ERLANG

Mnesia

Copyright © 1997-2017 Ericsson AB. All Rights Reserved.
Mnesia 4.15

July 8, 2017

Copyright © 1997-2017 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

July 8, 2017

1.1 Introduction

1 Mnesia User's Guide

The Mnesia application is a distributed Database Management System (DBMYS), appropriate for telecommunications
applications and other Erlang applications, which require continuous operation and exhibit soft real-time properties.

1.1 Introduction
The Mnesia application provides a heavy duty real-time distributed database.

1.1.1 Scope

This User's Guide describes how to build Mnesia database applications, and how to integrate and use the Mnesia
database management system with OTP. Programming constructs are described, and numerous programming examples
areincluded to illustrate the use of Mnesia

This User's Guide is organized as follows:

* Mnesia provides an introduction to Mnesia.

e Getting Sarted introduces Mnesia with an example database. Examples are included how to start an Erlang
session, specify a Mnesia database directory, initialize a database schema, start Mnesia, and create tables. Initial
prototyping of record definitionsis also discussed.

* Build a Mnesia Database more formally describes the steps introduced in the previous section, namely the
Mnesia functions that define a database schema, start Mnesia, and create the required tables.

« Transactions and Other Access Contexts describes the transactions properties that make Mnesiainto a fault
tolerant, real-time distributed database management system. This section also describes the concept of locking
to ensure consistency in tables, and "dirty operations”, or short cuts, which bypass the transaction system to
improve speed and reduce overheads.

» Miscellaneous Mnesia Features describes features that enable the construction of more complex database
applications. These features include indexing, checkpoints, distribution and fault tolerance, disc-less nodes,
replication manipulation, local content tables, concurrency, and object-based programming in Mnesia.

* Mnesia System Information describes the files contained in the Mnesia database directory, database
configuration data, core and table dumps, as well as the important subject of backup, fall-back, and disaster
recovery principles.

e Combine Mnesia with SNMP is a short section that outlines Mnesiaintegrated with SNMP.

« Appendix A: Backup Callback Interfaceis a program listing of the default implementation of this facility.

e Appendix B: Activity Access Callback Interface is a program outlining one possible implementation of this
facility.

* Appendix C: Fragmented Table Hashing Callback Interface is a program outlining one possible implementation
of thisfacility.

1.1.2 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language, system development principles, and
database management systems.

Ericsson AB. All Rights Reserved.: Mnesia | 1

1.2 Mnesia

1.2 Mnesia

The management of data in telecommunications system has many aspects, thereof some, but not all, are addressed by
traditional commercial Database Management Systems (DBMSs). In particular the high level of fault tolerancethat is
required in many nonstop systems, combined with requirements on the DBM Sto run in the same address space asthe
application, have led us to implement anew DBMS, called Mnesia.

Mnesia is implemented in, and tightly connected to Erlang. It provides the functionality that is necessary for the
implementation of fault tolerant telecommunications systems.

Mnesia is a multiuser distributed DBMS specialy made for industrial telecommunications applications written in
Erlang, whichis also the intended target language. Mnesiatriesto address all the data management issues required for
typical telecommunications systems. It has a number of features that are not normally found in traditional databases.

In telecommunications applications, there are different needs from the features provided by traditional DBMSs. The
applications now implemented in Erlang need a mixture of a broad range of features, which generally are not satisfied
by traditional DBMSs. Mnesiais designed with regquirements like the following in mind:

* Fast red-time key/value lookup

e Complicated non-real-time queries mainly for operation and maintenance

» Distributed data because of distributed applications

e High fault tolerance

e Dynamic reconfiguration

» Complex objects

Mnesiais designed with the typical data management problems of telecommunications applicationsin mind. This sets
Mnesia apart from most other DBMS. Hence Mnesia combines many concepts found in traditional databases such
as transactions and queries with concepts found in data management systems for telecommunications applications,
for example:

» Fast real-time operations

« Configurable degree of fault tolerance (by replication)

» Theahility to reconfigure the system without stopping or suspending it.

Mnesia is also interesting because of its tight coupling to Erlang, thus amost turning Erlang into a database
programming language. This has many benefits, the foremost is that the impedance mismatch between the data format

used by the DBMS and the data format used by the programming language, which is used to manipulate the data,
completely disappears.

1.2.1 Mnesia Database Management System (DBMS)

Features
Mnesia contains the following features that combine to produce a fault-tolerant, distributed DBM S written in Erlang:

» Database schema can be dynamically reconfigured at runtime.
e Tables can be declared to have properties such as location, replication, and persistence.

» Tables can be moved or replicated to several nodes to improve fault tolerance. The rest of the system can still
access the tables to read, write, and delete records.

» Tablelocations are transparent to the programmer. Programs address table names and the system itself keeps
track of table locations.

» Database transactions can be distributed, and many functions can be called within one transaction.

* Several transactions can run concurrently, and their execution is fully synchronized by the DBMS. Mnesia
ensures that no two processes manipul ate data simultaneously.

2 | Ericsson AB. All Rights Reserved.: Mnesia

1.3 Getting Started

« Transactions can be assigned the property of being executed on al nodesin the system, or on none.
Transactions can a so be bypassed in favor of running "dirty operations', which reduce overheads and run fast.

Details of these features are described in the following sections.

Add-On Application

Query List Comprehension (QLC) can be used with Mnesia to produce specialized functions that enhance the

operational ability of Mnesia. QL C hasits own documentation as part of the OTP documentation set. The main features

of QLC when used with Mnesia are as follows:

* QLC can optimize the query compiler for the Mnesia DBMS, essentially making the DBM S more efficient.

e QLC can be used as a database programming language for Mnesia. It includes a notation called "list
comprehensions' and can be used to make complex database queries over a set of tables.

For information about QL C, see the glc manual pagein STDLIB.
When to Use Mnesia

Use Mnesiawith the following types of applications:

* Applicationsthat need to replicate data.

e Applications that perform complicated searches on data.

* Applications that need to use atomic transactions to update several records simultaneously.
* Applicationsthat use soft real-time characteristics.

Mnesiais not as appropriate with the following types of applications:

e Programsthat process plain text or binary datafiles.

« Applications that merely need alook-up dictionary that can be stored to disc. Those applications use the
standard library module det s, which is adisc-based version of the module et s. For information about det s,
see the dets manual pagein STDLIB.

» Applications that need disc logging facilities. Those applications can use the moduledi sk_| og by preference.
For information about di sk_| 0g, see the disk_log manual page in Kernel.

e Hard real-time systems.

1.3 Getting Started

This section introduces Vnesi a with an example database. This example is referenced in the following sections,
wherethe exampleismodified toillustrate various program constructs. This sectionillustratesthe following mandatory
procedures through examples:

» Starting the Erlang session.

* Specifying the VMhesi a directory where the database is to be stored.

» Initializing a new database schemawith an attribute that specifies on which node, or nodes, that database is to
operate.

e Starting Mnesi a.
» Creating and populating the database tables.

1.3.1 Starting Mnesia for the First Time

This section provides a simplified demonstration of a Vhesi a system startup. The dialogue from the Erlang shell
isasfollows:

unix> erl -mnesia dir '"/tmp/funky"'

Ericsson AB. All Rights Reserved.: Mnesia | 3

1.3 Getting Started

Erlang (BEAM) emulator version 4.9

Eshell V4.9 (abort with "G)

1>

1> mnesia:create schema([node()]).

ok

2> mnesia:start().

ok

3> mnesia:create table(funky, []).

{atomic, ok}

4> mnesia:info().

---> Processes holding locks <---

---> Processes waiting for locks <---

---> Pending (remote) transactions <---

---> Active (local) transactions <---

---> Uncertain transactions <---

---> Active tables <---

funky : with 0 records occupying 269 words of mem
schema : with 2 records occupying 353 words of mem
===> System info in version "1.0", debug level = none <===
opt disc. Directory "/tmp/funky" is used.

use fall-back at restart = false

running db nodes = [nonode@nohost]
stopped db nodes = []

remote =[]

ram_copies = [funky]
disc_copies = [schemal

disc_only copies []

[{nonode@nohost,disc copies}] = [schema]
[{nonode@nohost, ram copies}] = [funky]

1 transactions committed, O aborted, 0 restarted, 1 logged to disc
0 held locks, 0 in queue; 0 local transactions, 0 remote

0 transactions waits for other nodes: []

ok

In this example, the following actions are performed:

e Step 1: The Erlang system is started from the UNIX prompt with aflag- mesi a dir [trmp/ funky"",

which indicates in which directory to store the data.

e Step 2: A new empty schemaisinitialized on the local node by evaluating mnesia: create_schema([node()]).
The schema contains information about the database in general. Thisis explained in detail |ater.

e Step 3: The DBMSis started by evaluating mnesia: start().

* Step 4: Afirsttableis created, called f unky, by evaluating the expression
mesi a: creat e_t abl e(funky, []).Thetableisgiven default properties.

» Step 5: mnesia:info() is evaluated to display information on the terminal about the status of the database.

1.3.2 Example

A Mhesi a database is organized as a set of tables. Each table is populated with instances (Erlang records). A table
has also a number of properties, such aslocation and persistence.

Database
This example shows how to create a database called Conpany and the relationships shown in the following diagram:

Figure 3.1: Company Entity-Relation Diagram

The database mode! is as follows:

4 | Ericsson AB. All Rights Reserved.: Mnesia

1.3 Getting Started

» Therearethree entities: department, employee, and project.
e There are three relationships between these entities:

» A department is managed by an employee, hence the nanager relationship.
* Anemployee works at a department, hence the at _dep relationship.
» Each employee works on a number of projects, hencethei n_pr oj relationship.

Defining Structure and Content

First the record definitions are entered into atext filenamed conpany. hr | . Thisfile definesthe following structure
for the exampl e database:

-record(employee, {emp no,
name,
salary,
sex,
phone,
room no}).

-record(dept, {id,
name}) .

-record(project, {name,
number}) .

-record(manager, {emp,
dept}).

-record(at_dep, {emp,
dept id}).

-record(in_proj, {emp,

proj name}).

The structure defines six tablesin the database. In Mhesi a, the function mnesia: create_table(Name, ArgList) creates
tables. Nare is the table name.

Note:

The current version of Mhesi a does not require that the name of the table is the same as the record name, see
Record Names versus Table Names..

For example, the table for employees is created with the function mmesi a: cr eat e_t abl e(enpl oyee,
[{attributes, record_info(fields, enployee)}]).Thetablenameenpl oyee matchesthe name
for records specifiedin Ar gLi st . Theexpressionr ecord_i nf o(fi el ds, Recor dNane) isprocessed by the
Erlang preprocessor and evaluates to a list containing the names of the different fields for a record.

Program
The following shell interaction starts Mnesi a and initializes the schema for the Conpany database:

% erl -mnesia dir '"/ldisc/scratch/Mnesia.Company"'

Ericsson AB. All Rights Reserved.: Mnesia | 5

1.3 Getting Started

Erlang (BEAM) emulator version 4.9

Eshell V4.9 (abort with ~G)

1> mnesia:create schema([node()]).
ok

2> mnesia:start().

ok

The following program module creates and popul ates previously defined tables:

-include lib("stdlib/include/qlc.hrl").
-include("company.hrl").

init() ->
mnesia:create table(employee,
[{attributes, record info(fields, employee)}]),
mnesia:create table(dept,
[{attributes, record info(fields, dept)}1]),
mnesia:create table(project,
[{attributes, record info(fields, project)}]),
mnesia:create table(manager, [{type, bag},
{attributes, record info(fields, manager)}]),
mnesia:create table(at dep,
[{attributes, record info(fields, at dep)}l),
mnesia:create table(in proj, [{type, bag},
{attributes, record info(fields, in proj)}1).

Program Explained

The following commands and functions are used to initiate the Conpany database:

* %erl -mesia dir '"/1disc/scratch/ Vesia. Conpany"' . ThisisaUNIX command-
line entry that starts the Erlang system. Theflag - mnesi a dir Di r specifiesthe location of the database
directory. The system responds and waits for further input with the prompt 1>.

e mnesia:create_schema([node()]). This function has the format
mmesi a: cr eat e_schena(D scNodeLi st) andinitiates anew schema. In this example, a non-
distributed system using only one node is created. Schemas are fully explained in Define a Schema.

* mnesia:start(). Thisfunction starts Mhesi a and isfully explained in Start Mnesia.
Continuing the dialogue with the Erlang shell produces the following:

3> company:init().

{atomic, ok}

4> mnesia:info().

---> Processes holding locks <---

---> Processes waiting for locks <---

---> Pending (remote) transactions <---

---> Active (local) transactions <---

---> Uncertain transactions <---

---> Active tables <---

in proj : with @ records occuping 269 words of mem

at dep : with @ records occuping 269 words of mem
manager : with @ records occuping 269 words of mem
project : with @ records occuping 269 words of mem
dept : with @ records occuping 269 words of mem
employee : with @ records occuping 269 words of mem

6 | Ericsson AB. All Rights Reserved.: Mnesia

1.3 Getting Started

schema : with 7 records occuping 571 words of mem
===> System info in version "1.0", debug level = none <===
opt disc. Directory "/ldisc/scratch/Mnesia.Company" is used.
use fall-back at restart = false

running db nodes = [nonode@nohost]
stopped db nodes = []
remote =[]
ram_copies =
[at dep,dept,employee,in proj,manager,project]
disc_copies = [schemal]

disc _only copies = []

[{nonode@nohost,disc copies}] = [schema]

[{nonode@nohost, ram copies}] =
[employee,dept,project,manager,at dep,in proj]

6 transactions committed, @ aborted, 0 restarted, 6 logged to disc

0 held locks, 0 in queue; 0 local transactions, 0 remote
0 transactions waits for other nodes: []
ok

A set of tablesis created. The function mnesia: create table(Name, ArgList) creates the required database tables. The

options available with Ar gLi st are explained in Create New Tables.

The function conpany: i ni t / O creates the tables. Two tables are of type bag. Thisisthe manager relation as
well thei n_proj relation. Thisis interpreted as. an employee can be manager over several departments, and an
employee can participate in several projects. However, theat _dep relationisset , asan employee can only work in
one department. In this data model, there are examples of relations that are 1-to-1 (set) and 1-to-many (bag).

mnesia:info() now indicates that a database has seven local tables, where six are the user-defined tables and one isthe
schema. Six transactions have been committed, as six successful transactions were run when creating the tables.

To write a function that inserts an employee record into the database, there must be an at _dep record and a set of

i n_proj recordsinserted. Examine the following code used to complete this action:

insert emp(Emp, DeptId, ProjNames) ->

Ename = Emp#employee.name,

Fun = fun() ->
mnesia:write(Emp),
AtDep = #at dep{emp = Ename, dept id = DeptId},
mnesia:write(AtDep),
mk _projs(Ename, ProjNames)

end,
mnesia:transaction(Fun).

mk_projs(Ename, [ProjName|Tail]) ->
mnesia:write(#in proj{emp = Ename, proj name = ProjName}),
mk_projs(Ename, Tail);

mk_projs(, [1) -> ok.

e Theinsert enp/ 3 argumentsare asfollows:

e Enp isan employeerecord.
e Dept | distheidentity of the department where the employee works.

* Proj Nanes isalist of the names of the projects where the employee works.

Ericsson AB. All Rights Reserved.: Mnesia | 7

1.3 Getting Started

Thefunctioni nsert _enp/ 3 creates a Functional Object (Fun). Fun is passed as a single argument to the function
mnesia:transaction(Fun). This means that Fun isrun as a transaction with the following properties:

* A Fun either succeeds or fails.
* Code that manipulates the same data records can be run concurrently without the different processes interfering
with each other.

The function can be used as follows:

Emp = #employee{emp no= 104732,
name = klacke,
salary = 7,
sex = male,
phone = 98108,
room no = {221, 015}},
insert emp(Emp, 'B/SFR', [Erlang, mnesia, otp]).

Note:

For information about Funs, see "Fun Expressions' in section Er | ang Ref erence Manual in System
Documentation..

Initial Database Content
After the insertion of the employee named kI acke, the databse has the following records:

emp_no name sdary sex phone room_no

104732 klacke 7 male 98108 {221, 015}

Table 3.1: employee Database Record

Thisenpl oyee record hasthe Erlang record/tuple representation { enpl oyee, 104732, kl acke, 7, mal e,
98108, {221, 015}}.

emp dept_name

klacke B/SFR

Table 3.2: at_dep Database Record

Thisat _dep record has the Erlang tuple representation { at _dep, kl acke, 'B/ SFR }.

emp proj_name
klacke Erlang
klacke otp

8 | Ericsson AB. All Rights Reserved.: Mnesia

1.3 Getting Started

klacke mnesia

Table 3.3: in_proj Database Record

This i n_proj record has the Erlang tuple representation {i n_proj, klacke, 'Erlang' , klacke,
"otp', klacke, 'mesia'}.

There is no difference between rows in a table and Vnesi a records. Both concepts are the same and are used
interchangeably throughout this User's Guide.

A Mnesi a tableispopulated by Mhesi a records. For example, thetuple{ boss, kl acke, bj arne} isarecord.
The second element in thistupleisthe key. To identify atable uniquely, both the key and the table nameisneeded. The
term Object Identifier (OID) is sometimes used for the arity two tuple { Tab, Key}. The OID for the record { boss,
kl acke, bjarne} isthe arity two tuple { boss, kl acke}. The first element of the tuple is the type of the
record and the second element is the key. An OID can lead to zero, one, or more records depending on whether the
tabletypeisset or bag.

Therecord{ boss, kl acke, bjarne} canasobeinserted. Thisrecord containsan implicit reference to another
employee that does not yet exist in the database. Mhesi a does not enforce this.

Adding Records and Relationships to Database
After adding more records to the Conpany database, the result can be the following records:
enpl oyees:

{employee, 104465, "Johnson Torbjorn",
{employee, 107912, "Carlsson Tuula",
{employee, 114872, "Dacker Bjarne",

1, male, 99184, {242,038}}.

2

3
{employee, 104531, "Nilsson Hans", 3

2

2

1

3

, female, 94556, {242,056}}.
, male, 99415, {221,035}}.
, male, 99495, {222,026}}.
{employee, 104659, "Tornkvist Torbjorn", 2, male, 99514, {222,022}}.
{employee, 104732, "Wikstrom Claes", ,
{employee, 117716, "Fedoriw Anna", ,

{employee, 115018, "Mattsson Hakan",

male, 99586, {221,015}}.
female, 99143, {221,031}}.
male, 99251, {203,348}}.

dept:
{dept, 'B/SF', "Open Telecom Platform"}.
{dept, 'B/SFP', "OTP - Product Development"}.
{dept, 'B/SFR', "Computer Science Laboratory"}.
proj ects:

%% projects

{project, erlang, 1}.
{project, otp, 2}.

{project, beam, 3}.
{project, mnesia, 5}.
{project, wolf, 6}.
{project, documentation, 7}.
{project, www, 8}.

Ericsson AB. All Rights Reserved.: Mnesia | 9

1.3 Getting Started

Thesethreetables, enpl oyees, dept , and pr oj ect s, aremade up of real records. Thefollowing database content
isstored in the tables and is built on relationships. These tables are manager , at _dep,andi n_proj .

manager :

{manager, 104465, 'B/SF'}.
{manager, 104465, 'B/SFP'}.
{manager, 114872, 'B/SFR'}.

at _dep:
{at dep, 104465, 'B/SF'}.
{at _dep, 107912, 'B/SF'}.
{at _dep, 114872, 'B/SFR'}.
{at _dep, 104531, 'B/SFR'}.
{at _dep, 104659, 'B/SFR'}.
{at _dep, 104732, 'B/SFR'}.
{at _dep, 117716, 'B/SFP'}.
{at _dep, 115018, 'B/SFP'}.

in_proj:

{in_proj, 104465, otp}.
{in_proj, 107912, otp}.
{in_proj, 114872, otp}.
{in_proj, 104531, otp}.
{in_proj, 104531, mnesia}.
{in_proj, 104545, wolf}.
{in_proj, 104659, otp}.
{in_proj, 104659, wolf}.
{in_proj, 104732, otp}.
{in_proj, 104732, mnesia}.
{in_proj, 104732, erlang}.
{in_proj, 117716, otp}.
{in_proj, 117716, documentation}.
{in_proj, 115018, otp}.
{in_proj, 115018, mnesia}.

The room number is an attribute of the employee record. Thisisastructured attribute that consists of atuple. The first
element of the tuple identifies a corridor, and the second element identifies the room in that corridor. An alternativeis
to represent thisasarecord - r ecord(room {corr, no}). instead of an anonymous tuple representation.

The Conpany database is now initialized and contains data.

Writing Queries

Retrieving data from DBMS is usually to be done with the functions mnesia:read/3 or mnesia:read/1. The following
function raises the salary:

raise(Eno, Raise) ->
F = fun() ->
[E] = mnesia:read(employee, Eno, write),
Salary = E#employee.salary + Raise,
New = E#employee{salary = Salary},

10 | Ericsson AB. All Rights Reserved.: Mnesia

1.3 Getting Started

mnesia:write(New)
end,
mnesia:transaction(F).

Since it is desired to update the record using the function mnesia:write/1 after the salary has been increased, a write
lock (third argument to r ead) is acquired when the record from the table is read.

To read the values from the table directly is not always possible. It can be needed to search one or more tables to
get the wanted data, and thisis done by writing database queries. Queries are always more expensive operations than
direct lookups done with mesi a: r ead. Therefore, avoid queries in performance-critical code.

Two methods are available for writing database queries:

* Mhesi a functions

e QLC

Using Mnesia Functions

The following function extracts the names of the female employees stored in the database:

mnesia:select(employee, [{#employee{sex = female, name = '$1', ="' '},[], ['$1'1}]).

sel ect must aways run within an activity, such as atransaction. The following function can be constructed to call
from the shell:

all females() ->

F = fun() ->
Female = #employee{sex = female, name = '$1', ="' '},
mnesia:select(employee, [{Female, [], ['$1'1}])
end,

mnesia:transaction(F).

Thesel ect expression matches al entriesin table employee with thefield sex settof emal e.
This function can be called from the shell asfollows:

(klacke@gin)1> company:all females().
{atomic, ["Carlsson Tuula", "Fedoriw Anna"]}

For adescription of sel ect and its syntax, see Pattern Matching.
Using QLC

This section contains simple introductory examples only. For a full description of the QLC query language, see the
glc manual pagein STDLI B.

Using QL C can be more expensive than using Mhesi a functions directly but offers a nice syntax.
The following function extracts alist of female employees from the database:

Q = qlc:q([E#employee.name || E <- mnesia:table(employee),
E#employee.sex == femalel]),
qlc:e(Q),

Ericsson AB. All Rights Reserved.: Mnesia | 11

1.3 Getting Started

Accessing Mhesi a tables from a QLC list comprehension must always be done within a transaction. Consider the
following function:

females() ->

F = fun() ->
Q = qlc:q([E#employee.name || E <- mnesia:table(employee),
E#employee.sex == femalel),
glc:e(Q)

end,
mnesia:transaction(F).

This function can be called from the shell as follows:

(klacke@gin)1> company:females().
{atomic, ["Carlsson Tuula", "Fedoriw Anna"]}

In traditional relational database terminology, this operation is called a selection, followed by a projection.
The previous list comprehension expression contains a number of syntactical elements:

e Thefirst[bracketisread as"build thelist".
e The| | "suchthat" and the arrow <- isread as "taken from".

Hence, the previous list comprehension demonstrates the formation of the list E#enpl oyee. nane such that E is
taken from the table of employees, and attribute sex of each record is equal to the atom f enal e.

The whole list comprehension must be given to the functiongl c: g/ 1.

List comprehensions with low-level Mhesi a functions can be combined in the same transaction. To raise the salary
of al female employees, execute the following:

raise females(Amount) ->
F = fun() ->
Q = qlc:q([E || E <- mnesia:table(employee),
E#employee.sex == femalel]),
Fs = qlc:e(Q),
over write(Fs, Amount)
end,
mnesia:transaction(F).

over write([E|Tail], Amount) ->
Salary = E#employee.salary + Amount,
New = E#employee{salary = Salary},
mnesia:write(New),
1 + over write(Tail, Amount);

over write([],) ->
0.

Thefunctionr ai se_f enmal es/ 1 returnsthetuple{ at om ¢, Nunber},whereNunber isthe number of femae
employees who received a salary increase. If an error occurs, the value { abort ed, Reason} is returned, and
Mhesi a guarantees that the salary is not raised for any employee.

Example:

12 | Ericsson AB. All Rights Reserved.: Mnesia

1.4 Build a Mnesia Database

33>company:raise females(33).
{atomic, 2}

1.4 Build a Mnesia Database

This section describes the basic steps when designing aMnhesi a database and the programming constructs that make
different solutions available to the programmer. The following topics are included:

e Defineaschema

e Datamodel

e Start Mnesi a

e Createtables

1.4.1 Define a Schema

Theconfiguration of aMhesi a systemisdescribed in aschema. The schemaisaspecial tablethat includesinformation
such as the table names and the storage type of each table (that is, whether atable is to be stored in RAM, on disc,
or on both, aswell asitslocation).

Unlike data tables, information in schema tables can only be accessed and modified by using the schema-related
functions described in this section.

Mhesi a hasvariousfunctionsfor defining the database schema. Tables can be moved or deleted, and the table layout
can be reconfigured.

Animportant aspect of these functionsisthat the system can access atable whileit isbeing reconfigured. For example,
it is possible to move atable and simultaneously perform write operations to the same table. This feature is essential
for applications that require continuous service.

This section describes the functions available for schema management, all which return either of the following tuples:

e {atomc, ok} ifsuccessful
« {aborted, Reason} if unsuccessful

Schema Functions
The schema functions are as follows:

e mnesia:create_schema(NodeL.ist) initializes a new, empty schema. Thisis a mandatory requirement before
Mhesi a can be started. Mhesi a isatruly distributed DBMS and the schemais a system table that is replicated
on al nodesinaMhesi a system. Thisfunction failsif a schemais already present on any of the nodesin
NodelLi st . The function requires Mhesi a to be stopped on the al db_nodes contained in parameter
NodelLi st . Applications call thisfunction only once, asit is usually aone-time activity to initialize a new
database.

« mnesia:delete_schema(DiscNodeL.ist) erases any old schemas on the nodesin Di scNodelLi st . It also
removes al old tables together with all data. This function requires Vnesi a to be stopped on al db_nodes.

 mnesia:delete table(Tab) permanently deletes al replicas of table Tab.

* mnesia:clear_table(Tab) permanently deletes all entriesin table Tab.

* mnesia:move_table copy(Tab, From, To) moves the copy of table Tab from node Fr omto node To. Thetable
storagetype{t ype} ispreserved, soif aRAM table is moved from one node to ancther, it remains aRAM
table on the new node. Other transactions can still perform read and write operation to the table while it is being
moved.

« mnesia:add table copy(Tab, Node, Type) creates areplica of table Tab at node Node. Argument Type must
be either of the atomsr am copi es, di sc_copi es, ordi sc_onl y_copi es. If you add acopy of the

Ericsson AB. All Rights Reserved.: Mnesia | 13

1.4 Build a Mnesia Database

system table schema to anode, you want the Mhesi a schemato reside there aswell. This action extends the
set of nodes that comprise this particular Mhesi a system.

« mnesia:del_table copy(Tab, Node) deletes the replica of table Tab at node Node. When the last replica of a
table is removed, the table is del eted.

* mnesia:transform_table(Tab, Fun, NewAttributelist, NewRecordName) changestheformat on all recordsintable
Tab. It applies argument Fun to al records in the table. Fun must be a function that takes a record of the old
type, and returns the record of the new type. The table key must not be changed.

Example:

-record(old, {key, val}).
-record(new, {key, val, extra}).

Transformer =
fun(X) when record(X, old) ->
#new{key = X#old.key,
val = X#old.val,
extra = 42}
end,
{atomic, ok} = mnesia:transform table(foo, Transformer,
record info(fields, new),
new),

Argument Fun can also be the atom i gnor e, which indicates that only the metadata about the table is updated.
Useof i gnor e isnot recommended (as it creates inconsistencies between the metadata and the actual data) but
it isincluded as a possibility for the user do to an own (offline) transform.

e change_tabl e copy_type(Tab, Node, ToType) changesthe storage type of atable. For example,
aRAM tableischangedtoadi sc_t abl e at the node specified as Node.

1.4.2 Data Model

The data model employed by Mnesi a is an extended relational data model. Datais organized as a set of tables and
relations between different datarecords can be model ed as more tabl es describing the rel ationships. Each table contains
instances of Erlang records. The records are represented as Erlang tuples.

Each Object Identifier (OID) is made up of atable name and akey. For example, if an employee record is represented
by thetuple{ enpl oyee, 104732, klacke, 7, male, 98108, {221, 015}},thisrecordhasanOID,
whichisthetuple{ enpl oyee, 104732}.

Thus, each table is made up of records, where the first element is a record name and the second element of the table
is a key, which identifies the particular record in that table. The combination of the table name and akey is an arity
two tuple { Tab, Key} called the OID. For more information about the relationship beween the record name and
the table name, see Record Names versus Table Names.

What makes the Mhesi a datamodel an extended relational model is the ability to store arbitrary Erlang termsin the
attribute fields. One attribute value can, for example, be awhole tree of OIDs leading to other terms in other tables.
Thistype of record is difficult to model in traditional relational DBMSs.

1.4.3 Start Mnesia

Before starting Mhesi a, the following must be done:

* Anempty schemamust beinitialized on all the participating nodes.
e The Erlang system must be started.

14 | Ericsson AB. All Rights Reserved.: Mnesia

1.4 Build a Mnesia Database

* Nodes with disc database schema must be defined and implemented with the function
mnesia: create_schema(Nodelist).

When running adistributed system with two or more participating nodes, the function mnesia: start() must be executed
on each participating node. This would typically be part of the boot script in an embedded environment. In a test
environment or an interactive environment, rmesi a: st art () can also be used either from the Erlang shell or
another program.

Initialize a Schema and Start Mnesia

Let us use the example database Conpany, described in Getting Sarted to illustrate how to run a database on two
separate nodes, calleda@i n andb@keppet . Each of these nodes must haveavhesi a directory and aninitialized
schema before Mhesi a can be started. There are two ways to specify the Mhesi a directory to be used:

« Specify thelvnesi a directory by providing an application parameter either when starting the Erlang shell or inthe
application script. Previously, the following example was used to create the directory for the Conpany database:

%erl -mnesia dir '"/ldisc/scratch/Mnesia.Company"'

* If no command-lineflag is entered, the Mnhesi a directory becomes the current working directory on the node
where the Erlang shell is started.

To start the Conpany database and get it running on the two specified nodes, enter the following commands:
e« Onthenodea@i n:

gin %erl -sname a -mnesia dir '"/ldisc/scratch/Mnesia.company"'

 Onthenodeb@keppet:

skeppet %erl -sname b -mnesia dir '"/ldisc/scratch/Mnesia.company

e Onone of the two nodes:

(a@gin)1>mnesia:create schema([a@gin, b@skeppet]).

e Thefunction mnesia: start() is called on both nodes.
« Toinitialize the database, execute the following code on one of the two nodes:

dist init() ->
mnesia:create table(employee,
[{ram copies, [a@gin, b@skeppetl},
{attributes, record info(fields,
employee)}]),
mnesia:create table(dept,
[{ram copies, [a@gin, b@skeppetl},
{attributes, record info(fields, dept)}]),
mnesia:create table(project,
[{ram copies, [a@gin, b@skeppetl},
{attributes, record info(fields, project)}]),
mnesia:create table(manager, [{type, bag},

Ericsson AB. All Rights Reserved.: Mnesia | 15

1.4 Build a Mnesia Database

{ram_copies, [a@gin, b@skeppet]},
{attributes, record info(fields,
manager)}]),
mnesia:create table(at dep,
[{ram copies, [a@gin, b@skeppet]},
{attributes, record info(fields, at dep)}l),
mnesia:create table(in proj,

[{type, bag},
{ram copies, [a@gin, b@skeppet]},
{attributes, record info(fields, in proj)}1).

Asillustrated, the two directories reside on different nodes, because/ | di sc/ scr at ch (the"local" disc) exists on
the two different nodes.

By executing these commands, two Erlang nodes are configured to run the Conrpany database, and therefore, initialize
the database. Thisis required only once when setting up. The next time the system is started, mnesia: start() is called
on both nodes, to initialize the system from disc.

Inasystem of Mhesi a nodes, every nodeisaware of the current location of al tables. Inthisexample, dataisreplicated
on both nodes and functions that manipulate the data in the tables can be executed on either of the two nodes. Code
that manipulate Mhesi a data behaves identically regardless of where the data resides.

The function mnesia:stop() stops Mhesi a on the node where the function is executed. The functions
mesi a: start/ 0 and mesi a: st op/ 0 work on the "local” Mnesi a system. No functions start or stop a set
of nodes.

Startup Procedure
Start Mhesi a by calling the following function:

mnesia:start().

Thisfunction initiates the DBM S locally.
The choice of configuration alters the location and load order of the tables. The alternatives are as follows:

e Tablesthat are only stored locally are initialized from the local vhesi a directory.

* Replicated tables that reside locally as well as somewhere else are either initiated from disc or by copying the
entire table from the other node, depending on which of the different replicas are the most recent. Mhesi a
determines which of the tables are the most recent.

* Tablesthat reside on remote nodes are available to other nodes as soon as they are loaded.

Table initialization is asynchronous. The function call mnesia: start() returns the atom ok and then starts to initiaize
the different tables. Depending on the size of the database, this can take some time, and the application programmer
must wait for the tables that the application needs before they can be used. This is achieved by using the function
mnesia:wait_for_tables(TabList, Timeout), which suspends the caller until all tables specified in TabLi st are
properly initiated.

A prablem can arise if areplicated table on one node is initiated, but Mhesi a deduces that another (remote) replica
is more recent than the replica existing on the local node, and the initialization procedure does not proceed. In this
situation, a call to mnesia:wait_for_tables/2, suspends the caller until the remote node has initialized the table from
itslocal disc and the node has copied the table over the network to the local node.

However, this procedure can be time-consuming, the shortcut function mnesia:force load table(Tab) loads all the
tables from disc at afaster rate. The function forces tables to be loaded from disc regardless of the network situation.

Thus, it can be assumed that if an application wants to use tables a and b, the application must perform some action
similar to following before it can use the tables:

16 | Ericsson AB. All Rights Reserved.: Mnesia

1.4 Build a Mnesia Database

case mnesia:wait for tables([a, b], 20000) of

{timeout, RemainingTabs} ->
panic(RemainingTabs) ;
ok ->
synced
end.

Warning:

When tables are forcefully loaded from the local disc, all operations that were performed on the replicated table
while the local node was down, and the remote replicawas alive, are lost. This can cause the database to become
inconsistent.

If the startup procedure fails, the function mnesia:start() returns the cryptic tuple {error, { shut down,
{mesi a_sup,start_link,[normal,[]]}}}. To get more information about the start failure, use
command-line arguments - boot st art_sasl asargumenttotheer| script.

1.4.4 Create Tables

The function mnesia:create _table(Name, ArgList) creates tables. When executing this function, it returns one of the

following responses:

« {atomnc, ok} if thefunction executes successfully

e {aborted, Reason} if thefunctionfails

The function arguments are as follows:

* Nane isthe name of thetable. It is usually the same name as the name of the records that constitute the table.
For details, seer ecor d_nane.

 ArglLi st isalist of { Key, Val ue} tuples. The following arguments are valid:

« {type, Type},whereType must beeither of theatomsset , or der ed_set, or bag. Defaultisset .
Noticethat currently or der ed_set isnot supported for di sc_onl y_copi es tables.

A tableof typeset oror der ed_set haseither zero or onerecord per key, whereas atable of typebag can
have an arbitrary number of records per key. The key for each record isawaysthefirst attribute of the record.

The following example illustrates the difference between type set and bag:

f() ->
F = fun() ->
mnesia:write({foo, 1, 2}),
mnesia:write({foo, 1, 3}),
mnesia:read({foo, 1})
end,
mnesia:transaction(F).

This transaction returns the list [{f 00, 1, 3}] if table foo is of type set. However, the list
[{foo, 1,2}, {foo,1, 3}] isreturned if thetableis of type bag.

Mhesi a tables can never contain duplicates of the same record in the same table. Duplicate records have
attributes with the same contents and key.

e {disc_copies, NodelList},whereNodelLi st isalistof thenodeswherethistableistoresideondisc.

Ericsson AB. All Rights Reserved.: Mnesia | 17

1.4 Build a Mnesia Database

Write operations to atable replica of typedi sc_copi es write datato the disc copy and to the RAM copy
of thetable.

It is possible to have a replicated table of type di sc_copi es on one node, and the same table stored as
a different type on another node. Default is[] . This arrangement is desirable if the following operational
characteristics are required:

* Read operations must be fast and performed in RAM.
» All write operations must be written to persistent storage.

A write operation on adi sc_copi es table replicais performed in two steps. First the write operation is
appended to alog file, then the actual operation is performed in RAM.

« {ramcopi es, NodeLi st},whereNodeLi st isalist of the nodeswherethistableisstored in RAM.
Default is[node()] . If the default value is used to create atable, it islocated on the local node only.

Tablereplicasof typer am copi es can be dumped to disc with the function mnesia: dump_tables(TabList).

e {disc_only copies, NodelList}.Thesetablereplicasare stored on disc only and are therefore
slower to access. However, a disc-only replica consumes less memory than atable replica of the other two
storage types.

« {index, AttributeNaneList}, where AttributeNaneLi st isalist of aoms specifying the
names of the attributes Mhesi a isto build and maintain. An index table exists for every element in the list.
Thefirst field of alvhesi a record is the key and thus need no extraindex.

Thefirst field of arecord is the second element of the tuple, which is the representation of the record.

e {snnp, SnnpStruct}.SnnpStruct isdescribedinthe SNMP User's Guide. Basicaly, if thisattribute
ispresentin Ar gLi st of mnesia:create table/2, thetable isimmediately accessible the SNMP.

It is easy to design applications that use SNMP to manipulate and control the system. Mhesi a provides a
direct mapping between the logical tables that make up an SNMP control application and the physical data
that makesup aMhesi a table. The default valueis|] .

e {local _content, true}.Whenan application needs atable whose contentsisto be locally unique
on eachnode, | ocal _cont ent tables can be used. The name of the table is known to all Mhesi a nodes,
but its contents is unique for each node. Access to this type of table must be done locally.

« {attributes, Atonlist} isalistof theattribute namesfor the records that are supposed to populate
thetable. Default isthelist [key, val] . Thetable must at least have one extra attribute besides the key.
When accessing single attributesin arecord, it is not recommended to hard code the attribute names as atoms.
Usetheconstruct recor d_i nfo(fi el ds, record_nane) instead.

Theexpressionrecord_i nfo(fi el ds, record_nane) isprocessed by the Erlang preprocessor and
returns a list of the record field names. With the record definition - r ecor d(f oo, {x,vy, z})., the
expressionrecord_i nfo(fi el ds, foo) isexpanded to thelist [x, y, z] . It is therefore possible for
you to provide the attribute names or to use ther ecor d_i nf o/ 2 notation.

It isrecommended to usether ecor d_i nf o/ 2 notation, as it becomes easier to maintain the program and
the program becomes more robust with regards to future record changes.

 {record_nane, Aton} specifiesthe common name of all records stored in the table. All records stored
in the table must have this name astheir first element. r ecor d_nane defaults to the name of the table. For
more information, see Record Names versus Table Names.

As an example, consider the following record definition:

-record(funky, {x, y}).

18 | Ericsson AB. All Rights Reserved.: Mnesia

1.5 Transactions and Other Access Contexts

The following call would create a table that is replicated on two nodes, has an extra index on attribute y, and is of
type bag.

mnesia:create table(funky, [{disc copies, [N1, N2]}, {index,
[yl}, {type, bag}, {attributes, record info(fields, funky)}]).

Whereas a call to the following default code values would return atable with aRAM copy on the local node, no extra
indexes, and the attributes defaulted to the list [key, val] .

mnesia:create table(stuff, [])

1.5 Transactions and Other Access Contexts

This section describes the Mhesi a transaction system and the transaction properties that make Mhesi a a fault-
tolerant, distributed Database Management System (DBMS).

This section also describes the locking functions, including table locks and sticky locks, aswell asalternative functions
that bypass the transaction system in favor of improved speed and reduced overhead. These functions are called "dirty
operations". The use of nested transactionsis also described. The following topics are included:

e Transaction properties, which include atomicity, consistency, isolation, and durability

e Locking

» Dirty operations

* Record names versus table names

* Activity concept and various access contexts

* Nested transactions

e Pattern matching

e lteration

1.5.1 Transaction Properties

Transactions are important when designing fault-tolerant, distributed systems. A Vhesi a transaction is a mechanism
by which a series of database operations can be executed as one functional block. The functional block that isrunasa
transaction is called a Functional Object (Fun), and this code can read, write, and delete Mhesi a records. The Funis
evaluated as atransaction that either commits or terminates. If atransaction succeedsin executing the Fun, it replicates
the action on all nodes involved, or terminatesif an error occurs.

The following example shows a transaction that raises the salary of certain employee numbers:

raise(Eno, Raise) ->

F = fun() ->
[E] = mnesia:read(employee, Eno, write),
Salary = E#employee.salary + Raise,
New = E#employee{salary = Salary},
mnesia:write (New)

end,
mnesia:transaction(F).

Ericsson AB. All Rights Reserved.: Mnesia | 19

1.5 Transactions and Other Access Contexts

The function rai se/ 2 contains a Fun made up of four code lines. This Fun is caled by the statement
mesi a: transacti on(F) andreturnsavalue.

TheMnesi a transaction system facilitates the construction of reliable, distributed systems by providing the following
important properties:

* Thetransaction handler ensures that a Fun, which is placed inside a transaction, does not interfere with
operations embedded in other transactions when it executes a series of operations on tables.

» Thetransaction handler ensures that either all operationsin the transaction are performed successfully on all
nodes atomically, or the transaction fails without permanent effect on any node.

e TheMesi a transactions have four important properties, called Atomicity, Consistency, | solation, and
Durability (ACID). These properties are described in the following sections.

Atomicity

Atomicity meansthat database changes that are executed by atransaction take effect on all nodesinvolved, or on none
of the nodes. That is, the transaction either succeeds entirely, or it fails entirely.

Atomicity isimportant when it is needed to write atomically more than one record in the sametransaction. Thefunction
rai se/ 2, shown in the previous example, writes one record only. The function i nsert _enp/ 3, shown in the
program listing in Getting Sarted, writes the record enpl oyee aswell as employeerelations, such asat _dep and
i n_proj, into the database. If this latter code is run inside a transaction, the transaction handler ensures that the
transaction either succeeds completely, or not at all.

Mhesi a isadistributed DBMS where data can be replicated on several nodes. In many applications, it isimportant
that a series of write operations are performed atomically inside a transaction. The atomicity property ensures that a
transaction takes effect on all nodes, or none.

Consistency

The consistency property ensures that a transaction always leaves the DBMS in a consistent state. For example,
Vhesi a ensures that no inconsistencies occur if Erlang, Mhesi a, or the computer crashes while a write operation
isin progress.

Isolation

Theisolation property ensuresthat transactionsthat execute on different nodesin anetwork, and access and manipul ate
the same datarecords, do not interfere with each other. Theisolation property makesit possibleto execute the function
rai se/ 2 concurrently. A classical problem in concurrency control theory is the "lost update problem”.

Theisolation property isin particular useful if the following circumstances occur where an employee (with employee
number 123) and two processes (P1 and P2) are concurrently trying to raise the salary for the employee:

e Step 1: Theinitial value of the employees salary is, for example, 5. Process P1 starts to execute, reads the
employee record, and adds 2 to the salary.

e Step 2: Process Pl isfor some reason pre-empted and process P2 has the opportunity to run.

e Step 3: Process P2 reads the record, adds 3 to the salary, and finally writes a new employee record with the
salary set to 8.

e Step 4: Process P1 starts to run again and writes its employee record with salary set to 7, thus effectively
overwriting and undoing the work performed by process P2. The update performed by P2 islost.

A transaction system makesit possible to execute two or more processes concurrently that manipul ate the same record.
The programmer does not need to check that the updates are synchronous; thisis overseen by the transaction handler.
All programs accessing the database through the transaction system can be written asif they had sole accessto the data.

20 | Ericsson AB. All Rights Reserved.: Mnesia

1.5 Transactions and Other Access Contexts

Durability

The durability property ensures that changes made to the DBMS by a transaction are permanent. Once a transaction
is committed, al changes made to the database are durable, that is, they are written safely to disc and do not become
corrupted and do not disappear.

Note:

The described durability feature does not entirely apply to situations where Mhesi a is configured as a "pure”
primary memory database.

1.5.2 Locking

Different transaction managers employ different strategiesto satisfy theisolation property. Mnesi a usesthe standard
technique of two phase locking. That is, locks are set on records before they are read or written. Mhesi a uses the
following lock types:

» Read locks. A read lock is set on onereplica of arecord before it can be read.

* Writelocks. Whenever atransaction writesto arecord, write locks are first set on all replicas of that particular
record.

« Read tablelocks. If atransaction traverses an entire table in search for arecord that satisfies some particular
property, it is most inefficient to set read locks on the records one by one. It is aso memory consuming, as the
read locks themselves can take up considerable space if the table is large. Therefore, Mhesi a can set aread
lock on an entire table.

e Writetablelocks. If atransaction writes many records to one table, awrite lock can be set on the entire table.

» Sticky locks. These are write locks that stay in place at a node after the transaction that initiated the lock has
terminated.

Mhesi a employs a strategy whereby functions, such as mnesia:read/1 acquire the necessary locks dynamically as
the transactions execute. Mhesi a automatically sets and rel eases the locks and the programmer does not need to code
these operations.

Deadlocks can occur when concurrent processes set and release locks on the same records. Mhesi a employsa“wait-
die" strategy to resolve these situations. If Mhesi a suspects that a deadlock can occur when a transaction triesto set
alock, the transaction is forced to release all its locks and sleep for a while. The Fun in the transaction is evaluated
once more.

It is therefore important that the code inside the Fun given to rmesi a: t ransacti on/ 1 is pure. Some strange
results can occur if, for example, messages are sent by the transaction Fun. The following example illustrates this
situation:

bad raise(Eno, Raise) ->

F = fun() ->
[E] = mnesia:read({employee, Eno}),
Salary = E#employee.salary + Raise,
New = E#employee{salary = Salary},
io:format("Trying to write ... ~n", []1),
mnesia:write(New)

end,
mnesia:transaction(F).

Ericsson AB. All Rights Reserved.: Mnesia | 21

1.5 Transactions and Other Access Contexts

This transaction can writethetext " Trying to wite ... " 1000 timesto the terminal. However, Mhesi a
guarantees that each transaction will eventually run. Asaresult, Mhesi a is not only deadlock free, but also livelock
free.

The Mhesi a programmer cannot prioritize one particular transaction to execute before other transactions that are
waiting to execute. As aresult, the Mhesi a DBMS transaction system is not suitable for hard real-time applications.
However, Mhesi a contains other features that have real-time properties.

Vhesi a dynamically sets and releases locks as transactions execute. It is therefore dangerous to execute code with
transaction side-effects. In particular, ar ecei ve statement inside a transaction can lead to a situation where the
transaction hangs and never returns, which in turn can cause locks not to release. This situation can bring the whole
system to a standstill, as other transactions that execute in other processes, or on other nodes, are forced to wait for
the defective transaction.

If atransaction terminates abnormally, Mnesi a automatically releases the locks held by the transaction.

Up to now, examples of a number of functions that can be used inside a transaction have been shown. The following
list showsthe simplest Mhesi a functionsthat work with transactions. Notice that these functions must be embedded
in atransaction. If no enclosing transaction (or other enclosing Mnesi a activity) exists, they all fail.

e mnesia:transaction(Fun) -> {aborted, Reason} [{atomic, Value} executes one transaction with the functional
object Fun asthe single parameter.

* mnesia:read({Tab, Key}) -> transaction abort | RecordList reads all records with Key as key from table
Tab. This function has the same semantics regardless of the location of Tabl e. If thetableis of type bag,
read({Tab, Key}) canreturnan arbitrarily long list. If the tableis of type set , thelist is either of length
oneor[].

* mnesiawread({Tab, Key}) -> transaction abort | RecordList behaves the same way as the previously listed
functionr ead/ 1, except that it acquires awrite lock instead of aread lock. To execute a transaction that
reads a record, modifies the record, and then writes the record, it is slightly more efficient to set the write
lock immediately. When amnesia:read/1 isissued, followed by amnesia:write/1 the first read lock must be
upgraded to awrite lock when the write operation is executed.

« mnesia:write(Record) -> transaction abort | ok writes arecord into the database. Argument Recor d isan
instance of arecord. The function returns ok, or terminates the transaction if an error occurs.
* mnesia:delete({Tab, Key}) -> transaction abort | ok deletes al records with the given key.

* mnesia:delete_object(Record) -> transaction abort | ok deletes records with the OID Recor d. Use this
function to delete only some records in atable of type bag.

Sticky Locks

As previously stated, the locking strategy used by Vhesi a is to lock one record when reading a record, and lock
all replicas of arecord when writing a record. However, some applications use Mhesi a mainly for its fault-tolerant
qualities. These applications can be configured with one node doing all the heavy work, and a standby node that is
ready to take over if the main node fails. Such applications can benefit from using sticky locks instead of the normal
locking scheme.

A sticky lock isalock that staysin place at anode, after the transaction that first acquired the lock hasterminated. To
illustrate this, assume that the following transaction is executed:

F = fun() ->
mnesia:write(#foo{a = kalle})
end,

mnesia:transaction(F).

Thef oo tableisreplicated on the two nodes N1 and N2.

22 | Ericsson AB. All Rights Reserved.: Mnesia

1.5 Transactions and Other Access Contexts

Normal locking requires the following:

e One network RPC (two messages) to acquire the write lock
* Three network messages to execute the two-phase commit protocol

If sticky locks are used, the code must first be changed as follows:

F = fun() ->
mnesia:s write(#foo{a = kalle})
end,

mnesia:transaction(F).

This code uses the function s write/1 instead of the function write/1 The function s_wri t e/ 1 sets a sticky lock
instead of anormal lock. If the table is not replicated, sticky locks have no special effect. If thetableis replicated, and
asticky lock is set on node N1, thislock then sticksto node N1. The next timeyou try to set a sticky lock on the same
record at node N1, Mhesi a detectsthat the lock is aready set and do no network operation to acquire the lock.

Itismoreefficient to set alocal lock than it isto set anetworked lock. Sticky locks can therefore benefit an application
that uses areplicated table and perform most of the work on only one of the nodes.

If arecord is stuck at node N1 and you try to set asticky lock for the record on node N2, the record must be unstuck.
This operation is expensive and reduces performance. The unsticking is done automatically if youissues wite/ 1
requests at N2.

Table Locks

Mhesi a supports read and write locks on whole tables as a complement to the normal locks on single records. As
previously stated, Mhesi a sets and releases locks automatically, and the programmer does not need to code these
operations. However, transactions that read and write many records in a specific table execute more efficiently if the
transaction is started by setting atable lock on thistable. Thisblocks other concurrent transactions from the table. The
following two functions are used to set explicit table locks for read and write operations:

« mnesia:read lock table(Tab) setsaread lock on table Tab.
* mnesiawrite lock_table(Tab) setsawrite lock on table Tab.

Alternative syntax for acquisition of tablelocksis asfollows:

mnesia:lock({table, Tab}, read)
mnesia:lock({table, Tab}, write)

The matching operations in Mhesi a can either lock the entire table or only a single record (when the key is bound
in the pattern).
Global Locks

Write locks are normally acquired on all nodes where a replica of the table resides (and is active). Read locks are
acquired on one node (the local oneif alocal replicaexists).

The function mnesia:lock/2 is intended to support table locks (as mentioned previously) but also for situations when
locks need to be acquired regardless of how tables have been replicated:

mnesia:lock({global, GlobalKey, Nodes}, LockKind)

LockKind ::= read | write | ...

Ericsson AB. All Rights Reserved.: Mnesia | 23

1.5 Transactions and Other Access Contexts

Thelock isacquired on Lockl t emon all nodesin the node list.

1.5.3 Dirty Operations

In many applications, the overhead of processing atransaction can result in aloss of performance. Dirty operation are
short cuts that bypass much of the processing and increase the speed of the transaction.

Dirty operation are often useful, for example, in a datagram routing application where Vhesi a stores the routing
table, and it is time consuming to start a whole transaction every time a packet is received. Mhesi a has therefore
functionsthat mani pul ate tableswithout using transactions. Thisalternativeto processing isknown asadirty operation.
However, notice the trade-off in avoiding the overhead of transaction processing:

e Theatomicity and the isolation properties of Mhesi a arelost.

» Theisolation property is compromised, because other Erlang processes, which use transaction to manipulate
the data, do not get the benefit of isolation if dirty operations simultaneously are used to read and write records
from the same table.

The major advantage of dirty operationsisthat they execute much faster than equivalent operations that are processed
as functional objects within atransaction.

Dirty operations are written to disc if they are performed on a table of type di sc_copi es or type
di sc_only_copi es. Mnhesi a aso ensures that all replicas of a table are updated if a dirty write operation is
performed on atable.

A dirty operation ensures a certain level of consistency. For example, dirty operations cannot return garbled records.
Hence, each individual read or write operation is performed in an atomic manner.

All dirty functions execute acall toexi t ({ abort ed, Reason}) onfailure. Evenif the following functions are
executed inside a transaction no locks are acquired. The following functions are available;
 mnesia:dirty_read({Tab, Key}) reads one or more records from Mnesi a.

* mnesia:dirty_write(Record) writes the record Recor d.

 mnesia:dirty_delete({ Tab, Key}) deletes one or more records with key Key.

* mnesia:dirty_delete_object(Record) isthe dirty operation alternative to the function delete_object/1.

e mnesia:dirty first(Tab) returns the "first" key in table Tab.

Recordsin set or bag tables are not sorted. However, there is arecord order that is unknown to the user. This
means that atable can be traversed by this function with the function mnesia: dirty_next/2.

If there are no records in the table, this function returns the atom* $end_of _t abl e' . It is not recommended
to use this atom as the key for any user records.

* mnesia:dirty_next(Tab, Key) returns the "next" key in table Tab. This function makes it possible to traverse a
table and perform some operation on al recordsin the table. When the end of the table is reached, the special key
"$end_of tabl e' isreturned. Otherwise, the function returns akey that can be used to read the actual record.

Thebehavior isundefined if any process performsawrite operation on the table while traversing the table with the
function dirty_next/2 Thisis becausewr i t e operations on a Mnesi a table can lead to internal reorganizations
of thetableitself. Thisisan implementation detail, but remember that the dirty functions are low-level functions.
* mnesia:dirty_last(Tab) works exactly like mnesia:dirty_first/1 but returns the last object in Erlang term
order for the table type or der ed_set . For al other table types, mesi a: dirty first/1and
mesi a: di rty_| ast/ 1 are synonyms.
 mnesia:dirty_prev(Tab, Key) works exactly like rmesi a: di rty_next/ 2 but returns the previous object in
Erlang term order for the table type or der ed_set . For all other table types, mesi a: di rty_next/ 2 and
mesi a: di rty_prev/ 2 are synonyms.
 mnesia:dirty_slot(Tab, Sot) returns the list of records that are associated with Sl ot in a table. It can be
used to traverse a table in a manner similar to the function di rty_next/ 2. A table has a number of slots

24 | Ericsson AB. All Rights Reserved.: Mnesia

1.5 Transactions and Other Access Contexts

that range from zero to some unknown upper bound. The function di rty_sl ot/ 2 returns the special atom
' $end_of tabl e' whentheend of thetableis reached.

The behavior of this function is undefined if the table is written on while being traversed. The function
mnesia:read lock table(Tab) can be used to ensure that no transaction-protected writes are performed during the
iteration.

« mnesia:dirty_update counter({Tab,Key}, Val). Counters are positive integers with a value greater than or equal
to zero. Updating a counter adds Val and the counter where Val isapositive or negative integer.

Mhesi a has no special counter records. However, records of the form { TabNanme, Key, |nteger} can
be used as counters, and can be persistent.

Transaction-protected updates of counter records are not possible.

There are two significant differences when using this function instead of reading the record, performing the
arithmetic, and writing the record:
* Itismuch more efficient.

« Thefuncion dirty _update counter/2 is performed as an atomic operation although it is not protected
by atransaction. Therfore no table update islost if two processes simultaneously execute the function
dirty_update_counter/ 2.

« mnesia:dirty_match_object(Pat) is the dirty equivalent of mnesia:match_object/1.

« mnesia:dirty_select(Tab, Pat) isthe dirty equivalent of mnesia: select/2.

« mnesia:dirty_index match_object(Pat, Pos) isthe dirty equivalent of mnesia:index_match_object/2.
* mnesia:dirty_index read(Tab, SecondaryKey, Pos) is the dirty equivalent of mnesia:index_read/3.

* mnesia:dirty_all_keys(Tab) isthe dirty equivalent of mnesia:all_keys/1.

1.5.4 Record Names versus Table Names

InMhesi a, all recordsin atable must have the same name. All the records must be instances of the same record type.
The record name, however, does not necessarily have to be the same as the table name, although thisis the case in
most of the examplesin this User's Guide. If atable is created without property r ecor d_narne, the following code
ensures that all records in the tables have the same name as the table:

mnesia:create table(subscriber, [])

However, if the table is created with an explicit record name as argument, as shown in the following example,
subscriber records can be stored in both of the tables regardless of the table names:

TabDef = [{record name, subscriber}],
mnesia:create table(my subscriber, TabDef),
mnesia:create table(your subscriber, TabDef).

To access such tables, simplified access functions (as described earlier) cannot be used. For example, writing a
subscriber record into a table requires the function mnesia: write/3 instead of the simplified functions mnesia:write/1
and mnesia:s write/1:

mnesia:write(subscriber, #subscriber{}, write)
mnesia:write(my subscriber, #subscriber{}, sticky write)
mnesia:write(your subscriber, #subscriber{}, write)

Ericsson AB. All Rights Reserved.: Mnesia | 25

1.5 Transactions and Other Access Contexts

The following simple code illustrates the relationship between the simplified access functions used in most of the
examples and their more flexible counterparts:

mnesia:dirty write(Record) ->
Tab = element (1, Record),
mnesia:dirty write(Tab, Record).

mnesia:dirty delete({Tab, Key}) ->
mnesia:dirty delete(Tab, Key).

mnesia:dirty delete object(Record) ->
Tab = element (1, Record),
mnesia:dirty delete object(Tab, Record)

mnesia:dirty update counter({Tab, Key}, Incr) ->
mnesia:dirty update counter(Tab, Key, Incr).

mnesia:dirty read({Tab, Key}) ->
Tab = element(1l, Record),
mnesia:dirty read(Tab, Key).

mnesia:dirty match object(Pattern) ->
Tab = element(1l, Pattern),
mnesia:dirty match object(Tab, Pattern).

mnesia:dirty index match object(Pattern, Attr)
Tab = element(1, Pattern),
mnesia:dirty index match object(Tab, Pattern, Attr).

mnesia:write(Record) ->
Tab = element(1l, Record),
mnesia:write(Tab, Record, write).

mnesia:s write(Record) ->
Tab = element (1, Record),
mnesia:write(Tab, Record, sticky write).

mnesia:delete({Tab, Key}) ->
mnesia:delete(Tab, Key, write).

mnesia:s delete({Tab, Key}) ->
mnesia:delete(Tab, Key, sticky write).

mnesia:delete object(Record) ->
Tab = element(1l, Record),
mnesia:delete object(Tab, Record, write).

mnesia:s delete object(Record) ->
Tab = element (1, Record),
mnesia:delete object(Tab, Record, sticky write).

mnesia:read({Tab, Key}) ->
mnesia:read(Tab, Key, read).

mnesia:wread({Tab, Key}) ->
mnesia:read(Tab, Key, write).

mnesia:match object(Pattern) ->
Tab = element(1, Pattern),
mnesia:match object(Tab, Pattern, read).

mnesia:index match object(Pattern, Attr) ->
Tab = element(1, Pattern),

26 | Ericsson AB. All Rights Reserved.: Mnesia

1.5 Transactions and Other Access Contexts

mnesia:index match object(Tab, Pattern, Attr, read).

1.5.5 Activity Concept and Various Access Contexts

As previously described, a Functional Object (Fun) performing table access operations, as listed here, can be passed
on as arguments to the function mnesia:transaction/1,2,3:

* mnesia:write/3 (write/1, s write/1)

 mnesia:delete/3 (mnesia:delete/1, mnesia:s_delete/1)

* mnesia:delete_object/3 (mnesia:delete object/1, mnesia:s delete object/1)

e mnesia:read/3 (mnesia:read/1, mnesia:wread/1)

e mnesia:match_object/2 (mnesia:match_object/1)

e mnesia:select/3 (mnesia: select/2)

 mnesia:foldl/3 (mmesi a: f ol dl / 4, mnesia:foldr/3, mesi a: f ol dr/ 4)

« mnesia:all_keys/1

* mnesia:index_match_object/4 (mnesia:index_match_object/2)

e mnesia:index_read/3

 mnesia:lock/2 (mnesia:read lock table/1, mnesia:write lock table/l)

 mnesia:table info/2

These functions are performed in a transaction context involving mechanisms, such as locking, logging, replication,

checkpoints, subscriptions, and commit protocols. However, the same function can also be evaluated in other activity
contexts.

The following activity access contexts are currently supported:

e transaction

e sync_transaction
e async_dirty

e sync dirty

e ets

By passing the same"fun" asargument to the function mnesia: sync_transaction(Fun[, Args]) itisperformedin synced
transaction context. Synced transactions wait until all active replicas has committed the transaction (to disc) before
returning from the mesi a: sync_transacti on cal. Using sync_t ransact i on is useful in the following
Cases.

* When an application executes on several nodes and wants to be sure that the update is performed on the remote
nodes before aremote process is spawned or amessage is sent to a remote process.

* When acombining transaction writes with "dirty_reads", that is, the functionsdi rt y_nmat ch_obj ect,
dirty read,dirty_index_read,dirty_sel ect,andsoon.

* When an application performs frequent or voluminous updates that can overload Mhesi a on other nodes.

By passing the same "fun" as argument to the function mnesia:async_dirty(Fun [, Args]), it is performed in dirty
context. The function calls are mapped to the corresponding dirty functions. This still involves logging, replication,
and subscriptions but no locking, local transaction storage, or commit protocols are involved. Checkpoint retainers
are updated but updated "dirty". Thus, they are updated asynchronously. The functions wait for the operation to be
performed on one node but not the others. If the table resides locally, no waiting occurs.

By passing the same "fun" as an argument to the function mnesia:sync_dirty(Fun [, Args]), it is performed
in amost the same context as the function mnesia:async_dirty/1,2. The difference is that the operations are
performed synchronously. The caller waits for the updates to be performed on al active replicas. Using
mesi a: sync_di rty/ 1, 2 isuseful in the following cases:

Ericsson AB. All Rights Reserved.: Mnesia | 27

1.5 Transactions and Other Access Contexts

* When an application executes on several nodes and wants to be sure that the update is performed on the remote
nodes before aremote process is spawned or a message is sent to a remote process.

e When an application performs frequent or voluminous updates that can overload Mnesi a on the nodes.

To check if your codeis executed within atransaction, use the function mnesia:is_transaction/0. It returnst r ue when
called inside a transaction context, otherwisef al se.

Mhesi a tables with storage type RAM copi es and di sc_copi es are implemented internally as et s tables.
Applications can access the these tables directly. Thisis only recommended if all options have been weighed and the
possible outcomes are understood. By passing the earlier mentioned "fun" to the function mnesia:ets(Fun [, Args]), it
is performed but in araw context. The operations are performed directly on the local et s tables, assuming that the
local storagetypeis RAM copi es and that the tableis not replicated on other nodes.

Subscriptions are not triggered and no checkpoints are updated, but this operation is blindingly fast. Disc resident
tables are not to be updated with the et s function, as the disc is not updated.

The Fun can also be passed as an argument to the function mnesia: activity/2,3,4, which enables use of customized
activity access callback modules. It can either be obtained directly by stating the module name as argument, or
implicitly by use of configuration parameter access_nodul e. A customized callback modul e can beused for several
purposes, such as providing triggers, integrity constraints, runtime statistics, or virtual tables.

The callback module does not have to access real Vnesi a tables, it is free to do whatever it wants as long as the
callback interfaceisfulfilled.

Appendix B, Activity Access Callback Interface provides the source code, mesi a_f rag. er |, for one aternative
implementation. The context-sensitive function mnesia:table info/2 can be used to provide virtual information about
atable. One use of thisisto perform QLC queries within an activity context with a customized callback module. By
providing table information about table indexes and other QLC requirements, QLC can be used as a generic query
language to access virtua tables.

QLC queries can be performed in all these activity contexts (transaction, sync_transacti on,
async_dirty,sync_dirty,andets). Theet s activity only worksif the table has no indexes.

Note:

Thefunctionmmesi a: di rty_* awaysexecuteswithasync_di rt y semantics regardless of which activity
access contexts that are started. It can even start contexts without any enclosing activity access context.

1.5.6 Nested Transactions

Transactions can be nested in an arbitrary fashion. A child transaction must run in the same process as its parent.
When a child transaction terminates, the caller of the child transaction gets return value { abort ed, Reason}
and any work performed by the child is erased. If a child transaction commits, the records written by the child are
propagated to the parent.

No locks are released when child transactions terminate. Locks created by a sequence of nested transactions are kept
until thetopmost transaction terminates. Furthermore, any update performed by anested transaction isonly propagated
in such amanner so that the parent of the nested transaction sees the updates. No final commitment is done until the
top-level transaction terminates. So, although a nested transaction returns{ at om ¢, Val }, if the enclosing parent
transaction terminates, the entire nested operation terminates.

The ability to have nested transaction with identical semantics astop-level transaction makes it easier to write library
functions that manipulate Mhesi a tables.

Consider afunction that adds a subscriber to atelephony system:

28 | Ericsson AB. All Rights Reserved.: Mnesia

1.5 Transactions and Other Access Contexts

add _subscriber(S) ->
mnesia:transaction(fun() ->
case mnesia:read(..........

This function needsto be called as atransaction. Assume that you wish to write a function that both calls the function
add_subscri ber/ 1 andisin itself protected by the context of atransaction. By calling add_subscri ber/ 1
from within another transaction, a nested transaction is created.

Also, different activity access contexts can be mixed while nesting. However, the dirty ones (async_dirty,
sync_dirty, and et s) inherit the transaction semantics if they are called inside a transaction and thus grab locks
and use two or three phase commit.

Example:

add _subscriber(S) ->
mnesia:transaction(fun() ->
%% Transaction context
mnesia:read({some tab, some data}),
mnesia:sync _dirty(fun() ->
%% Still in a transaction context.
case mnesia:read(..) ..end), end).
add subscriber2(S) ->
mnesia:sync dirty(fun() ->
%% In dirty context
mnesia:read({some tab, some data}),
mnesia:transaction(fun() ->
%% In a transaction context.
case mnesia:read(..) ..end), end).

1.5.7 Pattern Matching

When the function mnesia:read/3 cannot be used, Mhesi a provides the programmer with several functions for
matching records against a pattern. The most useful ones are the following:

mnesia:select(Tab, MatchSpecification, LockKind) ->
transaction abort | [ObjectList]
mnesia:select(Tab, MatchSpecification, NObjects, Lock) ->

transaction abort | {[Object],Continuation} | '$end of table'
mnesia:select(Cont) ->
transaction abort | {[Object],Continuation} | '$end of table'

mnesia:match object(Tab, Pattern, LockKind) ->
transaction abort | RecordList

These functions match a Pat t er n against all records in table Tab. In a mnesia:select call, Pat t er n is a part of
Mat chSpeci fi cati on described in the following. It is not necessarily performed as an exhaustive search of the
entire table. By using indexes and bound values in the key of the pattern, the actual work done by the function can be
condensed into afew hash lookups. Using or der ed_set tables can reduce the search space if the keys are partially
bound.

The pattern provided to the functions must be a valid record, and the first element of the provided tuple must be the
r ecor d_nane of thetable. The special element’ ' matches any data structure in Erlang (also known as an Erlang
term). The specia elements' $<nunber >' behave as Erlang variables, that is, they match anything, bind the first
occurrence, and match the coming occurrences of that variable against the bound value.

Ericsson AB. All Rights Reserved.: Mnesia | 29

1.5 Transactions and Other Access Contexts

Use function mnesia:table_info(Tab, wild_pattern) to obtain a basic pattern, which matches all recordsin atable, or
use the default value in record creation. Do not make the pattern hard-coded, as this makes the code more vulnerable
to future changes of the record definition.

Example:
Wildpattern = mnesia:table info(employee, wild pattern),
%% 0r use
Wildpattern = #employee{ ="' '},

For the employee table, the wild pattern looks as follows:

{employee, |_|' ' |’ 1 |' ' |' ' |’| |}.

To constrain the match, it is needed to replace some of the '
employees looks as follows:

elements. The code for matching out all female

Pat = #employee{sex = female, ="' "'},

F = fun() -> mnesia:match object(Pat) end,
Females = mnesia:transaction(F).

The match function can also be used to check the equality of different attributes. For example, to find all employees
with an employee number equal to their room number:

Pat = #employee{emp no = '$1', room no = '$1', ="' "'},
F = fun() -> mnesia:match object(Pat) end,
0dd = mnesia:transaction(F).

The function mnesia:match_object/3 lacks some important features that mnesia:select/3 have. For example,
mesi a: mat ch_obj ect / 3 can only return the matching records, and it cannot express constraints other than
equality. To find the names of the male employees on the second floor:

MatchHead = #employee{name='$1', sex=male, room no={'$2', ' '}, =' '},
Guard = [{'>=", '$2', 220},{'<"', '$2', 230}],
Result = '$1',

mnesia:select(employee, [{MatchHead, Guard, [Result]}])

The function sel ect can be used to add more constraints and create output that cannot be done with
mmesi a: mat ch_obj ect/ 3.

The second argument to sel ect is a MatchSpecification. A MatchSpecification is a list
of MatchFuncti ons, where each Mat chFunction consists of a tuple containing {Mat chHead,
Mat chCondi ti on, MatchBody}:

« Mat chHead isthe same pattern asused in esi a: mat ch_obj ect / 3 described earlier.

« Mat chCondi ti onisalist of extra constraints applied to each record.

* Mt chBody constructs the return values.

30 | Ericsson AB. All Rights Reserved.: Mnesia

1.5 Transactions and Other Access Contexts

For details about the match specifications, see "Match Specifications in Erlang" in ERTS User's Guide. For more
information, see the ets and dets manual pagesin STDLI B.

The functions select/4 and select/1 are used to get alimited number of results, where Cont i nuat i on gets the next
chunk of results. Mhesi a uses NObj ect s as arecommendation only. Thus, more or less results than specified with
NObj ect s canbereturnedintheresult list, even the empty list can bereturned evenif there are moreresultsto collect.

Warning:

Thereis a severe performance penaty inusing mesi a: sel ect /[1| 2| 3| 4] after any modifying operation
is done on that table in the same transaction. That is, avoid using mnesia:write/1 or mnesia:delete/1 before
mmesi a: sel ect inthe same transaction.

If the key attribute is bound in a pattern, the match operation is efficient. However, if the key attribute in a pattern
isgivenas' _' or' $1', thewhole enpl oyee table must be searched for records that match. Hence if the tableis
large, this can become a time-consuming operation, but it can be remedied with indexes (see Indexing) if the function
mnesia:match_object is used.

QLC queries can aso be used to search Mhesi a tables. By using the function mnesia:table/[1|2] as the generator
inside a QL C query, you let the query operate on aVhesi a table. Mhesi a-specific optionsto rmesi a: t abl e/ 2
are{l ock, Lock},{n_objects,Integer},and{traverse, Sel Method}:

* | ock specifieswhether Mhesi a isto acquire aread or write lock on the table.

* n_obj ect s specifies how many results are to be returned in each chunk to QLC.

* traver se specifieswhich function Mhesi a isto useto traverse the table. Default sel ect isused, but by
using{traverse, {select, MatchSpecification}} asanoptiontomnesia:table/2 the user can
specify its own view of thetable.

If no options are specified, aread lock is acquired, 100 results are returned in each chunk, and sel ect is used to
traversethetable, that is:

mnesia:table(Tab) ->
mnesia:table(Tab, [{n objects, 100}, {lock, read}, {traverse, select}]).

The function mnesia:all_keys(Tab) returns al keysin atable.

1.5.8 lteration

Vhesi a provides the following functions that iterate over all the recordsin atable:

mnesia:foldl
mnesia:foldr
mnesia:foldl
mnesia:foldr

Fun, Acc0®, Tab) -> NewAcc | transaction abort
Fun, Acc0®, Tab) -> NewAcc | transaction abort
Fun, Acc@, Tab, LockType) -> NewAcc | transaction abort
Fun, Acc@, Tab, LockType) -> NewAcc | transaction abort

—_——~—~—~

These functions iterate over the Vhesi a table Tab and apply the function Fun to each record. Fun takes two
arguments, the first is arecord from the table, and the second is the accumulator. Fun returns a new accumulator.

The first time Fun is applied, AccO is the second argument. The next time Fun is called, the return value from the
previous call is used as the second argument. The term the last call to Fun returnsis the return value of the function
mnesia:foldl/3 or mnesia:foldr/3.

Ericsson AB. All Rights Reserved.: Mnesia | 31

1.5 Transactions and Other Access Contexts

The difference between these functions is the order the table is accessed for or der ed_set tables. For other table
types the functions are equivalent.

LockType specifieswhat type of lock that is to be acquired for the iteration, default isr ead. If records are written
or deleted during the iteration, awrite lock is to be acquired.

These functions can be used to find records in a table when it is impossible to write constraints for the function
mnesia: match_object/3, or when you want to perform some action on certain records.

For example, finding all the employees who have a salary less than 10 can look as follows:

find low salaries() ->

Constraint =
fun(Emp, Acc) when Emp#employee.salary < 10 ->
[Emp | Accl;
(_, Acc) ->
Acc
end,
Find = fun() -> mnesia:foldl(Constraint, [], employee) end,

mnesia:transaction(Find).

Toraise the salary to 10 for everyone with a salary less than 10 and return the sum of all raises:

increase low salaries() ->
Increase =
fun(Emp, Acc) when Emp#employee.salary < 10 ->
0ldS = Emp#employee.salary,
ok = mnesia:write(Emp#employee{salary = 10}),
Acc + 10 - 0ldS;
(_, Acc) ->
Acc
end,
IncLow = fun() -> mnesia:foldl(Increase, 0, employee, write) end,
mnesia:transaction(IncLow).

Many nice things can be done with the iterator functions but take some caution about performance and memory use
for large tables.

Call theseiteration functions on nodes that contain areplica of the table. Each call to the function Fun accessthetable
and if the table resides on another node it generates much unnecessary network traffic.

Vhesi a also provides some functions that make it possible for the user to iterate over the table. The order of the
iteration is unspecified if the tableis not of type or der ed_set :

mnesia:first(Tab) -> Key | transaction abort

mnesia:last(Tab) -> Key | transaction abort

mnesia:next(Tab,Key) -> Key | transaction abort
mnesia:prev(Tab,Key) -> Key | transaction abort
mnesia:snmp get next index(Tab,Index) -> {ok, NextIndex} | endOfTable

The order of fi rst/l ast and next /prev isonly valid for or der ed_set tables, they are synonyms for other
tables. When the end of the table is reached, the special key ' $end_of _t abl e’ isreturned.

32 | Ericsson AB. All Rights Reserved.: Mnesia

1.6 Miscellaneous Mnesia Features

If records are written and del eted during the traversal, use the function mnesia: foldl/3 or mnesia:foldr/3withawr i t e
lock. Or the function mnesia:write lock table/1 whenusing f i r st and next .

Writing or deleting in transaction context creates alocal copy of each modified record. Thus, modifying each record
in a large table uses much memory. Mhesi a compensates for every written or deleted record during the iteration in
a transaction context, which can reduce the performance. If possible, avoid writing or deleting records in the same
transaction before iterating over the table.

Indirty context, thatis,sync_di rty orasync_di rt y, themodified records are not storedin alocal copy; instead,
each record is updated separately. This generates much network traffic if the table has a replica on another node and
has all the other drawbacks that dirty operations have. Especially for commands mnesia:first/1 and mnesia: next/2, the
same drawbacks as described previously for mnesia:dirty first/1 and mnesia:dirty_next/2 applies, that is, no writing
to the table is to be done during iteration.

1.6 Miscellaneous Mnesia Features

The previous sections describe how to get started with Mhesi a and how to build a Mhesi a database. This section
describes the more advanced features available when building a distributed, fault-tolerant Mhesi a database. The
following topics are included:

e Indexing

« Distribution and fault tolerance

e Tablefragmentation

* Local content tables

e Disc-lessnodes

e More about schema management

e Mhesi a event handling

» Debugging Mhesi a applications

» Concurrent processesin Mhesi a

e Prototyping

* Object-based programming with Mhesi a

1.6.1 Indexing

Data retrieval and matching can be performed efficiently if the key for the record is known. Conversely, if the key
is unknown, all records in atable must be searched. The larger the table, the more time consuming it becomes. To
remedy this problem, Mhesi a indexing capabilities are used to improve data retrieval and matching of records.

The following two functions manipulate indexes on existing tables:
« mnesia:add table index(Tab, AttributeName) -> {aborted, R} |{atomic, ok}
« mnesia:del_table index(Tab, AttributeName) -> {aborted, R} [{atomic, ok}

These functions create or delete atable index on afield defined by At t ri but eNane. Toillustrate this, add an index
tothetable definition (enpl oyee, {enp_no, nane, sal ary, sex, phone, room no}),whichisthe
example table from the Conpany database. The function that adds an index on element sal ar y can be expressed
asmmesi a: add_t abl e_i ndex(enpl oyee, sal ary).

The indexing capabilities of Mhesi a are used with the following three functions, which retrieve and match records
based on index entries in the database:

 mnesia:index_read(Tab, SecondaryKey, AttributeName) -> transaction abort | RecordList avoids an exhaustive
search of the entire table, by looking up Secondar yKey in the index to find the primary keys.

Ericsson AB. All Rights Reserved.: Mnesia | 33

1.6 Miscellaneous Mnesia Features

e mnesia:index_match_object(Pattern, AttributeName) -> transaction abort | RecordList avoids an exhaustive
search of the entire table, by looking up the secondary key in the index to find the primary keys. The secondary
key isfoundinfield At t ri but eNane of Pat t er n. The secondary key must be bound.

« mnesia:match_object(Pattern) -> transaction abort | RecordList uses indexes to avoid exhaustive search of
the entire table. Unlike the previous functions, this function can use any index as long as the secondary key is
bound.

These functions are further described and exemplified in Pattern Matching.

1.6.2 Distribution and Fault Tolerance

Mhesi a is a distributed, fault-tolerant DBMS. Tables can be replicated on different Erlang nodes in various ways.
The Mhesi a programmer does not need to state where the different tables reside, only the names of the different
tables need to be specified in the program code. Thisisknown as "location transparency” and is an important concept.
In particular:

* A program works regardless of the data location. It makes no difference whether the data resides on the local
node or on aremote node.
Notice that the program runs slower if the datais |ocated on a remote node.

* Thedatabase can be reconfigured, and tables can be moved between nodes. These operations do not affect the
user programs.

It has previously been shown that each table has a number of system attributes, such asi ndex andt ype.

Table attributes are specified when the table is created. For example, the following function creates a table with two
RAM replicas:

mnesia:create table(foo,
[{ram copies, [N1, N2]},
{attributes, record info(fields, foo)}]).

Tables can a so have the following properties, where each attribute has alist of Erlang nodes asits value:

* ram copi es. The value of the node list is a list of Erlang nodes, and a RAM replica of the table resides on
each nodein thelist.

Noticethat no disc operations are performed when aprogram executes write operationsto these replicas. However,
if permanent RAM replicas are required, the following alternatives are available:

e Thefunction mnesia:dump_tables/1 can be used to dump RAM table replicasto disc.

* Thetablereplicas can be backed up, either from RAM, or from disc if dumped there with this function.

« disc_copi es. Thevaueof theattribute isalist of Erlang nodes, and areplica of the table resides both in
RAM and on disc on each node in the list. Write operations addressed to the table address both the RAM and
the disc copy of the table.

 disc_only_copies. Thevalue of the attribute isalist of Erlang nodes, and areplica of the table resides
only as adisc copy on each nodein the list. The major disadvantage of this type of table replicais the access
speed. The major advantage is that the table does not occupy space in memory.

In addition, table properties can be set and changed. For details, see Define a Schema.

There are basically two reasons for using more than one table replica: fault tolerance and speed. Notice that table
replication provides a solution to both of these system requirements.

If there are two active table replicas, all information is till available if one replica fails. This can be an important
property in many applications. Furthermore, if atable replicaexists at two specific nodes, applications that execute at

34 | Ericsson AB. All Rights Reserved.: Mnesia

1.6 Miscellaneous Mnesia Features

either of these nodes can read data from the table without accessing the network. Network operations are considerably
slower and consume more resources than local operations.

It can be advantageousto create table replicasfor adistributed application that reads data often, but writes data seldom,
to achieve fast read operations on the local node. The major disadvantage with replication is the increased time to
write data. If atable has two replicas, every write operation must access both table replicas. Since one of these write
operations must be a network operation, it is considerably more e