| v

ERLANG

Erlang Run-Time System Application
(ERTS)

Copyright © 1997-2016 Ericsson AB. All Rights Reserved.
Erlang Run-Time System Application (ERTS) 7.3
April 23, 2016

Copyright © 1997-2016 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

April 23, 2016

1.1 Communication in Erlang

1 ERTS User's Guide

The Erlang Runtime System Application ERTS.

1.1 Communication in Erlang

Communication in Erlang is conceptually performed using asynchronous signaling. All different executing entities
such as processes, and ports communicate via asynchronous signals. The most commonly used signal is a message.
Other common signals are exit, link, unlink, monitor, demonitor signals.

1.1.1 Passing of Signals

The amount of timethat passes between asignal being sent and the arrival of the signal at the destination is unspecified
but positive. If the receiver has terminated, the signal will not arrive, but it is possible that it triggers another signal.
For example, alink signal sent to a non-existing process will trigger an exit signal which will be sent back to where
the link signal originated from. When communicating over the distribution, signals may be lost if the distribution
channel goes down.

The only signal ordering guarantee given is the following. If an entity sends multiple signals to the same destination
entity, the order will be preserved. That is, if A sends asigna S1 to B, and later sends the signal S2 to B, Sl is
guaranteed not to arrive after S2.

1.1.2 Synchronous Communication

Some communication issynchronous. If broken down into pieces, asynchronous communi cation operation, consists of
two asynchronous signals. Onerequest signal and onereply signal. An example of such a synchronous communication
isacal toprocess_i nf o/ 2 whenthefirst argument isnot sel f () . The caller will send an asynchronous signal
requesting information, and will then wait for the reply signal containing the requested information. When the request
signal reaches its destination the destination process replies with the requested information.

1.1.3 Implementation

The implementation of different asynchronous signals in the VM may vary over time, but the behaviour will always
respect this concept of asynchronous signals being passed between entities as described above.

By inspecting the implementation you might notice that some specific signal actually gives a stricter guarantee than
described above. It is of vital importance that such knowledge about the implementation is not used by Erlang code,
since the implementation might change at any time without prior notice.

Some example of major implementation changes:

e Asof ERTSversion 5.5.2 exit signals to processes are truly asynchronously delivered.
e Asof ERTSversion 5.10 all signals from processes to ports are truly asynchronously delivered.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 1

1.2 Time and Time Correction in Erlang

1.2 Time and Time Correction in Erlang

1.2.1 New Extended Time Functionality

Note:

Asof OTP 18 (ERTS version 7.0) the time functionality of Erlang has been extended. This includes a new API
for time and time warp modes that alter the system behavior when system time changes.

The default time warp mode has the same behavior as before, and the old API still works. Thus, you are not
required to change anything unlessyou want to. However, you are strongly encouraged to use the new API instead
of the old API based on er | ang: now 0. er | ang: now O is deprecated, as it is and will be a scalability
bottleneck.

By using the new API, you automatically get scalability and performance improvements. This also enables you
to use the multi-time warp mode that improves accuracy and precision of time measurements.

1.2.2 Terminology

To make it easier to understand this section, some terms are defined. Thisis a mix of our own terminology (Erlang/
OS system time, Erlang/OS monotonic time, time warp) and globally accepted terminology.

Monotonically Increasing

In a monatonically increasing sequence of values, all values that have a predecessor are either larger than or equal
to its predecessor.

Strictly Monotonically Increasing

In a strictly monotonically increasing sequence of values, all values that have a predecessor are larger than its
predecessor.

UTl
Universal Time. UT1 is based on the rotation of the earth and conceptually means solar time at 0° longitude.

uTC

Coordinated Universal Time. UTC amost aligns with UT1. However, UTC uses the Sl definition of a second, which
has not exactly the same length as the second used by UT1. This means that UTC slowly drifts from UT1. To keep
UTC relatively in sync with UT1, leap seconds are inserted, and potentially also deleted. That is, an UTC day can be
86400, 86401, or 86399 seconds long.

POSIX Time

Time since Epoch. Epoch is defined to be 00:00:00 UTC, 1970-01-01. A day in POSI X timeis defined to be exactly
86400 seconds long. Strangely enough Epoch is defined to be atimein UTC, and UTC has another definition of how
long aday is. Quoting the Open Group " POSI X time is therefore not necessarily UTC, despite its appearance” .
The effect of thisis that when an UTC leap second is inserted, POSIX time either stops for a second, or repeats the
last second. If an UTC leap second would be deleted (which has not happened yet), POSIX time would make a one
second leap forward.

Time Resolution
The shortest time interval that can be distinguished when reading time values.

2 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

href
href
href

1.2 Time and Time Correction in Erlang

Time Precision

The shortest time interval that can be distinguished repeatedly and reliably when reading time values. Precision is
limited by the resolution, but resolution and precision can differ significantly.

Time Accuracy

The correctness of time values.

Time Warp

A timewarp is aleap forwards or backwardsin time. That is, the difference of time values taken before and after the
time warp does not correspond to the actual elapsed time.

OS System Time

The operating systems view of POS X time. To retrieve it, call os: system ti me() . This may or may not be an
accurate view of POSIX time. This time may typically be adjusted both backwards and forwards without limitation.
That is, time warps may be observed.

To get information about the Erlang runtime system's source of OS system time, call
erl ang: system.info(os_systemtinme_source).
OS Monotonic Time

A monotonically increasing time provided by the operating system. Thistime does not leap and has arelatively steady
frequency although not completely correct. However, it is not uncommon that OS monotonic time stopsiif the system
is suspended. This time typically increases since some unspecified point in time that is not connected to OS system
time. This type of timeis not necessarily provided by all operating systems.

To get information about the Erlang runtime system's source of OS monotonic time, call
erl ang: system.info(os_nonotonic_tinme_source).

Erlang System Time

The Erlang runtime systems view of POSI X time. To retrieveit, call er | ang: system time().

This time may or may not be an accurate view of POSIX time, and may or may not align with OS system time. The
runtime system works towards aligning the two system times. Depending on the time warp mode used, this can be
achieved by letting Erlang system time perform atime warp.

Erlang Monotonic Time

A monotonically increasing time provided by the Erlang runtime system. Erlang monotonic time increases since some
unspecified point intime. To retrieveit, call er | ang: nonot oni c_ti ne().

The accuracy and precision of Erlang monotonic time heavily depends on the following:

* Accuracy and precision of OSmonotonic time
e Accuracy and precision of OSsystemtime
e timewarp mode used

On a system without OS monotonic time, Erlang monotonic time guarantees monotonicity, but cannot give other
guarantees. The frequency adjustments made to Erlang monotonic time depend on the time warp mode used.

Internally in the runtime system, Erlang monatonic time is the "time engine" that is used for more or less everything
that has anything to do with time. All timers, regardless of itisareceive ... after timer, BIF timer, or a
timerinthet i mer module, aretriggered relative Erlang monotonic time. Even Erlang systemtimeis based on Erlang
monotonic time. By adding current Erlang monotonic timewith current time offset, you get current Erlang systemtime.

Toretrieve current time offset, call er | ang: ti me_of f set/ 0.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 3

1.2 Time and Time Correction in Erlang

1.2.3 Introduction

Timeis vital to an Erlang program and, more importantly, correct timeis vital to an Erlang program. As Erlang isa
language with soft real -time properties and we can expresstimein our programs, the Virtual Machine and the language
must be careful about what is considered a correct time and in how time functions behave.

When Erlang was designed, it was assumed that the wall clock time in the system showed a monotonic time moving
forward at exactly the same pace as the definition of time. Thismore or less meant that an atomic clock (or better time
source) was expected to be attached to your hardware and that the hardware was then expected to be locked away from
any human tinkering forever. While this can be a compelling thought, it is simply never the case.

A "normal" modern computer cannot keep time, not on itself and not unless you have a chip-level atomic clock wired
to it. Time, as perceived by your computer, must normally be corrected. Hence the Network Time Protocol (NTP)
protocol, together with the nt pd process, does its best to keep your computer time in sync with the correct time.
Between NTP corrections, usually aless potent time-keeper than an atomic clock is used.

However, NTP is not fail-safe. The NTP server can be unavailable, nt p. conf can be wrongly configured, or
your computer may sometimes be disconnected from Internet. Furthermore, you can have a user (or even system
administrator) who thinks the correct way to handle Daylight Saving Time isto adjust the clock one hour two times a
year (which is the incorrect way to do it). To complicate things further, this user fetched your software from Internet
and has not considered what the correct time is as perceived by a computer. The user does not care about keeping the
wall clock in sync with the correct time. The user expects your program to have unlimited knowledge about the time.

Most programmers al so expect timeto bereliable, at least until they realizethat thewall clock time on their workstation
is off by aminute. Then they set it to the correct time, but most probably not in a smooth way.

The number of problems that arise when you always expect the wall clock time on the system to be correct can be
immense. Erlang therefore introduced the "corrected estimate of time", or the "time correction”, many years ago.
The time correction relies on the fact that most operating systems have some kind of monotonic clock, either areal-
time extension or some built-in "tick counter" that is independent of the wall clock settings. This counter can have
microsecond resolution or much less, but it has a drift that cannot be ignored.

1.2.4 Time Correction

If time correction is enabled, the Erlang runtime system makes use of both OS system time and OS monotonic time,
to adjust the frequency of the Erlang monotonic clock. Time correction ensures that Erlang monotonic time does not
warp and that the frequency isrelatively accurate. The type of frequency adjustments depends on the time warp mode
used. Section Time Warp Modes provides more details.

By default time correction is enabled if support for it exists on the specific platform. Support for it
includes both OS monotonic time, provided by the OS, and an implementation in the Erlang runtime
system using OS monotonic time. To check if your system has support for OS monotonic time, call
erl ang: system.i nfo(os_nonotonic_tinme_source). To check if time correction is enabled on your
system, call er |l ang: system i nfo(time_correction).

To enable or disable time correction, pass command-lineargument +c [true| fal se] toerl .

If time correction is disabled, Erlang monotonic time may warp forwards or stop, or even freeze for extended periods
of time. There are then no guarantees that the frequency of the Erlang monotonic clock is accurate or stable.

You typically never want to disable time correction. Previously a performance penalty was associated with time
correction, but nowadays it is usually the other way around. If time correction is disabled, you probably get bad
scalability, bad performance, and bad time measurements.

1.2.5 Time Warp Safe Code

Time warp safe code can handle atime warp of Erlang systemtime.

4 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.2 Time and Time Correction in Erlang

er | ang: now 0 behavesbad when Erlang system timewarps. When Erlang system time doesatimewarp backwards,
the values returned from er | ang: now O freeze (if you disregard the microsecond increments made because of the
actual call) until OS system time reaches the point of the last value returned by er | ang: now 0. This freeze can
continue for along time. It can take years, decades, and even longer until the freeze stops.

All usesof er | ang: now’ 0 are not necessarily time warp unsafe. If you do not useit to get time, it istime warp safe.
However, all usesof er | ang: now' 0 are suboptimal from a performance and scalability perspective. So you really
want to replace the use of it with other functionality. For examples of how to replace the use of er | ang: now 0,
see Section How to Work with the New API.

1.2.6 Time Warp Modes

Current Erlang systemtime is determined by adding current Erlang monotonic time with current time offset. Thetime
offset is managed differently depending on which time warp mode you use.

To set the time warp mode, pass command-line argument +C [no_ti me_war p| si ngl e_ti ne_war p|
multi _time_warp] toerl.
No Time Warp Mode

The time offset is determined at runtime system start and does not change later. Thisis the default behavior, but not
becauseit isthe best mode (whichitisnot). Itisdefault only becausethisishow theruntime system behaved until ERTS
7.0. Ensurethat your Erlang code that may execute during atime warp is time warp safe before enabling other modes.

Asthetime offset is not allowed to change, time correction must adjust the frequency of the Erlang monotonic clock
to align Erlang system time with OS system time smoothly. A significant downside of this approach is that we on
purpose will use a faulty frequency on the Erlang monotonic clock if adjustments are needed. This error can be as
large as 1%. This error will show up in al time measurementsin the runtime system.

If time correction is not enabled, Erlang monotonic time freezes when OS system time leaps backwards. The freeze of
monatonic time continues until OS system time catches up. The freeze can continue for along time. When OS system
time leaps forwards, Erlang monotonic time also leaps forward.

Single Time Warp Mode
This mode is more or less a backwards compatibility mode as of its introduction.

On an embedded system it is not uncommon that the system has no power supply, not even a battery, when it is shut
off. The system clock on such a system is typically way off when the system boots. If no time warp mode is used,
and the Erlang runtime system is started before OS system time has been corrected, Erlang system time can be wrong
for along time, centuries or even longer.

If you need to use Erlang code that is not time warp safe, and you need to start the Erlang runtime system before OS
system time has been corrected, you may want to use the single time warp mode.

Note:

There are limitations to when you can execute time warp unsafe code using thismode. If it is possible to use time
warp safe code only, it is much better to use the multi-time warp mode instead.

Using the single time warp mode, the time offset is handled in two phases:
Preliminary Phase

This phase starts when the runtime system starts. A preliminary time offset based on current OS system time is
determined. This offset is from now on to be fixed during the whole preliminary phase.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 5

1.2 Time and Time Correction in Erlang

If time correction is enabled, adjustmentsto the Erlang monotonic clock are made to keep its frequency as correct
as possible. However, no adjustments are made trying to align Erlang system time and OS system time. That
is, during the preliminary phase Erlang system time and OS system time can diverge from each other, and no
attempt is made to prevent this.

If time correction is disabled, changes in OS system time affects the monotonic clock the same way as when the
no time warp mode is used.

Final Phase

Thisphase beginswhentheuser finalizesthetimeoffset by callinger | ang: system fl ag(ti ne_of f set,
finalize).Thefinaization can only be performed once.

During finalization, the time offset is adjusted and fixated so that current Erlang system time aligns with current
OS system time. As the time offset can change during the finalization, Erlang system time can do atime warp at
this point. The time offset is from now on fixed until the runtime system terminates. If time correction has been
enabled, the time correction from now on also makes adjustments to align Erlang system time with OS system
time. When the system isin the final phase, it behaves exactly asin the no time warp mode.

In order for thisto work properly, the user must ensure that the foll owing two requirements are satisfied:
Forward Time Warp

The time warp made when finalizing the time offset can only be done forwards without encountering problems.
Thisimplies that the user must ensure that OS system time is set to atime earlier or equal to actual POSIX time
before starting the Erlang runtime system.

If you are not surethat OS system timeis correct, set it to atimethat is guaranteed to be earlier than actual POSIX
time before starting the Erlang runtime system, just to be safe.

Finalize Correct OS System Time
OS system time must be correct when the user finalizes the time offset.
If these requirements are not fulfilled, the system may behave very bad.

Assuming that these requirements are fulfilled, time correction is enabled, and that OS system time is adjusted using
atime adjustment protocol such as NTP, only small adjustments of Erlang monotonic time are needed to keep system
times aligned after finalization. Aslong as the system is not suspended, the largest adjustments needed are for inserted
(or deleted) leap seconds.

Warning:
To use this mode, ensure that all Erlang code that will execute in both phases are time war p safe.
Code executing only in the final phase does not have to be able to cope with the time warp.

Multi-Time Warp Mode

Multi-time warp mode in combination with time correction is the preferred configuration. This as the Erlang runtime
system have better performance, scale better, and behave better on aimost all platforms. In addition, the accuracy and
precision of time measurements are better. Only Erlang runtime systems executing on ancient platforms benefit from
another configuration.

Thetime offset may change at any time without limitations. That is, Erlang system time may perform time warps both
forwards and backwards at any time. Aswe align Erlang system time with OS system time by changing the time offset,
we can enable a time correction that tries to adjust the frequency of the Erlang monotonic clock to be as correct as
possible. This makes time measurements using Erlang monotonic time more accurate and precise.

6 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.2 Time and Time Correction in Erlang

If time correction is disabled, Erlang monotonic time leaps forward if OS system time leaps forward. If OS system
time leaps backwards, Erlang monotonic time stops briefly, but it does not freeze for extended periods of time. This
asthe time offset is changed to align Erlang system time with OS system time.

Warning:

To use this mode, ensure that al Erlang code that will execute on the runtime system is time warp safe.

1.2.7 New Time API

Theoldtime APl isbasedoner | ang: now 0. er | ang: now 0 wasintended to be used for many unrelated things.
Thistied these unrelated operations together and caused issues with performance, scalability, accuracy, and precision
for operations that did not need to have such issues. To improve this, the new API spreads different functionality over
multiple functions.

To be backwards compatible, er | ang: now 0 remains asis, but you are strongly discouraged from using it. Many
use cases of er | ang: now 0 prevents you from using the new multi-time warp mode, which is an important part of
this new time functionality improvement.

Some of the new BIFson some systems, perhaps surprisingly, return negative integer values on anewly started runtime
system. Thisis not a bug, but a memory use optimization.

The new API consists of the following new BIFs:

e erlang:convert_time_unit/3
 erlang:nonotonic_tine/0

e erlang:nonotonic_tine/l

* erlang:systemtinme/0

e erlang:systemtine/l

e erlang:tinme_offset/0

e erlang:time_offset/1

e erlang:tinestanp/0

* erlang:unique_integer/0

e erlang:unique_integer/1

e o0s:systemtine/0

e o0s:systemtine/l

The new API also consists of extensions of the following existing BIFs:

* erlang:nonitor(tinme_offset, clock_service)

« erlang:systemflag(tinme_offset, finalize)

« erlang: system.info(os_nonotonic_tinme_source)
e erlang:systeminfo(os_systemtinme_source)

e erlang:systeminfo(tinme_offset)

« erlang:systeminfo(time_warp_node)

e erlang:systeminfo(time_correction)

e erlang:systeminfo(start_tine)

e erlang:systeminfo(end_tine)

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 7

1.2 Time and Time Correction in Erlang

New Erlang Monotonic Time

Erlang monotonic time as such is new as of ERTS 7.0. It isintroduced to detach time measurements, such as elapsed
time from calendar time. In many use cases there is a need to measure elapsed time or specify a time relative to
another point in time without the need to know the involved timesin UTC or any other globally defined time scale.
By introducing a time scale with a local definition of where it starts, time that do not concern calendar time can be
managed on that time scale. Erlang monotonic time uses such atime scale with alocally defined start.

Theintroduction of Erlang monotonic time allows usto adjust the two Erlang times (Erlang monotonic time and Erlang
system time) separately. By doing this, the accuracy of elapsed time does not have to suffer just because the system
time happened to be wrong at some point in time. Separate adjustments of thetwo timesare only performed in thetime
warp modes, and only fully separated in the multi-time warp mode. All other modes than the multi-time warp mode
are for backwards compatibility reasons. When using these modes, the accuracy of Erlang monotonic time suffer, as
the adjustments of Erlang monotonic time in these modes are more or less tied to Erlang system time.

The adjustment of system time could have been made smother than using a time warp approach, but we think that
would be abad choice. Aswe can express and measure time that is not connected to calendar time by the use of Erlang
monotonic time, it is better to expose the change in Erlang system time immediately. This as the Erlang applications
executing on the system can react on the change in system time as soon as possible. Thisis also more or less exactly
how most operating systems handl e this (OS monotonic time and OS system time). By adjusting system time smoothly,
we would just hide the fact that system time changed and make it harder for the Erlang applications to react to the
change in a sensible way.

To beableto react to achangein Erlang system time, you must be able to detect that it happened. The changein Erlang
system time occurs when current time offset is changed. We have therefore introduced the possibility to monitor the
timeoffsetusinger | ang: nonitor (ti me_of fset, clock_servi ce).A processmonitoring the time offset
is sent a message on the following format when the time offset is changed:

{'CHANGE', MonitorReference, time offset, clock service, NewTimeOffset}

Unique Values

Besidesreportingtime, er | ang: now' 0 also produces unique and strictly monotonically increasing values. To detach
this functionality from time measurements, we have introduced er | ang: uni que_i nt eger ().

How to Work with the New API

Previoudly er | ang: now O was the only option for doing many things. This section deals with some things that
erl ang: now 0 can be used for, and how you are to these using the new API.

Retrieve Erlang System Time

Don't:

Useer | ang: now O to retrieve current Erlang system time.

Do:

Useer | ang: system ti ne/ 1 toretrieve current Erlang system time on the time unit of your choice.
If you want the same format asreturned by er | ang: now/ 0, useer | ang: t i nest anp/ 0.

8 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.2 Time and Time Correction in Erlang

Measure Elapsed Time

Don't:
Take timestampswith er | ang: now/ 0 and calculate the differencein timewith t i mer : now_di f f/ 2.

Do:

Take timestamps with er | ang: nonot oni c_ti ne/ 0 and caculate the time difference using ordinary
subtraction. The result will bein nat i ve time unit. If you want to convert the result to another time unit, you
canuseer | ang: convert _tine_unit/3.

An easier way to do thisisto use er | ang: nonot oni ¢_t i me/ 1 with the desired time unit. However, you
can then lose accuracy and precision.
Determine Order of Events

Don't:

Determine the order of events by saving atimestamp with er | ang: now' 0 when the event occurs.

Do:

Determine the order of events by saving the integer returned by
erl ang: uni que_i nt eger ([nonot oni c]) when the event occurs. These integers will be strictly
monotonically ordered on current runtime system instance corresponding to creation time.

Determine Order of Events with Time of the Event

Don't:

Determine the order of events by saving atimestamp with er | ang: now' 0 when the event occurs.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 9

1.2 Time and Time Correction in Erlang

Do:

Determinethe order of events by saving atuple contai ning monotonic time and astrictly monotonically increasing
integer asfollows:

Time = erlang:monotonic time(),
UMI = erlang:unique integer([monotonic]),
EventTag = {Time, UMI}

Thesetupleswill be strictly monotonically ordered on current runtime system instance according to creation time.
It is important that the monaotonic time is in the first element (the most significant element when comparing 2-
tuples). Using the monotonic time in the tuples, you can calculate time between events.

If you are interested in Erlang system time at the time when the event occurred, you can also save the time offset
before or after saving theeventsusing er | ang: ti me_of f set / 0. Erlang monotonic time added with thetime
offset corresponds to Erlang system time.

If you are executing in a mode where time offset can change, and you want to get the actual Erlang system time
when the event occurred, you can save the time offset as athird element in the tuple (the least significant element
when comparing 3-tuples).

Create a Unique Name

Don't:

Use the values returned from er | ang: now/ 0 to create a name unique on the current runtime system instance.

Do:

Use the vaue returned from erl ang: unique_integer/0 to create a hame unique on
the current runtime system instance. If you only want positive integers, you can use
erl| ang: uni que_i nt eger ([positive]).

Seed Random Number Generation with a Unique Value

Don't:

Seed random number generation using er | ang: now() .

Do:

Seed random number generation using a combination of erlang: nonotonic_tinme(),
erlang:ti me_of fset(),erl ang: uni que_i nt eger (), and other functionality.

10 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.3 Match specifications in Erlang

To sum up this section: Do not useer | ang: now 0.

1.2.8 Support of Both New and Old OTP Releases

It can be required that your code must run on avariety of OTP installations of different OTP releases. If so, you cannot
usethe new API out of the box, asit will not be available on old pre OTP 18 releases. The solution isnot to avoid using
the new API, as your code then would not benefit from the scalability and accuracy improvements made. Instead, use
the new APl when available, and fall back oner | ang: now 0 when the new API isunavailable.

Fortunately most of the new API can easily be implemented using existing primitives, except for:

e erlang:systeminfo(start_tine)

e erlang:systeminfo(end_tine)

e erlang: system.info(os_nonotonic_tinme_source)

e erlang:systeminfo(os_systemtine_source))

By wrapping the APl with functions that fall back on er| ang: now 0 when the new API is unavailable, and

using these wrappers instead of using the API directly, the problem is solved. These wrappers can, for example, be
implemented asin $ERL _TOP/ertsexample/time_compat.erl.

1.3 Match specifications in Erlang

A "match specification” (match_spec) isan Erlang term describing a small "program” that will try to match something
(either the parameters to a function as used in the er | ang: trace_patt ern/ 2 BIF, or the objects in an ETS
table.). The match_spec in many waysworks like asmall function in Erlang, but isinterpreted/compiled by the Erlang
runtime system to something much more efficient than calling an Erlang function. The match_specisalso very limited
compared to the expressiveness of real Erlang functions.

Match specificationsaregiventotheBIFer | ang: tr ace_pat t er n/ 2 to execute matching of function arguments
as well as to define some actions to be taken when the match succeeds (the Mat chBody part). Match specifications
can also be used in ETS, to specify objects to be returned from an et s: sel ect/ 2 call (or other select calls). The
semantics and restrictions differ slightly when using match specifications for tracing and in ETS, the differences are
defined in a separate paragraph below.

The most notable difference between a match_spec and an Erlang fun is of course the syntax. Match specifications
are Erlang terms, not Erlang code. A match_spec also has a somewhat strange concept of exceptions. An exception
(e.g., badar g) in the Mat chCondi t i on part, which resembles an Erlang guard, will generate immediate failure,
while an exception in the Mat chBody part, which resembles the body of an Erlang function, isimplicitly caught and
resultsinthesingleatom' EXI T' .

1.3.1 Grammar

A match_spec used in tracing can be described in thisinformal grammar:

* MatchExpression ::= [MatchFunction, ...]

e MatchFunction ::= { MatchHead, MatchConditions, MatchBody }

e MatchHead ::= MatchVariable|' ' |[MatchHeadPart, ...]

e MatchHeadPart ::= term() | MatchVariable|' '

« MatchVariable ::= '$<number>'

* MatchConditions ::= [MatchCondition, ...] | []

e MatchCondition ::={ GuardFunction} | { GuardFunction, ConditionExpression, ... }

 BoolFunction::=is_atom|is_float |is_integer |is_list|is_nunber |is_pid]|is_port |
is_ referencelis_tuple|is_map|is_binary|is_function]|is_record]|is_seq_trace|
"and' |'or' |'not' |'xor' |andal so|orel se

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 11

href

1.3 Match specifications in Erlang

ConditionExpression ::= ExprMatchVariable | { GuardFunction } | { GuardFunction, ConditionExpression, ... }
| TermConstruct

ExprMatchVariable ::= MatchVariable (bound in the MatchHead) | $_' |' $$'

TermConstruct = {{}} | {{ ConditionExpression, ...}} |[] | [ConditionExpression, ...] |#{} |#{term() =>
ConditionExpression, ...} | NonCompositeTerm | Constant

NonCompositeTerm ::=term() (not list or tuple or map)

Constant ::={const , term()}

GuardFunction ::= BoolFunction | abs | el enent |hd || engt h [node [round |size|t] |trunc|' +
["-"|"*" ["div' |"rem |'"band" |'bor' |"bxor' ["bnot' |'"bsl" |"bsr' |'>" |'>=" |'<" |
=< == == == = | sel fo|get _tew

MatchBody ::=[ActionTerm]

ActionTerm ::= ConditionExpression | ActionCall

ActionCall ::= { ActionFunction} | { ActionFunction, ActionTerm, ...}

ActionFunction ::=set _seq_t oken |get _seq_t oken |nmessage |[return_trace |
exception_trace |process_dunp |enabl e_trace |di sable_trace|trace |display |
caller |set_tcw]|silent

A match_spec used in ets can be described in thisinformal grammar:

MatchExpression ::= [MatchFunction, ...]

MatchFunction ::= { MatchHead, MatchConditions, MatchBody }

MatchHead ::= MatchVariable|' _' |{ MatchHeadPart, ... }

MatchHeadPart ::=term() | MatchVariable|" _'

MatchVariable ::= '$<number>'

MatchConditions ::= [MatchCondition, ...] | []

MatchCondition ::= { GuardFunction } | { GuardFunction, ConditionExpression, ... }
BoolFunction::=is_atom|is_float |is_integer |[is_|list|is_nunber |[is pid]|is_port |
is_reference|is_tuplel|is_map|is_binary]|is_function]|is_record|is_seq_trace|
"and' |'or' |'not' |'xor' |andal so|orel se

ConditionExpression ::= ExprMatchVariable | { GuardFunction } | { GuardFunction, ConditionExpression, ... }
| TermConstruct

ExprMatchVariable ::= MatchVariable (bound in the MatchHead) |' $_' |' $$'

TermConstruct = {{}} | {{ ConditionExpression, ...}} |[] |[ConditionExpression, ...] | #{} | #{term() =>
ConditionExpression, ...} | NonCompositeTerm | Constant

NonCompositeTerm ::= term() (not list or tuple or map)
Constant ::={const , term()}

GuardFunction ::= BoolFunction | abs | el enent |hd || engt h [node [round |size |t] |trunc|' +
["-"|"*" |'div' |"rem |'band' |'bor' |'bxor' |"bnot' |"bsl' |"bsr' |'>" |'">="|'"<" |

=< P =rE == == = | sel f |get _teow
MatchBody ::= [ConditionExpression, ...]

1.3.2 Function descriptions

Functions allowed in all types of match specifications

The different functions allowed in mat ch_spec work like this:

is atom, is float, is_integer, is list,is_ number, is pid, is port,is reference, is tuple, is map, is binary, is function:
Like the corresponding guard testsin Erlang, returnt r ue or f al se.

12 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.3 Match specifications in Erlang

is record: Takes an additional parameter, which SHALL be the result of record_info(size,
<record_type>),likein{is_record, '$1', rectype, record_info(size, rectype)}.

'not': Negates its single argument (anything other than f al se givesf al se).

‘and’: Returnst r ue if al its arguments (variable length argument list) evaluate to t r ue, else f al se. Evaluation
order is undefined.

'or'; Returnstrue if any of its arguments evaluates to t r ue. Variable length argument list. Evaluation order is
undefined.

andalso: Like' and' , but quits evaluating its arguments as soon as one argument evaluates to something else than
true. Arguments are evaluated left to right.

orelse: Like' or ', but quits evaluating as soon as one of its arguments evaluatesto t r ue. Arguments are eval uated
left to right.

'xor': Only two arguments, of which one has to be true and the other false to return t r ue; otherwise' xor' returns
false.

abs, element, hd, length, node, round, size, tl, trunc, '+', '-', *', 'div, 'rem’, 'band', 'bor’, 'bxor', 'bnot', 'bsl’, 'bsr’,
S>>t et =, =t =)= Y= sdft Work as the corresponding Erlang bif's (or operators). In case of
bad arguments, the result depends on the context. In the Mat chCondi t i ons part of the expression, the test fails
immediately (like in an Erlang guard), but in the Mat chBody, exceptions are implicitly caught and the call results
intheatom' EXI T' .

Functions allowed only for tracing
is seq trace: Returnst r ue if asequential trace token is set for the current process, otherwisef al se.

set_seq token: Workslikeseq_trace: set _t oken/ 2, butreturnst r ue onsuccessand' EXI T' on error or bad
argument. Only allowed in the Mat chBody part and only allowed when tracing.

get_seq token: Works just like seq_t race: get _t oken/ 0, and is only allowed in the Mat chBody part when
tracing.

message: Sets an additional message appended to the trace message sent. One can only set one additional message
in the body; subsequent calls will replace the appended message. As aspecia case, { message, fal se} disables
sending of trace messages (‘call’ and 'return_to’) for this function call, just like if the match_spec had not matched,
which can be useful if only the side effects of the Mat chBody are desired. Another special case is { nressage,
t rue} which sets the default behavior, as if the function had no match_spec, trace message is sent with no extra
information (if no other callsto message are placed before{ message, true},itisinfacta"noop").

Takes one argument, the message. Returnst r ue and can only be used in the Mat chBody part and when tracing.

return_trace: Causes ar et ur n_f r omtrace message to be sent upon return from the current function. Takes no
arguments, returnst r ue and can only beused inthe Mat chBody part when tracing. If the processtraceflagsi | ent
isactivether et ur n_f r omtrace message is inhibited.

NOTE! If the traced function is tail recursive, this match spec function destroys that property. Hence, if a match
spec executing this function is used on a perpetual server process, it may only be active for a limited time, or the
emulator will eventually use all memory in the host machine and crash. If this match_spec function is inhibited using
thesi | ent process trace flag tail recursiveness till remains.

exception_trace: Same asreturn_trace, plus; if the traced function exits due to an exception, anexcepti on_from
trace message is generated, whether the exception is caught or not.

process_dump: Returns some textual information about the current process as a binary. Takes no arguments and is
only allowed in the Mat chBody part when tracing.

enable_trace: With one parameter this function turns on tracing like the Erlang cal er | ang: t race(sel f (),
true, [P2]),whereP2 isthe parameter to enabl e_t r ace. With two parameters, the first parameter should

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 13

1.3 Match specifications in Erlang

be either a process identifier or the registered name of a process. In this case tracing is turned on for the designated
processin the ssmeway asinthe Erlang call er | ang: trace(P1, true, [P2]),wherePlisthefirst and P2
is the second argument. The process P1 gets its trace messages sent to the same tracer as the process executing the
statement uses. P1 can not beone of theatomsal | , newor exi st i ng (unless, of course, they are registered names).
P2 cannotbecpu_ti mestanmp nor{tracer, _}.Returnstr ue and may only be used in the Mat chBody part
when tracing.

disable trace: With one parameter this function disables tracing like the Erlang call er | ang: t race(sel f (),

fal se, [P2]),whereP2 istheparametertodi sabl e_t r ace. Withtwo parametersit workslike the Erlang call
erlang:trace(Pl, false, [P2]),wherePl can be either aprocessidentifier or a registered name and is
given asthefirst argument to the match_spec function. P2 cannot becpu_t i mest anp nor{tracer, _}.Returns
t r ue and may only be used in the Mat chBody part when tracing.

trace: With two parameters this function takes a list of trace flags to disable as first parameter and a list of trace
flags to enable as second parameter. Logically, the disable list is applied first, but effectively all changes are applied
atomically. The trace flags are the sasme as for er | ang: t race/ 3 not including cpu_t i mest anp but including
{tracer, _}.If atracer isspecified in both lists, thetracer in the enablelist takes precedence. If no tracer is specified
the same tracer asthe process executing the match spec is used. With three parametersto thisfunction thefirst iseither
aprocessidentifier or the registered name of a process to set trace flags on, the second isthe disable list, and the third
istheenablelist. Returnst r ue if any trace property was changed for the trace target processor f al se if not. It may
only be used in the Mat chBody part when tracing.

caller: Returns the calling function as a tuple {Module, Function, Arity} or the atom undef i ned if the calling
function cannot be determined. May only be used in the Mat chBody part when tracing.

Notethat if a"technically built in function" (i.e. afunction not written in Erlang) istraced, thecal | er functionwill
sometimes return the atom undef i ned. The caling Erlang function is not available during such calls.

display: For debugging purposes only; displaysthe single argument as an Erlang term on stdout, which is seldom what
iswanted. Returnst r ue and may only be used in the Mat chBody part when tracing.

get_tcw: Takes no argument and returns the value of the node's trace control word. The same is done by
erl ang: system.info(trace_control _word).

The trace control word is a 32-bit unsigned integer intended for generic trace control. The trace control word can be
tested and set both from within trace match specifications and with BIFs. This call is only allowed when tracing.

set tcw: Takes one unsigned integer argument, sets the value of the node's trace control
word to the value of the argument and returns the previous value. The same is done by
erl ang: system fl ag(trace_control _word, Value). It is only alowed to use set_t cw in the
Mat chBody part when tracing.

silent: Takes one argument. If the argument ist r ue, the call trace message mode for the current process is set to
silent for this call and all subsequent, i.e call trace messages are inhibited even if { message, true} iscaledin
the Mat chBody part for atraced function.

This mode can aso be activated with the si | ent flagtoer | ang: trace/ 3.

If the argument isf al se, the call trace message mode for the current process is set to norma (non-silent) for this
call and all subsequent.

If the argument isneither t r ue nor f al se, the call trace message mode is unaffected.

Notethat all "function calls* haveto betuples, even if they take no arguments. Thevalueof sel f istheatom() sel f,
but the value of { sel f } isthe pid() of the current process.

1.3.3 Variables and literals

Variablestaketheform' $<nunber >' where<numnber > isan integer between 0 (zero) and 100000000 (1e+8), the
behavior if the number is outside these limitsis undefined. In the Mat chHead part, the specia variable' ' matches

14 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.3 Match specifications in Erlang

anything, and never gets bound (like _ in Erlang). In the Mat chCondi ti on/ Mat chBody parts, no unbound
variablesareallowed, why' ' isinterpreted asitself (an atom). Variables can only be bound inthe Mat chHead part.
Inthe Mat chBody and Mat chCondi t i on parts, only variables bound previously may be used. As a specia case,
inthe Mat chCondi t i on/ Mat chBody parts, the variable' $ ' expands to the whole expression which matched
the Mat chHead (i.e., the whole parameter list to the possibly traced function or the whole matching object in the ets
table) andthevariable' $$' expandstoalist of thevaluesof al boundvariablesinorder (i.e.[' $1', "' $2', ...]).

In the Mat chHead part, al literas (except the variables noted above) are interpreted as is. In the
Mat chCondi ti on/ Mat chBody parts, however, the interpretation is in some ways different. Literals in the
Mat chCondi ti on/ Mat chBody can either be written asis, which works for al literals except tuples, or by using
the special form { const, T}, where T isany Erlang term. For tuple literals in the match_spec, one can aso use
double tuple parentheses, i.e., construct them as a tuple of arity one containing a single tuple, which is the one to be
constructed. The "double tuple parenthesis’ syntax is useful to construct tuples from already bound variables, like in
{{"$1', [a,b,'$2']}}. Some examples may be needed:

Expression Variable bindings Result

{{'$1,$2}} '$1'=a,'$2'=b {ab}

{congt, {'$1', '$2'}} doesn't matter {'$1', '$2}

a doesn't matter a

3L $1'=]] (]

[$1] S =] (1]

[{{a}}] doesn't matter [{a}]

42 doesn't matter 42

"hello" doesn't matter "hello”

$1 doesn't matter 419) (the ASCII value for the character

Table 3.1: Literals in the MatchCondition/MatchBody parts of a match_spec

1.3.4 Execution of the match

The execution of the match expression, when the runtime system decides whether a trace message should be sent,
goes asfollows:

For each tuplein the Mat chExpr essi on list and while no match has succeeded:
e Match the Mat chHead part against the arguments to the function, binding the' $<nunber >' variables
(much likein et s: mat ch/ 2). If the Mat chHead cannot match the arguments, the match fails.

e Evauate each Mat chCondi ti on (whereonly ' $<nunber >' variables previously bound in the
Mat chHead can occur) and expect it to return the atom t r ue. As soon as a condition does not evaluate to
t r ue, thematch fails. If any BIF call generates an exception, aso fail.

« « [fthematch_spec isexecuting when tracing:
Evaluate each Act i onTer min the same way asthe Mat chCondi t i ons, but completely ignore the
return values. Regardless of what happens in this part, the match has succeeded.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 15

1.3 Match specifications in Erlang

» |If the match_spec is executed when selecting objects from an ETStable:
Evaluate the expressionsin order and return the value of the last expression (typically thereisonly one
expression in this context)

1.3.5 Differences between match specifications in ETS and tracing

ETS match specifications are there to produce a return value. Usually the Mat chBody contains one single
Condi ti onExpr essi on which defines the return value without having any side effects. Calls with side effects
are not allowed in the ETS context.

When tracing there is no return value to produce, the match specification either matches or doesn't. The effect when
the expression matches is a trace message rather then a returned term. The Act i onTer nis are executed as in an
imperative language, i.e. for their side effects. Functions with side effects are also alowed when tracing.

In ETS the match head isat upl e() (or asingle match variable) whileitisalist (or a single match variable) when
tracing.
1.3.6 Examples

Match an argument list of three where the first and third arguments are equal:

[{C's1*, '_", "$1'],
[1,
[1}]

Match an argument list of three where the second argument is a number greater than three:

ey, s, "',

[{ '>", '$1', 3},
[1}]

Match an argument list of three, where thethird argument isatuple containing argument one and two or alist beginning
with argument oneandtwo (i.e.[a, b,[a, b,c]] or[a, b, {a, b}]):

[{['s1', "$2', '$3'],

[{orelse,
{'=:=", "$3", {{'$1",'$2'}}},
{'and',
{'=:=", '$1', {hd, "'$3'}},
] {'=:=", '$2", {hd, {tl, "$3'}}}}}1,

The above problem may aso be solved like this:

[{C's1', "$2', {'$1', '$2}1, [I, [1},
{['$1', "$2', ['$1', '$2' | '_'11, [1, [1}]

16 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.3 Match specifications in Erlang

Match two arguments where the first is a tuple beginning with alist which in turn begins with the second argument
timestwo (i. e. [{[4x].,y}.,2] or [{[8], y, 7} 4])

[{r's1*, "$2'1,[{'=:=", {"*", 2, '$2'}, {hd, {element, 1, '$1'}}}I,
[1}]

Match three arguments. When all three are equal and are numbers, append the process dump to the trace message, else
let the trace message be as is, but set the sequential trace token label to 4711.

[{['$1', '$1', '$1'1,
[{is_number, '$1'}1,
[{message, {process dump}}]1},
{' "', [1, [{set _seq token, label, 4711}]}]

Ascan be noted above, the parameter list can be matched against asingleVat chVar i abl eoran' _' . Toreplacethe
whole parameter list with asingle variable is aspecial case. In al other casesthe Mat chHead hasto be a proper list.

Match all objects in an ets table where the first element is the atom 'strider' and the tuple arity is 3 and return the
whole object.

[{{strider,"' "',"' '},
[1,
['$_'1}]

Match all objectsin an etstable with arity > 1 and the first element is'gandalf', return element 2.

[{'$1",
[{'==', gandalf, {element, 1, '$1'}},{'>="',{size, '$1'},2}1,
[{element,2,'$1'}1}]

In the above example, if the first element had been the key, it's much more efficient to match that key in the
Mat chHead part than in the Mat chCondi t i ons part. The search space of the tables is restricted with regards to
the Mat chHead so that only objects with the matching key are searched.

Match tuples of 3 elements where the second element is either ‘'merry’ or 'pippin’, return the whole objects.

[{{'_',merry,' '},
[1,

['$_'1},

{{]'_' ,pippin, ' '},

['$ '1}]

Thefunctionet s: t est _ns/ 2 can be useful for testing complicated ets matches.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 17

1.4 How to interpret the Erlang crash dumps

1.4 How to interpret the Erlang crash dumps

This document describestheer | _cr ash. dunp file generated upon abnormal exit of the Erlang runtime system.

Important: For OTP release ROC the Erlang crash dump has had a major facelift. This means that the information in
this document will not be directly applicable for older dumps. However, if you use the Crashdump Viewer tool on
older dumps, the crash dumps are translated into a format similar to this.

The system will write the crash dump in the current directory of the emulator or in the file pointed out by the
environment variable (whatever that means on the current operating system) ERL_CRASH_DUMP. For acrash dump
to be written, there has to be awritable file system mounted.

Crash dumps are written mainly for one of two reasons. either the builtin function er | ang: hal t/ 1 is called
explicitly with astring argument from running Erlang code, or else the runtime system has detected an error that cannot
be handled. The most usual reason that the system can't handle the error is that the cause is external limitations, such
as running out of memory. A crash dump due to an internal error may be caused by the system reaching limitsin the
emulator itself (like the number of atoms in the system, or too many simultaneous ets tables). Usually the emulator
or the operating system can be reconfigured to avoid the crash, which is why interpreting the crash dump correctly
isimportant.

On systemsthat support OSsignals, it isalso possibleto stop the runtime system and generate a crash dump by sending
the SIGUSRL1.

Theerlang crash dump isareadabletext file, but it might not be very easy to read. Using the Crashdump Viewer tool in
theobser ver application will simplify the task. Thisis an wx-widget based tool for browsing Erlang crash dumps.

1.4.1 General information

Thefirst part of the dump showsthe creation timefor the dump, aslogan indicating the reason for the dump, the system
version, of the node from which the dump originates, the compile time of the emulator running the originating node,
the number of atoms in the atom table and the runtime system thread that caused the crash dump to happen.

Reasons for crash dumps (slogan)

The reason for the dump is noted in the beginning of the file as Sogan: <reason> (the word "slogan" has historical
roots). If the system is halted by the BIF er | ang: hal t / 1, the slogan is the string parameter passed to the BIF,
otherwiseit isadescription generated by theemulator or the (Erlang) kernel. Normally the message should be enough to
understand the problem, but neverthel ess some messages are described here. Note however that the suggested reasons
for the crash are only suggestions. The exact reasons for the errors may vary depending on the local applications and
the underlying operating system.

e "<A>: Cannot alocate <N> bytes of memory (of type"<T>")." - The system has run out of memory. <A> is
the allocator that failed to allocate memory, <N> is the number of bytes that <A> tried to alocate, and <T>
is the memory block type that the memory was needed for. The most common case is that a process stores
huge amounts of data. In this case <T> ismost often heap, ol d_heap, heap_f r ag, or bi nary. For more
information on allocators see erts_alloc(3).

e "<A>: Cannot reallocate <N> bytes of memory (of type"<T>")." - Same as above with the exception that
memory was being reallocated instead of being allocated when the system ran out of memory.

* "Unexpected op code N" - Error in compiled code, beamfile damaged or error in the compiler.

e "Module Name undefined” | "Function Name undefined" | "No function Name:Name/1" | "No function
Name:start/2" - The kernel/stdlib applications are damaged or the start script is damaged.

» "Driver_select called with too large file descriptor N* - The number of file descriptors for sockets exceed 1024
(Unix only). The limit on file-descriptors in some Unix flavors can be set to over 1024, but only 1024 sockets/
pipes can be used simultaneously by Erlang (due to limitations in the Unix sel ect call). The number of open
regular filesis not affected by this.

18 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.4 How to interpret the Erlang crash dumps

* "Received SIGUSR1" - Sending the SIGUSR1 signal to a Erlang machine (Unix only) forces a crash dump.
This slogan reflects that the Erlang machine crash-dumped due to receiving that signal.

« "Kernel pid terminated (Who) (Exit-reason)" - The kernel supervisor has detected afailure, usually that the
application_controll er hasshut down(Wo =application_controll er, Wy =shut down).
The application controller may have shut down for a number of reasons, the most usual being that the node
name of the distributed Erlang node is already in use. A complete supervisor tree "crash” (i.e., the top
supervisors have exited) will give about the same result. This message comes from the Erlang code and not
from the virtual machineitself. It is always due to some kind of failure in an application, either within OTP or a
"user-written" one. Looking at the error log for your application is probably the first step to take.

e "Init terminating in do_boot ()" - The primitive Erlang boot sequence was terminated, most probably because
the boot script has errors or cannot be read. Thisis usually a configuration error - the system may have been
started with afaulty - boot parameter or with a boot script from the wrong version of OTP.

e "Could not start kernel pid (Who) ()" - One of the kernel processes could not start. Thisis probably dueto
faulty arguments (like errorsin a- conf i g argument) or faulty configuration files. Check that al filesarein
their correct location and that the configuration files (if any) are not damaged. Usually there are al so messages
written to the controlling terminal and/or the error log explaining what's wrong.

Other errors than the ones mentioned above may occur, astheer | ang: hal t/ 1 BIF may generate any message. If
the message is not generated by the BIF and does not occur in thelist above, it may be due to an error in the emulator.
There may however be unusual messages that | haven't mentioned, that still are connected to an application failure.
Thereis alot more information available, so more thorough reading of the crash dump may reveal the crash reason.
The size of processes, the number of ets tables and the Erlang data on each process stack can be useful for tracking
down the problem.

Number of atoms

Thenumber of atomsin the system at thetime of the crash is shown as Atoms. <number>. Someten thousands atomsis
perfectly normal, but more could indicatethat the BIF er | ang: | i st _t o_at onf 1 isused to dynamically generate
alot of different atoms, which is never agood idea.

1.4.2 Scheduler information

Under the tag =scheduler information about the current state and statistics of the schedulers in the runtime systemis
displayed. On OSs that do allow instant suspension of other threads, the data within this section will reflect what the
runtime system looks like at the moment when the crash happens.

The following fields can exist for a process:

=scheduler:id
Header, states the scheduler identifier.

Scheduler Seep Info Flags
If empty the scheduler was doing some work. If not empty the scheduler is either in some state of sleep, or
suspended. This entry isonly present in a SMP enabled emulator

Scheduler Seep Info Aux Work
If not empty, a scheduler internal auxiliary work is scheduled to be done.

Current Port
The port identifier of the port that is currently being executed by the scheduler.

Current Process
The process identifier of the process that is currently being executed by the scheduler. If there is such a process
this entry is followed by the Sate,Internal Sate, Program Counter, CP of that same process. See Process
Information for a description what the different entries mean. Keep in mind that thisis a snapshot of what the
entries are exactly when the crash dump is starting to be generated. Therefore they will most likely be different
(and more telling) then the entries for the same processes found in the =proc section. If there is no currently
running process, only the Current Process entry will be printed.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 19

1.4 How to interpret the Erlang crash dumps

Current Process Limited Stack Trace
This entry only shows up if there isa current process. It is very similar to =proc_stack, except that only the
function frames are printed (i.e. the stack variables are omited). It is also limited to only print the top and
bottom part of the stack. If the stack is small (lessthat 512 dots) then the entire stack will be printed. If not, an
entry stating

skipping ## slots

will be printed where ## is replaced by the number of slots that has been skipped.
Run Queue
Displays statistics about how many processes and ports of different priorities are scheduled on this scheduler.
* % Crag‘]aj **
Thisentry isnormally not printed. It signifies that getting the rest of the information about this scheduler failed
for some reason.

1.4.3 Memory information

Under the tag =memory you will find information similar to what you can obtain on a living node with
erlang: memory().

1.4.4 Internal table information

Thetags =hash _table:<table name> and =index_table:<table name> presentsinternal tables. These are mostly of
interest for runtime system developers.

1.4.5 Allocated areas

Under the tag =allocated_areas you will find information similar to what you can obtain on a living node with
erlang:system info(allocated areas).

1.4.6 Allocator

Under the tag =allocator:<A> you will find various information about allocator <A>. The information is similar
to what you can obtain on a living node with erlang: system info({allocator, <A>}). For more information see the
documentation of erlang:system info({allocator, <A>}), and the erts_alloc(3) documentation.

1.4.7 Process information

The Erlang crashdump contains alisting of each living Erlang process in the system. The process information for one
process may look like this (line numbers have been added):

The following fields can exist for a process:
=proc:<pid>
Heading, states the process identifier
Sate
The state of the process. This can be one of the following:

* Scheduled - The process was scheduled to run but not currently running ("in the run queue”).
e Waiting - The process was waiting for something (inr ecei ve).

¢ Running - The process was currently running. If the BIF er | ang: hal t / 1 was called, thiswas the
process calling it.

e Exiting - The process was on its way to exit.

20 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.4 How to interpret the Erlang crash dumps

e Garbing - Thisisbad luck, the process was garbage collecting when the crash dump was written, the rest
of the information for this processis limited.

e Suspended - The processis suspended, either by the BIF er | ang: suspend_pr ocess/ 1 or because it
istrying to write to a busy port.

Registered name
The registered name of the process, if any.

Soawned as
The entry point of the process, i.e., what function was referenced in the spawn or spawn_| i nk call that
started the process.

Last scheduled in for | Current call
The current function of the process. These fields will not always exist.

Spawned by
The parent of the process, i.e. the process which executed spawn or spawn_| i nk.

Sarted
The date and time when the process was started.

Message queue length
The number of messages in the process message queue.

Number of heap fragments
The number of allocated heap fragments.

Heap fragment data
Size of fragmented heap data. Thisis data either created by messages being sent to the process or by the Erlang
BIFs. This amount depends on so many things that thisfield is utterly uninteresting.

Link list
Processid's of processes linked to this one. May also contain ports. If process monitoring is used, thisfield also
tellsin which direction the monitoring isin effect, i.e., alink being "to" a process tells you that the "current"
process was monitoring the other and alink "from" a process tells you that the other process was monitoring
the current one.

Reductions
The number of reductions consumed by the process.

Sack+heap
The size of the stack and heap (they share memory segment)

OldHeap
The size of the "old heap”. The Erlang virtual machine uses generational garbage collection with two
generations. There is one heap for new dataitems and one for the data that have survived two garbage
collections. The assumption (which is almost always correct) is that data that survive two garbage collections
can be "tenured” to a heap more seldom garbage collected, as they will live for along period. Thisisaquite
usua technique in virtual machines. The sum of the heaps and stack together constitute most of the process's
alocated memory.

Heap unused, OldHeap unused
The amount of unused memory on each heap. Thisinformation is usually useless.

Sack
If the system uses shared heap, the fields Stack+heap, OldHeap, Heap unused and OldHeap unused do not
exist. Instead this field presents the size of the process' stack.

Memory
The total memory used by this process. Thisincludes call stack, heap and internal structures. Same as
erlang:process_info(Pid,memory).

Program counter
The current instruction pointer. Thisis only interesting for runtime system devel opers. The function into which
the program counter points is the current function of the process.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 21

1.4 How to interpret the Erlang crash dumps

CP
The continuation pointer, i.e. the return address for the current call. Usually useless for other than runtime
system devel opers. This may be followed by the function into which the CP points, which is the function
calling the current function.

Arity
The number of live argument registers. The argument registers, if any are live, will follow. These may contain
the arguments of the function if they are not yet moved to the stack.
Internal State
A more detailed internal represantation of the state of this process.

See also the section about process data.

1.4.8 Port information

This section lists the open ports, their owners, any linked processed, and the name of their driver or external process.

1.4.9 ETS tables

This section contains information about all the ETS tablesin the system. The following fields are interesting for each
table:

=ets.<owner>

Heading, states the owner of the table (a process identifier)
Table

Theidentifier for the table. If thetableisananed_t abl e, thisisthe name.
Name

The name of the table, regardless of whether itisanamed_t abl e or not.

Hash table, Buckets
Thisoccursif thetableisahash table, i.e. if itisnot an or der ed_set .

Hash table, Chain Length
Only applicable for hash tables. Contains statistics about the hash table, such as the max, min and avg chain
length. Having a max much larger than the avg, and a std dev much larger that the expected std dev isasign
that the hashing of the termsis behaving badly for some reason.

Ordered set (AVL tree), Elements
Thisoccurs only if thetableisan or der ed_set . (The number of elements is the same as the number of
objectsin the table.)

Fixed

If the table is fixed using ets:safe_fixtable or some internal mechanism.
Objects

The number of objectsin thetable
Words

The number of words (usually 4 bytes/word) allocated to datain the table.
Type

Thetype of thetable, i.e. set , bag, dubl i cat e_bag or or der ed_set .
Compressed

If this table was compressed.
Protection

The protection of thistable.
Write Concurrency

If write_concurrency was enabled for this table.
Read Concurrency

If read_concurrency was enabled for thistable.

22 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.4 How to interpret the Erlang crash dumps

1.4.10 Timers

This section contains information about al the timers started with the BIFs er| ang: start _tiner/3 and
erl ang: send_aft er/ 3. Thefollowing fields exists for each timer:

=timer:<owner>
Heading, states the owner of the timer (a process identifier) i.e. the process to receive the message when the
timer expires.
Message
The message to be sent.
Time left
Number of milliseconds left until the message would have been sent.

1.4.11 Distribution information

If the Erlang node was alive, i.e., set up for communicating with other nodes, this section lists the connections that
were active. The following fields can exist:

=node:<node_name>
The name of the node
no_distribution
Thiswill only occur if the node was not distributed.
=visible_node:<channel>
Heading for avisible nodes, i.e. an alive node with a connection to the node that crashed. States the channel
number for the node.
=hidden_node: < channel>
Heading for a hidden node. A hidden node is the same as a visible node, except that it is started with the "-
hidden" flag. States the channel number for the node.
=not_connected: <channel>
Heading for a node which is has been connected to the crashed node earlier. References (i.e. process or port
identifiers) to the not connected node existed at the time of the crash. exist. States the channel number for the
node.
Name
The name of the remote node.
Controller
The port which controls the communication with the remote node.
Creation
An integer (1-3) which together with the node name identifies a specific instance of the node.
Remote monitoring: <local_proc> <remote_proc>
Thelocal process was monitoring the remote process at the time of the crash.
Remotely monitored by: <local_proc> <remote _proc>
The remote process was monitoring the local process at the time of the crash.
Remote link: <local_proc> <remote _proc>
A link existed between the local process and the remote process at the time of the crash.

1.4.12 Loaded module information

This section contains information about all loaded modules. First, the memory usage by loaded code is summarized.
There is one field for "Current code" which is code that is the current latest version of the modules. Thereis also a
field for "Old code" which is code where there exists a newer version in the system, but the old version is not yet
purged. The memory usageisin bytes.

All loaded modules are then listed. The following fields exist:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 23

1.4 How to interpret the Erlang crash dumps

=mod:<module_name>
Heading, and the name of the module.
Current size
Memory usage for the loaded code in bytes
Old size
Memory usage for the old code, if any.
Current attributes
Module attributes for the current code. Thisfield is decoded when looked at by the Crashdump Viewer tool.
Old attributes
Module attributes for the old code, if any. Thisfield is decoded when looked at by the Crashdump Viewer tool.
Current compilation info
Compilation information (options) for the current code. Thisfield is decoded when looked at by the Crashdump
Viewer tool.
Old compilation info
Compilation information (options) for the old code, if any. Thisfield is decoded when looked at by the
Crashdump Viewer tool.

1.4.13 Fun information
In this section, al funs are listed. The following fields exist for each fun:

=fun

Heading
Module

The name of the module where the fun was defined.
Unig, Index

Identifiers
Address

The address of the fun's code.
Native address

The address of the fun's code when HiPE is enabled.
Refc

The number of references to the fun.

1.4.14 Process Data

For each process there will be at least one =proc_stack and one =proc_heap tag followed by the raw memory
information for the stack and heap of the process.

For each process there will also be a =proc_messages tag if the process message queue is non-empty and a
=proc_dictionary tag if the process' dictionary (the put / 2 and get / 1 thing) is non-empty.

The raw memory information can be decoded by the Crashdump Viewer tool. Y ou will then be able to see the stack
dump, the message queue (if any) and the dictionary (if any).

The stack dump isadump of the Erlang process stack. Most of thelive data (i.e., variables currently in use) are placed
on the stack; thus this can be quite interesting. One has to "guess' what's what, but as the information is symbolic,
thorough reading of this information can be very useful. As an example we can find the state variable of the Erlang
primitive loader on line (5) in the example below:

1) 3cac44 Return addr 0x13BF58 (<terminate process normally>)

(

(2) y(o) ["/view/siri r10 dev/clearcase/otp/erts/lib/kernel/ebin","/view/siri rl0 dev/

(3) clearcase/otp/erts/lib/stdlib/ebin"]

(4) vy(1) <0.1.0>

(5) vy(2) {state, [],none,#Fun<erl prim loader.6.7085890>,undefined,#Fun<erl prim loader.7.9000327>,#Fun<erl

24 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.5 How to implement an alternative carrier for the Erlang distribution

(6) y(3) infinity

When interpreting the datafor aprocess, it is helpful to know that anonymous function objects (funs) are given aname
constructed from the name of the function in which they are created, and a number (starting with 0) indicating the
number of that fun within that function.

1.4.15 Atoms

Now all the atomsin the system are written. Thisisonly interesting if one suspects that dynamic generation of atoms
could be a problem, otherwise this section can be ignored.

Note that the last created atom is printed first.

1.4.16 Disclaimer

Theformat of the crash dump evolves between rel eases of OTP. Some information here may not apply to your version.
A description as this will never be complete; it is meant as an explanation of the crash dump in general and as a help
when trying to find application errors, not as a complete specification.

1.5 How to implement an alternative carrier for the Erlang
distribution

This document describes how one canimplement onesown carrier protocol for the Erlang distribution. Thedistribution
is normally carried by the TCP/IP protocol. What's explained here is the method for replacing TCP/IP with another
protocol.

The document is a step by step explanation of the uds_di st example application (seated in the kernel applications
exanpl es directory). Theuds_di st application implements distribution over Unix domain sockets and is written
for the Sun Solaris 2 operating environment. The mechanisms are however general and appliesto any operating system
Erlang runs on. The reason the C code is not made portable, is simply readability.

Note:

This document was written along time ago. Most of it is still valid, but some things have changed since it was
first written. Most notably the driver interface. There have been some updates to the documentation of the driver
presented in this documentation, but more could be done and are planned for the future. The reader is encouraged
to also read the erl_driver, and the driver_entry documentation.

1.5.1 Introduction

To implement a new carrier for the Erlang distribution, one must first make the protocol available to the Erlang
machine, which involves writing an Erlang driver. There is no way one can use a port program, there has to be an
Erlang driver. Erlang drivers can either be statically linked to the emulator, which can be an alternative when using
the open source distribution of Erlang, or dynamically loaded into the Erlang machines address space, which is the
only aternative if aprecompiled version of Erlang isto be used.

Writing an Erlang driver is by no means easy. The driver is written as a couple of call-back functions called by the
Erlang emulator when datais sent to the driver or the driver has any data available on afile descriptor. As the driver
call-back routines execute in the main thread of the Erlang machine, the call-back functions can perform no blocking
activity whatsoever. The call-backs should only set up file descriptors for waiting and/or read/write available data.
All /O has to be non blocking. Driver call-backs are however executed in sequence, why a global state can safely
be updated within the routines.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 25

1.5 How to implement an alternative carrier for the Erlang distribution

When the driver is implemented, one would preferably write an Erlang interface for the driver to be able to test the
functionality of the driver separately. Thisinterface can then be used by the distribution module which will cover the
details of the protocol from thenet _ker nel . The easiest pathisto mimicthei net andi net _t cp interfaces, but
alot of functionality in those modules need not be implemented. In the example application, only a few of the usual
interfaces are implemented, and they are much simplified.

When the protocol is available to Erlang through a driver and an Erlang interface module, a distribution module can
be written. The distribution module is a module with well defined call-backs, much like agen_ser ver (thereis
no compiler support for checking the call-backs though). The details of finding other nodes (i.e. talking to epmd or
something similar), creating alisten port (or similar), connecting to other nodes and performing the handshakes/cookie
verification are all implemented by this module. There is however a utility module, di st _ut i |, that will do most
of the hard work of handling handshakes, cookies, timers and ticking. Using di st _ut i | makes implementing a
distribution module much easier and that's what we are doing in the example application.

Thelast step isto create boot scripts to make the protocol implementation available at boot time. The implementation
can be debugged by starting the distribution when al of the system is running, but in areal system the distribution
should start very early, why aboot-script and some command line parameters are necessary. Thislast step also implies
that the Erlang code in the interface and distribution modules is written in such away that it can be run in the startup
phase. Most notably there can be no callsto the appl i cat i on module or to any modules not loaded at boot-time
(i.e.only ker nel , st dl i b and the application itself can be used).

1.5.2 The driver

Although Erlang driversin general may be beyond the scope of thisdocument, abrief introduction seemsto bein place.

Drivers in general

An Erlang driver is a native code module written in C (or assembler) which serves as an interface for some special
operating system service. Thisis a general mechanism that is used throughout the Erlang emulator for all kinds of 1/
O. An Erlang driver can be dynamically linked (or oaded) to the Erlang emulator at runtime by usingtheer | _ddl |
Erlang module. Some of the drivers in OTP are however statically linked to the runtime system, but that's more an
optimization than a necessity.

The driver data-types and the functions available to the driver writer are defined in the header fileer | _dri ver. h
(there is al'so an deprecated version called dr i ver . h, don't use that one.) seated in Erlang's include directory (and
in $ERL_TOP/erts’emul ator/beam in the source code distribution). Refer to that file for function prototypes etc.

When writing adriver to make a communications protocol available to Erlang, one should know just about everything
worth knowing about that particular protocol. All operation has to be non blocking and all possible situations should
be accounted for in the driver. A non stable driver will affect and/or crash the whole Erlang runtime system, which
is seldom what's wanted.

The emulator calls the driver in the following situations:

* Whenthedriver isloaded. This call-back has to have a special name and will inform the emulator of what call-
backs should be used by returning a pointer to aEr | Dr vENt ry struct, which should be properly filled in (see
below).

* When aport to the driver is opened (by aopen_port cal from Erlang). This routine should set up internal
data structures and return an opaque data entity of the type Er | Dr vDat a, which is a data-type large enough to
hold a pointer. The pointer returned by this function will be the first argument to all other call-backs concerning
this particular port. It is usually called the port handle. The emulator only stores the handle and does never try
to interpret it, why it can be virtually anything (well anything not larger than a pointer that is) and can point to
anything if it isa pointer. Usually this pointer will refer to a structure holding information about the particular
port, asi t doesin our example.

* When an Erlang process sends data to the port. The data will arrive as a buffer of bytes, the interpretation is not
defined, but is up to the implementor. This call-back returns nothing to the caller, answers are sent to the caller

26 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.5 How to implement an alternative carrier for the Erlang distribution

asmessages (using aroutinecaled dr i ver _out put availableto al drivers). Thereisalso away totalk ina
synchronous way to drivers, described below. There can be an additiona call-back function for handling data
that is fragmented (sent in adeep io-list). That interface will get the datain aform suitable for Unix wri t ev
rather than in a single buffer. Thereis no need for a distribution driver to implement such a call-back, so we
wont.

e When afiledescriptor issignaled for input. This call-back is called when the emulator detects input on
afile descriptor which the driver has marked for monitoring by using the interfacedr i ver _sel ect .
The mechanism of driver select makesit possible to read non blocking from file descriptors by calling
driver _sel ect whenreading is needed and then do the actual reading in this call-back (when reading is
actually possible). Thetypica scenarioisthat dri ver _sel ect iscaled when an Erlang process orders a
read operation, and that this routine sends the answer when data is available on the file descriptor.

* When afiledescriptor is signaled for output. This call-back is called in asimilar way as the previous, but when
writing to afile descriptor is possible. The usual scenario isthat Erlang orders writing on a file descriptor and
that the driver callsdr i ver _sel ect . When the descriptor is ready for output, this call-back is called an the
driver can try to send the output. There may of course be queuing involved in such operations, and there are
some convenient queue routines available to the driver writer to use in such situations.

When aport is closed, either by an Erlang process or by the driver calling one of thedri ver fai |l ure_XXX
routines. This routine should clean up everything connected to one particular port. Note that when other call-
backscal adri ver _f ai | ur e_XXX routine, this routine will be immediately called and the call-back routine
issuing the error can make no more use of the data structures for the port, as this routine surely has freed al
associated data and closed al file descriptors. If the queue utility available to driver writes is used, this routine
will however not be called until the queue is empty.

e When an Erlang process callser | ang: port _contr ol / 3, which isasynchronous interface to drivers. The
control interface is used to set driver options, change states of ports etc. We'll use this interface quite alot in our
example.

e When atimer expires. The driver can set timerswith the functiondri ver _set _ti ner.When such timers
expire, a specific call-back function is called. We will not use timersin our example.

e When the whole driver is unloaded. Every resource allocated by the driver should be freed.

The distribution driver's data structures

Thedriver used for Erlang distribution should implement areliable, order maintaining, variable length packet oriented
protocol. All error correction, re-sending and such need to be implemented in the driver or by the underlying
communications protocol. If the protocol is stream oriented (as is the case with both TCP/IP and our streamed Unix
domain sockets), some mechanism for packaging is needed. We will use the simple method of having a header of four
bytes containing the length of the package in a big endian 32 bit integer (as Unix domain sockets only can be used
between processes on the same machine, we actually don't need to code the integer in some special endianess, but I'll
do it anyway because in most situation you do need to do it. Unix domain sockets are reliable and order maintaining,
so we don't need to implement resends and such in our driver.

Lets start writing our example Unix domain sockets driver by declaring prototypes and filling in a static ErIDrvEntry
structure.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <fcntl.h>

QOVWoo~NOOUE WN R

=

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 27

1.5 How to implement an alternative carrier for the Erlang distribution

(11) #define HAVE UIO H
#include "erl driver.h"

—
=
N

-

/*

** Interface routines

&/

static ErlDrvData uds_start(ErlDrvPort port, char *buff);

static void uds_stop(ErlDrvData handle);

static void uds command(ErlDrvData handle, char *buff, int bufflen);

static void uds input(ErlDrvData handle, ErlDrvEvent event);

static void uds output(ErlDrvData handle, ErlDrvEvent event);

static void uds finish(void);

static int uds_control(ErlDrvData handle, unsigned int command,
char* buf, int count, char** res, int res size);

,-\,-\,-\,-\,-\,-\,-\,-\,-\,-\,-\
NNNNRE BB E
WNPFRPOoOCWOWONOULI AW
i o e e o e e e S

(24) /* The driver entry */

(25) static ErlDrvEntry uds driver_entry = {

(26) NULL, /* init, N/A */

(27) uds_start, /* start, called when port is opened */
(28) uds_stop, /* stop, called when port is closed */
(29) uds_command, /* output, called when erlang has sent */
(30) uds_input, /* ready input, called when input

(31) descriptor ready */

(32) uds_output, /* ready output, called when output
(33) descriptor ready */

(34) "uds_drv", /* char *driver name, the argument

(35) to open_port */

(36) uds finish, /* finish, called when unloaded */

(37) NULL, /* void * that is not used (BC) */

(38) uds_control, /* control, port control callback */
(39) NULL, /* timeout, called on timeouts */

(40) NULL, /* outputv, vector output interface */
(41) NULL, /* ready async callback */

(42) NULL, /* flush callback */

(43) NULL, /* call callback */

(44) NULL, /* event callback */

(45) ERL_DRV_EXTENDED MARKER, /* Extended driver interface marker */
(46) ERL DRV _EXTENDED MAJOR VERSION, /* Major version number */

(47) ERL_DRV_EXTENDED MINOR VERSION, /* Minor version number */

(48) ERL_DRV_FLAG_SOFT_ BUSY, /* Driver flags. Soft busy flag is

(49) required for distribution drivers */
(50) NULL, /* Reserved for internal use */

(51) NULL, /* process_exit callback */

(52) NULL /* stop_select callback */

(53) };

On line 1 to 10 we have included the OS headers needed for our driver. As this driver is written for Solaris, we
know that the header ui 0. h exists, why we can define the preprocessor variable HAVE_UI O_H before we include
erl _driver. hatline12. Thedefinition of HAVE_Ul O Hwill makethe1/O vectorsused in Erlang's driver queues
to correspond to the operating systems ditto, which is very convenient.

The different call-back functions are declared ("forward declarations") on line 16 to 23.

The driver structure is similar for statically linked in drivers and dynamically loaded. However some of the fields
should be left empty (i.e. initialized to NULL) in the different types of drivers. The first field (the i ni t function
pointer) isalways|eft blank in adynamically loaded driver, which can be seen on line 26. The NULL online 37 should
always bethere, thefield isno longer used and is retained for backward compatibility. We use no timersin thisdriver,
why no call-back for timers is needed. The out put v field (line 40) can be used to implement an interface similar
to Unix wr i t ev for output. The Erlang runtime system could previously not use out put v for the distributi