI

error_| ogger

error _| ogger _format_depth
file

gl obal

gl obal _group

heart

i net

net ker nel

0s

pg2

rpc

seqg_trace

user

Error Logger Event Handlers

Two standard error logger event handlersare defined in the Kernel application. These are describedin error_logger (3).

Configuration

Thefollowing configuration parameters are defined for the Kernel application. See app(4) for more information about
configuration parameters.

browser_cnd = string() | {MF, A}

When pressing the Help button in atool such as Debugger or TV, thehelp text (an HTML fileFi | e) isby default
displayed in a Netscape browser which is required to be up and running. This parameter can be used to change
the command for how to display the help text if another browser than Netscape is preferred, or another platform
than Unix or Windows is used.

If set to astring Commrand, the command " Command Fi | e" will be evaluated using os: cnd/ 1.
If set to amodule-function-argstuple{ M F, A}, thecal appl y(M F, [Fi | e| A]) will be evaluated.

distributed = [Distrib]

Specifies which applications are distributed and on which nodes they may execute. In this parameter:
e Distrib = {App, Nodes} | {App, Ti ne, Nodes}

2 | Ericsson AB. All Rights Reserved.: Kernel

kernel

* App = aton()
« Tinme = integer()>0
* Nodes = [node() | {node(),...,node()}]

The parameter is described in application(3), function | oad/ 2.
di st _auto_connect = Val ue

Specifies when nodes will be automatically connected. If this parameter is not specified, a node is aways
automatically connected, e.g when amessage is to be sent to that node. Val ue isone of:

never
Connections are never automatically established, they must be explicitly connected. See net_kernel (3).
once
Connections will be established automatically, but only once per node. If a node goes down, it must
thereafter be explicitly connected. See net_kernel (3).

per m ssions = [Perni
Specifies the default permission for applications when they are started. In this parameter:
e Perm = { Appl Nane, Bool }

e Appl Nane = atom()
e Bool = bool ean()

Permissions are described in application(3), function per i t / 2.
error _| ogger = Val ue
Val ue isone of:

tty
Installs the standard event handler which prints error reportsto st di 0. Thisisthe default option.
{file, FileNane}
Installs the standard event handler which prints error reportsto thefile Fi | eNarre, where Fi | eNarre is

astring.

fal se
No standard event handler is installed, but the initial, primitive event handler is kept, printing raw event
messages to tty.

sil ent

Error logging is turned off.
error_| ogger _format_depth = Depth
This parameter can be used to limit the size of the formatted output from the error logger event handlers.

Note:

This configuration parameter was introduced in OTP 18.1. It is currently experimental. Based on user
feedback it may be changed or improved in future releases, for example to gain better control over how to
limit the size of the formatted output. We have no plansto entirely remove this new feature, unlessit turns
out to be completely useless. In OTP 19, the default may be changed to limit the formatted output.

Dept h is a positive integer that is the maximum depth to which terms are printed by the error logger event
handlers included in OTP. Specifically, the two event handlers defined by the Ker nel application and the two

Ericsson AB. All Rights Reserved.: Kernel | 3

kernel

event handlersin the SASL application will use this configuration parameter. (If you have implemented you own
error handlers, this configuration parameter will have no effect on them.)

Theway Dept h isused, isthat format strings string passed to the event handlers will be rewritten. The "~p" and
"~w" format controls will be replaced with "~P" and "~W", respectively, and Dept h will be used as the depth
parameter. See io:format/2.

Note:

A reasonable starting value for Dept h is30. Y ou should test crashing various processesin your application
and examine the logs from the crashes, and then either increase or decrease the value.

gl obal _groups = [G oupTupl €]
Defines global groups, see global_group(3).
e GoupTuple = {GoupNane, [Node]} | {GoupName, PublishType, [Node]}
e GoupNanme = atom()
e PublishType = normal | hidden
« Node = node()
i net_default_connect _options = [{Opt, Val}]

Specifies default options for connect sockets, see inet(3).
inet_default listen options = [{Opt, Val}]

Specifies default optionsfor | i st en (and accept) sockets, see inet(3).
{inet_dist_use_interface, ip_address()}

If the host of an Erlang node has several network interfaces, this parameter specifies which one to listen on. See
inet(3) for the type definition of i p_addr ess() .

{inet _dist listen_mn, First}

See below.
{inet_dist_listen_nax, Last}

DefinetheFi r st . . Last port range for the listener socket of a distributed Erlang node.
{inet_dist_listen_options, Opts}

Define alist of extra socket options to be used when opening the listening socket for a distributed Erlang node.
See gen_tcp:listen/2

{inet _dist_connect_options, Opts}

Define a list of extra socket options to be used when connecting to other distributed Erlang nodes. See
gen_tcp: connect/4

i net_parse_error_log = silent

If this configuration parameter is set, no er r or _| ogger messages are generated when erroneous lines are
found and skipped in the various Inet configuration files.

inetrc = Fil enane

The name (string) of an Inet user configuration file. See ERTS User's Guide, Inet configuration.

4 | Ericsson AB. All Rights Reserved.: Kernel

kernel

net _setuptinme = SetupTi ne

Set upTi me must beapositiveinteger or floating point number, and will beinterpreted asthe maximally allowed
time for each network operation during connection setup to another Erlang node. The maximum allowed value
is 120; if higher values are given, 120 will be used. The default value if the variable is not given, or if the value
isincorrect (e.g. not anumber), is 7 seconds.

Note that this value does not limit the total connection setup time, but rather each individual network operation
during the connection setup and handshake.
net ticktine = TickTinme

Specifiesthe net _ker nel tick time. Ti ckTi e is given in seconds. Once every Ti ckTi ne/ 4 second, all
connected nodes are ticked (if anything else has been written to a node) and if nothing has been received from
another node within the last four (4) tick timesthat node is considered to be down. This ensures that nodes which
are not responding, for reasons such as hardware errors, are considered to be down.

Thetime T, in which anode that is not responding is detected, iscalculatedas: M nT < T < MaxT where:

MinT
MaxT

TickTime - TickTime / 4
TickTime + TickTime / 4

Ti ckTi me isby default 60 (seconds). Thus, 45 < T < 75 seconds.

Note: All communicating nodes should have the same Ti ckTi e value specified.

Note: Normally, aterminating node is detected immediately.
shutdown_timeout = integer() | infinity

Specifies the time appl i cati on_control | er will wait for an application to terminate during node
shutdown. If the timer expires, appl i cati on_control | er will brutally kill appl i cati on_mast er of
the hanging application. If this parameter is undefined, it defaultstoi nfinity.

sync_nodes_mandat ory = [NodeNane]

Specifies which other nodes must be alive in order for this node to start properly. If some node in the list does
not start within the specified time, this node will not start either. If this parameter is undefined, it defaultsto [].

sync_nodes_optional = [NodeNane]

Specifies which other nodes can be alive in order for this node to start properly. If some nodein thislist does not
start within the specified time, this node starts anyway. If this parameter isundefined, it defaultsto the empty list.

sync_nodes_tinmeout = integer() | infinity

Specifies the amount of time (in milliseconds) this node will wait for the mandatory and optional nodes to start.
If this parameter is undefined, no node synchronization is performed. This option also makes sure that gl obal
is synchronized.

start_dist_ac = true | fal se

Startsthe di st _ac server if the parameter ist r ue. This parameter should be settot r ue for systemsthat use
distributed applications.

Thedefault valueisf al se. If thisparameter is undefined, the server is started if the parameter di st ri but ed
IS set.

start _boot _server = true | false

Starts the boot _ser ver if the parameter ist r ue (see erl_boot_server(3)). This parameter should be set to
t r ue in an embedded system which uses this service.

Ericsson AB. All Rights Reserved.: Kernel | 5

kernel

The default valueisf al se.
boot _server_slaves = [Sl avel P

If the start_boot _server configuration parameter is t r ue, this parameter can be used to initialize
boot _server with a list of dave IP addresses. SlavelP = string() | atom |
{integer(),integer(),integer(),integer()}

where0 <= integer() <=255.

Examples of Sl avel Pinatom, string and tuple form are:
' 150. 236. 16. 70, "150, 236, 16, 70", {150, 236, 16, 70}.

The default valueis[] .
start_disk log = true | false

Startsthedi sk_| og_ser ver if the parameter ist r ue (see disk_log(3)). This parameter should be set to true
in an embedded system which uses this service.

The default valueisf al se.
start_pg2 = true | false

Startsthe pg2 server (seepg2(3)) if theparameter ist r ue. Thisparameter should besettot r ue inan embedded
system which uses this service.

The default valueisf al se.
start_timer = true | false

Startsthet i mer _ser ver if the parameter ist r ue (see timer(3)). This parameter should be set tot rue in
an embedded system which uses this service.

The default valueisf al se.
shut down_func = {Md, Func}
Where:
« Md = atom()
e Func = atom()
Sets afunction that appl i cati on_control | er calswhen it starts to terminate. The function is called as:
Mod: Func(Reason) ,whereReason istheterminatereasonfor appl i cati on_control | er,andit must
return as soon as possible for appl i cati on_control | er toterminate properly.
See Also

app(4), application(3), code(3), disk log(3), erl_boot_server(3), erl_ddll(3), error_logger(3), file(3), global(3),
global_group(3), heart(3), inet(3), net_kernel(3), 0s(3), pg2(3), rpc(3), seq_trace(3), timer(3), user(3)

6 | Ericsson AB. All Rights Reserved.: Kernel

application

application

Erlang module

In OTP, application denotes acomponent implementing some specific functionality, that can be started and stopped as
aunit, and which can be re-used in other systems as well. This module interfaces the application controller, aprocess
started at every Erlang runtime system, and contains functions for controlling applications (for example starting and
stopping applications), and functionsto accessinformation about applications (for example configuration parameters).

An application is defined by an application specification. The specification is normally located in an application
resourcefilecalled Appl i cat i on. app, where Appl i cat i on isthe name of the application. Refer to app(4) for
more information about the application specification.

Thismodule can a so be viewed as a behaviour for an application implemented according to the OTP design principles
as a supervision tree. The definition of how to start and stop the tree should be located in an application callback
module exporting a pre-defined set of functions.

Refer to OTP Design Principles for more information about applications and behaviours.

Data Types
start type() =
normal |
{takeover, Node :: node()} |
{failover, Node :: node()}
restart type() = permanent | transient | temporary

tuple of(T)
A tuple where the elements are of type T.

Exports

get all env() -> Env
get all env(Application) -> Env
Types:
Application = atom()
Env = [{Par :: atom(), Val :: term()}]

Returns the configuration parameters and their values for Appl i cat i on. If the argument is omitted, it defaults to
the application of the calling process.

If the specified application is not loaded, or if the process executing the call does not belong to any application, the
functionreturns|] .

get all key() -> [] | {ok, Keys}
get all key(Application) -> undefined | Keys

Types:
Application = atom()
Keys = {ok, [{Key :: atom(), Val :: term()}, ...]}

Returns the application specification keys and their valuesfor Appl i cat i on. If theargument is omitted, it defaults
to the application of the calling process.

Ericsson AB. All Rights Reserved.: Kernel | 7

application

If the specified application is not loaded, the function returnsundef i ned. If the process executing the call does not
belong to any application, the function returns|[] .

get application() -> undefined | {ok, Application}
get application(PidOrModule) -> undefined | {ok, Application}

Types.
PidOrModule = (Pid :: pid()) | (Module :: module())
Application = atom()

Returnsthe name of the application to which the process Pi d or the module Mbdul e belongs. Providing no argument
isthesameascallingget _appli cation(self()).

If the specified process does not belong to any application, or if the specified process or module does not exist, the
function returnsundef i ned.

get env(Par) -> undefined | {ok, Val}
get env(Application, Par) -> undefined | {ok, Val}

Types:
Application = Par = atom()
Val = term()

Returns the value of the configuration parameter Par for Appl i cat i on. If the application argument is omitted, it
defaults to the application of the calling process.

If the specified application is not loaded, or the configuration parameter does not exist, or if the process executing the
call does not belong to any application, the function returnsundef i ned.

get env(Application, Par, Def) -> Val
Types:

Application = Par = atom()

Def = Val = term()

Works like get_env/2 but returns Def value when configuration parameter Par does not exist.

get key(Key) -> undefined | {ok, Val}
get key(Application, Key) -> undefined | {ok, Val}

Types:
Application = Key = atom()
Val = term()

Returnsthe value of the application specification key Key for Appl i cat i on. If the application argument is omitted,
it defaults to the application of the calling process.

If the specified application is not loaded, or the specification key does not exist, or if the process executing the call
does not belong to any application, the function returnsundef i ned.

load (AppDescr) -> ok | {error, Reason}

load (AppDescr, Distributed) -> ok | {error, Reason}
Types.

8 | Ericsson AB. All Rights Reserved.: Kernel

application

AppDescr = Application | (AppSpec :: application_spec())
Application = atom()

Distributed =
{Application, Nodes} | {Application, Time, Nodes} | default
Nodes = [node() | tuple_of (node())]
Time = integer() >=1
Reason = term()
application spec() =
{application,
Application :: atom(),
AppSpecKeys :: [application_opt()]}
application opt() =
{description, Description :: string()} |
{vsn, Vsn :: string()} |
{id, Id :: string()} |
{modules, [Module :: module()]1} |
{registered, Names :: [Name :: atom()1} |
{applications, [Application :: atom()1} |
{included applications, [Application :: atom()]} |
{env, [{Par :: atom(), Val :: term()}1} |
{start_phases,
[{Phase :: atom(), PhaseArgs :: term()}] | undefined} |
{maxT, MaxT :: timeout()} |
{maxP, MaxP :: integer() >= 1 | infinity} |
{mod, Start :: {Module :: module(), StartArgs :: term()}}

L oads the application specification for an application into the application controller. It will also load the application
specifications for any included applications. Note that the function does not |oad the actual Erlang object code.

The application can be given by itsname Appl i cat i on. Inthis case the application controller will search the code
path for the application resource file Appl i cat i on. app and load the specification it contains.

The application specification can aso be given directly as atuple AppSpec. This tuple should have the format and
contents as described in app(4) .

If Distributed == {Application,[Tine,]Nodes}, the application will be distributed. The argument
overrides the value for the application in the Kernel configuration parameter di st ri but ed. Appl i cati on must
be the name of the application (same asin thefirst argument). If anode crashesand Ti e has been specified, then the
application controller will wait for Ti me milliseconds before attempting to restart the application on another node. If
Ti e is not specified, it will default to 0 and the application will be restarted immediately.

Nodes isalist of node nameswhere the application may run, in priority from left to right. Node names can be grouped
using tuples to indicate that they have the same priority. Example:

Nodes = [cpl@cave, {cp2@cave, cp3@cave}]

This means that the application should preferably be started at cpl@ave. If cpl@ave is down, the application
should be started at either cp2@ave or cp3@ave.

IfDi stributed == def aul t,thevauefortheapplicationintheKernel configuration parameter di st ri but ed
will be used.

Ericsson AB. All Rights Reserved.: Kernel | 9

application

loaded applications() -> [{Application, Description, Vsn}]

Types.
Application = atom()
Description = Vsn = string()

Returns a list with information about the applications which have been loaded using | oad/ 1, 2, also included
applications. Appl i cat i on isthe application name. Descri pti on and Vsn arethevaluesof itsdescri pti on
and vsn application specification keys, respectively.

permit (Application, Permission) -> ok | {error, Reason}
Types.

Application = atom()

Permission = boolean()

Reason = term()

Changes the permission for Appl i cat i on to run at the current node. The application must have been loaded using
| oad/ 1, 2 for the function to have effect.

If the permission of aloaded, but not started, application issetto f al se, st art will return ok but the application
will not be started until the permissionissettot r ue.

If the permission of a running application is set to f al se, the application will be stopped. If the permission later is
settot r ue, it will be restarted.

If the application isdistributed, setting the permissiontof al se meansthat the application will be started at, or moved
to, another node according to how its distribution is configured (see| oad/ 2 above).

The function does not return until the application is started, stopped or successfully moved to another node. However,
in some cases where permissionis set to t r ue the function may return ok even though the application itself has not
started. Thisistrue when an application cannot start because it has dependencies to other applications which have not
yet been started. When they have been started, Appl i cat i on will be started as well.

By default, all applications are loaded with permission t r ue on all nodes. The permission is configurable by using
the Kernel configuration parameter per i ssi ons.

set env(Application, Par, Val) -> ok
set _env(Application, Par, Val, Opts) -> ok

Types:
Application = Par = atom()
Val = term()

Opts = [{timeout, timeout()} | {persistent, boolean()}]
Sets the value of the configuration parameter Par for Appl i cati on.

set _env/ 4 uses the standard gen_ser ver timeout value (5000 ms). The t i meout option can be provided if
another timeout value is useful, for example, in situations where the application controller is heavily loaded.

If set _env/ 4 is caled before the application is loaded, the application environment values specified in the
Appl i cati on. app filewill override the ones previously set. Thisis also true for application reloads.

The per si st ent option can be set to t r ue when there is a need to guarantee parameters set with set _env/ 4
will not be overridden by the ones defined in the application resource file on load. This means persistent values will
stick after the application is loaded and also on application reload.

10 | Ericsson AB. All Rights Reserved.: Kernel

application

Warning:

Use this function only if you know what you are doing, that is, on your own applications. It is very application
and configuration parameter dependent when and how often the valueis read by the application, and careless use
of this function may put the application in aweird, inconsistent, and malfunctioning state.

ensure started(Application) -> ok | {error, Reason}
ensure started(Application, Type) -> ok | {error, Reason}
Types:
Application = atom()
Type = restart _type()
Reason = term()
Equivalenttoappl i cati on: start/ 1, 2 except it returns ok for already started applications.

ensure all started(Application) -> {ok, Started} | {error, Reason}

ensure all started(Application, Type) ->
{ok, Started} | {error, Reason}

Types:

Application = atom()

Type = restart _type()

Started = [atom()]

Reason = term()
Equivalent to calling appl i cati on: start/ 1, 2 repeatedly on al dependencies that have not yet been started
for an application. The function returns { ok, AppNanes} for a successful start or for an already started
application (which are however omitted from the AppNanes list), and reports{ err or, {AppNane, Reason}}
for errors, where Reason is any possible reason returned by appl i cat i on: start/ 1, 2 when starting a specific

dependency. In case of an error, the applications that were started by the function are stopped to bring the set of running
applications back to itsinitia state.

start(Application) -> ok | {error, Reason}
start(Application, Type) -> ok | {error, Reason}
Types:
Application = atom()
Type = restart_type()
Reason = term()
Starts Appl i cat i on. If it is not loaded, the application controller will first load it using | oad/ 1. It will make

sure any included applications are loaded, but will not start them. That is assumed to be taken care of in the code
for Appl i cati on.

The application controller checks the value of the application specification key appl i cat i ons, to ensure that all
applications that should be started before this application are running. If not, { error, { not _st arted, App}} is
returned, where App isthe name of the missing application.

The application controller then creates an application master for the application. The application master is the group
leader of all the processes in the application. The application master starts the application by calling the application
callback function Modul e: st ar t / 2 asdefined by the application specification key nod.

Ericsson AB. All Rights Reserved.: Kernel | 11

application

The Ty pe argument specifies the type of the application. If omitted, it defaultstot enpor ary.

» |f apermanent application terminates, all other applications and the entire Erlang node are also terminated.

« |f atransient application terminates with Reason == nor nal , thisisreported but no other applications are
terminated. If atransient application terminates abnormally, al other applications and the entire Erlang node are
also terminated.

* |If atemporary application terminates, thisis reported but no other applications are terminated.

Note that it is always possible to stop an application explicitly by calling st op/ 1. Regardless of the type of the
application, no other applications will be affected.

Note also that the transient type is of little practical use, since when a supervision tree terminates, the reason is set
to shut down, not nor mal .

start type() -> StartType | undefined | local
Types:
StartType = start_type()

Thisfunction is intended to be called by a process belonging to an application, when the application is being started,
to determine the start type which is either St art Type or| ocal .

See Modul e: st art/ 2 for adescription of St art Type.

| ocal isreturned if only parts of the application is being restarted (by a supervisor), or if the function is called
outside a startup.

If the process executing the call does not belong to any application, the function returnsundef i ned.

stop(Application) -> ok | {error, Reason}
Types:
Application = atom()
Reason = term()
Stops Appl i cat i on. Theapplication master callsModul e: prep_st op/ 1, if such afunction isdefined, and then
tellsthe top supervisor of the application to shutdown (seesuper vi sor (3)). Thismeansthat the entire supervision

tree, including included applications, is terminated in reversed start order. After the shutdown, the application master
calsModul e: st op/ 1. Modul e isthe calback module as defined by the application specification key nod.

Last, the application master itself terminates. Note that all processes with the application master as group leader, i.e.
processes spawned from a process bel onging to the application, thus are terminated as well.

When stopped, the application is still loaded.

In order to stop a distributed application, st op/ 1 has to be caled on all nodes where it can execute (that is, on all
nodes where it has been started). The call to st op/ 1 on the node where the application currently executes will stop
its execution. The application will not be moved between nodes dueto st op/ 1 being called on the node where the
application currently executes before st op/ 1 is caled on the other nodes.

takeover(Application, Type) -> ok | {error, Reason}
Types:

Application = atom()

Type = restart_type()

Reason = term()

Performs a takeover of the distributed application Appl i cati on, which executes at another node Node. At
the current node, the application is restarted by calling Modul e: st art ({t akeover, Node}, Start Args).

12 | Ericsson AB. All Rights Reserved.: Kernel

application

Modul e and Start Args are retrieved from the loaded application specification. The application at the
other node is not stopped until the startup is completed, i.e. when Modul e: start/2 and any cdls to
Modul e: st art _phase/ 3 have returned.

Thus two instances of the application will run simultaneously during the takeover, which makesit possible to transfer
datafrom the old to the new instance. If thisisnot acceptabl e behavior, parts of the old instance may be shut down when
the new instance is started. Note that the application may not be stopped entirely however, at least the top supervisor
must remain alive.

Seestart/ 1, 2 for adescription of Type.

unload(Application) -> ok | {error, Reason}
Types:
Application = atom()
Reason = term()
Unloads the application specification for Appl i cat i on from the application controller. It will also unload the

application specifications for any included applications. Note that the function does not purge the actual Erlang object
code.

unset env(Application, Par) -> ok
unset env(Application, Par, Opts) -> ok
Types:
Application = Par = atom()
Opts = [{timeout, timeout()} | {persistent, boolean()}]
Removes the configuration parameter Par and itsvalue for Appl i cat i on.

unset _env/ 2 usesthe standard gen_ser ver timeout value (5000 ms). Thet i meout option can be provided if
another timeout value is useful, for example, in situations where the application controller is heavily loaded.

unset _env/ 3 aso alows the persistent option to be passed (seeset _env/ 4 above).

Warning:

Use this function only if you know what you are doing, that is, on your own applications. It is very application
and configuration parameter dependent when and how often the valueis read by the application, and careless use
of this function may put the application in aweird, inconsistent, and malfunctioning state.

which applications() -> [{Application, Description, Vsn}]
which applications(Timeout) -> [{Application, Description, Vsn}]
Types:
Timeout = timeout()
Application = atom()
Description = Vsn = string()
Returns alist with information about the applications which are currently running. Appl i cat i on isthe application

name. Descri ption and Vsn are the values of its descri ption and vsn application specification keys,
respectively.

Ericsson AB. All Rights Reserved.: Kernel | 13

application

whi ch_appl i cati ons/ 0 usesthe standard gen_ser ver timeout value (5000 ms). A Ti meout argument can
be provided if another timeout value is useful, for example, in situations where the application controller is heavily
loaded.

CALLBACK MODULE

The following functions should be exported from an appl i cat i on callback module.

Exports

Module:start(StartType, StartArgs) -> {ok, Pid} | {ok, Pid, State} | {error,
Reason}

Types.
Start Type = start_type()
StartArgs = term)
Pid = pid()
State = term)
This function is called whenever an application is started using appl i cati on: start/ 1, 2, and should start the

processes of the application. If the application is structured according to the OTP design principles as a supervision
tree, this means starting the top supervisor of the tree.

St ar t Type defines the type of start:

e nornmal ifit'sanormal startup.

* nornal adsoif theapplication is distributed and started at the current node due to a failover from another node,
and the application specification key st art _phases == undefi ned.

« {takeover, Node} if the application is distributed and started at the current node due to a takeover from
Node, either becauseappl i cati on: t akeover/ 2 has been called or because the current node has higher
priority than Node.

« {failover, Node} if theapplication is distributed and started at the current node due to afailover from
Node, and the application specification key st art _phases /= undefi ned.
Start Args isthe St ar t Ar gs argument defined by the application specification key nod.

The function should return { ok, Pi d} or { ok, Pi d, St at e} where Pi d is the pid of the top supervisor and
St at e is any term. If omitted, St at e defaults to [] . If later the application is stopped, St at e is passed to
Modul e: prep_stop/ 1.

Module:start phase(Phase, StartType, PhaseArgs) -> ok | {error, Reason}
Types.

Phase = aton()

Start Type = start_type()

PhaseArgs = term))

Pid = pid()

State = state()

This function is used to start an application with included applications, when there is a need for synchronization
between processes in the different applications during startup.

The start phases is defined by the application specification key st art _phases == [{Phase, PhaseArgs}].
For included applications, the set of phases must be a subset of the set of phases defined for the including application.

14 | Ericsson AB. All Rights Reserved.: Kernel

application

The function is called for each start phase (as defined for the primary application) for the primary application and all
included applications, for which the start phase is defined.

See Mbdul e: st art/ 2 for adescription of St art Type.

Module:prep stop(State) -> NewState
Types:
State = NewState = term)
Thisfunctioniscalled when an applicationisabout to be stopped, before shutting down the processes of the application.

St at e isthe state returned from Modul e: start/ 2, or [] if no state was returned. NewSt at e is any term and
will be passed to Mbdul e: st op/ 1.

The function is optional. If it is not defined, the processes will be terminated and then Modul e: st op(St at e) is
called.

Module:stop(State)
Types:
State = term)

This function is called whenever an application has stopped. It isintended to be the opposite of Mbdul e: start/ 2
and should do any necessary cleaning up. The return value isignored.

St at e isthe return value of Mbdul e: prep_st op/ 1, if such afunction exists. Otherwise St at e is taken from
thereturn value of Mbdul e: start/ 2.

Module:config change(Changed, New, Removed) -> ok
Types.

Changed = [{Par, Val }]

New = [{Par, Val }]

Removed = [Par]

Par = atom()

Val = term))

This function is called by an application after a code replacement, if there are any changes to the configuration
parameters.

Changed isalist of parameter-value tuples with all configuration parameters with changed values, Newis alist of
parameter-valuetupleswith all configuration parametersthat have been added, and Renoved isalist of all parameters
that have been removed.

SEE ALSO
OTP Design Principles, kernel(6), app(4)

Ericsson AB. All Rights Reserved.: Kernel | 15

auth

auth

Erlang module

This module is deprecated. For a description of the Magic Cookie system, refer to Distributed Erlang in the Erlang
Reference Manual.

Data Types

cookie() = atom()

Exports

is_auth(Node) -> yes | no
Types:
Node = node()
Returns yes if communication with Node is authorized. Note that a connection to Node will be established in this

case. Returnsno if Node does not exist or communication is not authorized (it has another cookie than aut h thinks
it has).

Use net_adm: ping(Node) instead.

cookie() -> Cookie
Types:

Cookie = cooki e()
Use erlang: get_cookie() instead.

cookie(TheCookie) -> true

Types.
TheCookie = Cookie | [Cookie]
The cookie may also be given as alist with a single atom element.
Cookie = cooki e()

Use erlang: set_cookie(node(), Cooki e) instead.

node cookie([Node, Cookiel]) -> yes | no
Types.

Node = node()

Cooki e = cooki e()

Equivalent to node_cookie(Node, Cookie).

node cookie(Node, Cookie) -> yes | no
Types:

16 | Ericsson AB. All Rights Reserved.: Kernel

auth

Node = node()
Cookie = cookie()

Sets the magic cookie of Node to Cooki e, and verifies the status of the authorization. Equivalent to calling
erlang:set_cookie(N