
BIRD Programmer’s Documentation
Ondrej Filip <feela@network.cz>, Martin Mares <mj@ucw.cz>, Ondrej Zajicek <santiago@crfreenet.org>
Maria Matejka <mq@jmq.cz>,

This document contains programmer’s documentation for the BIRD Internet Routing Daemon project.

Contents

1 BIRD Design 3

1.1 Introduction . 3

1.2 Design goals . 3

1.3 Architecture . 4

1.4 Implementation . 4

2 Core 6

2.1 Forwarding Information Base . 6

2.2 Routing tables . 8

2.3 Route attribute cache . 13

2.4 Routing protocols . 17

2.5 Graceful restart recovery . 21

2.6 Protocol hooks . 23

2.7 Interfaces . 29

2.8 MPLS . 32

2.9 Neighbor cache . 32

2.10 Command line interface . 35

2.11 Object locks . 36

3 Configuration 38

3.1 Configuration manager . 38

3.2 Lexical analyzer . 41

3.3 Parser . 44

4 Filters 45

4.1 Filters . 45

4.2 Trie for prefix sets . 47

5 Protocols 52

5.1 The Babel protocol . 52

5.2 Bidirectional Forwarding Detection . 57

5.3 Border Gateway Protocol . 58

5.4 BGP Monitoring Protocol (BMP) . 65

5.5 Open Shortest Path First (OSPF) . 67

5.6 Pipe . 74

5.7 Router Advertisements . 74

5.8 Routing Information Protocol (RIP) . 75

5.9 RPKI To Router (RPKI-RTR) . 77

5.10 Static . 84

5.11 Direct . 84

6 System dependent parts 85

6.1 Introduction . 85

6.2 Logging . 85

6.3 Kernel synchronization . 87

7 Library functions 88

2

CONTENTS 3

7.1 IP addresses . 88

7.2 Linked lists . 92

7.3 Miscellaneous functions. 94

7.4 Message authentication codes . 98

7.5 Flow specification (flowspec) . 100

8 Resources 108

8.1 Introduction . 108

8.2 Resource pools . 108

8.3 Memory blocks . 110

8.4 Linear memory pools . 111

8.5 Slabs . 113

8.6 Events . 114

8.7 Sockets . 115

Chapter 1: BIRD Design

1.1 Introduction

This document describes the internal workings of BIRD, its architecture, design decisions and rationale
behind them. It also contains documentation on all the essential components of the system and their
interfaces.

Routing daemons are complicated things which need to act in real time to complex sequences of external
events, respond correctly even to the most erroneous behavior of their environment and still handle enormous
amount of data with reasonable speed. Due to all of this, their design is very tricky as one needs to carefully
balance between efficiency, stability and (last, but not least) simplicity of the program and it would be
possible to write literally hundreds of pages about all of these issues. In accordance to the famous quote of
Anton Chekhov ”Shortness is a sister of talent”, we’ve tried to write a much shorter document highlighting
the most important stuff and leaving the boring technical details better explained by the program source
itself together with comments contained therein.

1.2 Design goals

When planning the architecture of BIRD, we’ve taken a close look at the other existing routing daemons
and also at some of the operating systems used on dedicated routers, gathered all important features and
added lots of new ones to overcome their shortcomings and to better match the requirements of routing in
today’s Internet: IPv6, policy routing, route filtering and so on. From this planning, the following set of
design goals has arisen:

� Support all the standard routing protocols and make it easy to add new ones. This leads to modularity
and clean separation between the core and the protocols.

� Support both IPv4 and IPv6 in the same source tree, re-using most of the code. This leads to abstraction
of IP addresses and operations on them.

� Minimize OS dependent code to make porting as easy as possible. Unfortunately, such code cannot be
avoided at all as the details of communication with the IP stack differ from OS to OS and they often
vary even between different versions of the same OS. But we can isolate such code in special modules
and do the porting by changing or replacing just these modules. Also, don’t rely on specific features
of various operating systems, but be able to make use of them if they are available.

� Allow multiple routing tables. Easily solvable by abstracting out routing tables and the corresponding
operations.

� Offer powerful route filtering. There already were several attempts to incorporate route filters to a
dynamic router, but most of them have used simple sequences of filtering rules which were very inflexible
and hard to use for non-trivial filters. We’ve decided to employ a simple loop-free programming
language having access to all the route attributes and being able to modify the most of them.

� Support easy configuration and re-configuration. Most routers use a simple configuration language
designed ad hoc with no structure at all and allow online changes of configuration by using their
command-line interface, thus any complex re-configurations are hard to achieve without replacing the
configuration file and restarting the whole router. We’ve decided to use a more general approach:
to have a configuration defined in a context-free language with blocks and nesting, to perform all
configuration changes by editing the configuration file, but to be able to read the new configuration
and smoothly adapt to it without disturbing parts of the routing process which are not affected by the
change.

� Be able to be controlled online. In addition to the online reconfiguration, a routing daemon should be
able to communicate with the user and with many other programs (primarily scripts used for network
maintenance) in order to make it possible to inspect contents of routing tables, status of all routing
protocols and also to control their behavior (disable, enable or reset a protocol without restarting all

4

1.3. Architecture 5

the others). To achieve this, we implement a simple command-line protocol based on those used by
FTP and SMTP (that is textual commands and textual replies accompanied by a numeric code which
makes them both readable to a human and easy to recognize in software).

� Respond to all events in real time. A typical solution to this problem is to use lots of threads to
separate the workings of all the routing protocols and also of the user interface parts and to hope
that the scheduler will assign time to them in a fair enough manner. This is surely a good solution,
but we have resisted the temptation and preferred to avoid the overhead of threading and the large
number of locks involved and preferred a event driven architecture with our own scheduling of events.
An unpleasant consequence of such an approach is that long lasting tasks must be split to more parts
linked by special events or timers to make the CPU available for other tasks as well.

1.3 Architecture

The requirements set above have lead to a simple modular architecture containing the following types of
modules:

Core modules
implement the core functions of BIRD: taking care of routing tables, keeping protocol status, interacting
with the user using the Command-Line Interface (to be called CLI in the rest of this document) etc.

Library modules
form a large set of various library functions implementing several data abstractions, utility functions
and also functions which are a part of the standard libraries on some systems, but missing on other
ones.

Resource management modules
take care of resources, their allocation and automatic freeing when the module having requested shuts
itself down.

Configuration modules
are fragments of lexical analyzer, grammar rules and the corresponding snippets of C code. For each
group of code modules (core, each protocol, filters) there exist a configuration module taking care of
all the related configuration stuff.

The filter
implements the route filtering language.

Protocol modules
implement the individual routing protocols.

System-dependent modules
implement the interface between BIRD and specific operating systems.

The client
is a simple program providing an easy, though friendly interface to the CLI.

1.4 Implementation

BIRD has been written in GNU C. We’ve considered using C++, but we’ve preferred the simplicity and
straightforward nature of C which gives us fine control over all implementation details and on the other hand
enough instruments to build the abstractions we need.

The modules are statically linked to produce a single executable file (except for the client which stands on
its own).

The building process is controlled by a set of Makefiles for GNU Make, intermixed with several Perl and
shell scripts.

The initial configuration of the daemon, detection of system features and selection of the right modules to
include for the particular OS and the set of protocols the user has chosen is performed by a configure script

1.4. Implementation 6

generated by GNU Autoconf.

The parser of the configuration is generated by the GNU Bison.

The documentation is generated using SGMLtools with our own DTD and mapping rules which produce
both an online version in HTML and a neatly formatted one for printing (first converted from SGML to
LATEX and then processed by TEX and dvips to get a PostScript file).

The comments from C sources which form a part of the programmer’s documentation are extracted using a
modified version of the kernel-doc tool.

If you want to work on BIRD, it’s highly recommended to configure it with a --enable-debug switch which
enables some internal consistency checks and it also links BIRD with a memory allocation checking library
if you have one (either efence or dmalloc).

Chapter 2: Core

2.1 Forwarding Information Base

FIB is a data structure designed for storage of routes indexed by their network prefixes. It supports insertion,
deletion, searching by prefix, ‘routing’ (in CIDR sense, that is searching for a longest prefix matching a
given IP address) and (which makes the structure very tricky to implement) asynchronous reading, that is
enumerating the contents of a FIB while other modules add, modify or remove entries.

Internally, each FIB is represented as a collection of nodes of type fib node indexed using a sophisticated
hashing mechanism. We use two-stage hashing where we calculate a 16-bit primary hash key independent
on hash table size and then we just divide the primary keys modulo table size to get a real hash key used
for determining the bucket containing the node. The lists of nodes in each bucket are sorted according to
the primary hash key, hence if we keep the total number of buckets to be a power of two, re-hashing of the
structure keeps the relative order of the nodes.

To get the asynchronous reading consistent over node deletions, we need to keep a list of readers for each
node. When a node gets deleted, its readers are automatically moved to the next node in the table.

Basic FIB operations are performed by functions defined by this module, enumerating of FIB contents is
accomplished by using the FIB WALK() macro or FIB ITERATE START() if you want to do it asyn-
chronously.

For simple iteration just place the body of the loop between FIB WALK() and FIB WALK END(). You
can’t modify the FIB during the iteration (you can modify data in the node, but not add or remove nodes).

If you need more freedom, you can use the FIB ITERATE *() group of macros. First, you initialize an
iterator with FIB ITERATE INIT(). Then you can put the loop body in between FIB ITERATE START()
and FIB ITERATE END(). In addition, the iteration can be suspended by calling FIB ITERATE PUT().
This’ll link the iterator inside the FIB. While suspended, you may modify the FIB, exit the current function,
etc. To resume the iteration, enter the loop again. You can use FIB ITERATE UNLINK() to unlink the
iterator (while iteration is suspended) in cases like premature end of FIB iteration.

Note that the iterator must not be destroyed when the iteration is suspended, the FIB would then contain
a pointer to invalid memory. Therefore, after each FIB ITERATE INIT() or FIB ITERATE PUT() there
must be either FIB ITERATE START() or FIB ITERATE UNLINK() before the iterator is destroyed.

Function

void fib init (struct fib * f , pool * p, uint addr type, uint node size, uint node offset , uint hash order ,
fib init fn init) – initialize a new FIB

Arguments

struct fib * f
the FIB to be initialized (the structure itself being allocated by the caller)

pool * p
pool to allocate the nodes in

uint addr type
– undescribed –

uint node size
node size to be used (each node consists of a standard header fib node followed by user data)

uint node offset
– undescribed –

uint hash order
initial hash order (a binary logarithm of hash table size), 0 to use default order (recommended)

fib init fn init
pointer a function to be called to initialize a newly created node

7

2.1. Forwarding Information Base 8

Description
This function initializes a newly allocated FIB and prepares it for use.

Function

void * fib find (struct fib * f , const net addr * a) – search for FIB node by prefix

Arguments

struct fib * f
FIB to search in

const net addr * a
– undescribed –

Description
Search for a FIB node corresponding to the given prefix, return a pointer to it or NULL if no such node exists.

Function

void * fib get (struct fib * f , const net addr * a) – find or create a FIB node

Arguments

struct fib * f
FIB to work with

const net addr * a
– undescribed –

Description
Search for a FIB node corresponding to the given prefix and return a pointer to it. If no such node exists,
create it.

Function

void * fib route (struct fib * f , const net addr * n) – CIDR routing lookup

Arguments

struct fib * f
FIB to search in

const net addr * n
network address

Description
Search for a FIB node with longest prefix matching the given network, that is a node which a CIDR router
would use for routing that network.

Function

void fib delete (struct fib * f , void * E) – delete a FIB node

Arguments

struct fib * f
FIB to delete from

void * E
entry to delete

Description
This function removes the given entry from the FIB, taking care of all the asynchronous readers by shifting
them to the next node in the canonical reading order.

2.2. Routing tables 9

Function

void fib free (struct fib * f) – delete a FIB

Arguments

struct fib * f
FIB to be deleted

Description
This function deletes a FIB – it frees all memory associated with it and all its entries.

Function

void fib check (struct fib * f) – audit a FIB

Arguments

struct fib * f
FIB to be checked

Description
This debugging function audits a FIB by checking its internal consistency. Use when you suspect somebody
of corrupting innocent data structures.

2.2 Routing tables

Routing tables are probably the most important structures BIRD uses. They hold all the information about
known networks, the associated routes and their attributes.

There are multiple routing tables (a primary one together with any number of secondary ones if requested
by the configuration). Each table is basically a FIB containing entries describing the individual destination
networks. For each network (represented by structure net), there is a one-way linked list of route entries
(rte), the first entry on the list being the best one (i.e., the one we currently use for routing), the order of
the other ones is undetermined.

The rte contains information about the route. There are net and src, which together forms a key identifying
the route in a routing table. There is a pointer to a rta structure (see the route attribute module for a
precise explanation) holding the route attributes, which are primary data about the route. There are several
technical fields used by routing table code (route id, REF * flags), There is also the pflags field, holding
protocol-specific flags. They are not used by routing table code, but by protocol-specific hooks. In contrast
to route attributes, they are not primary data and their validity is also limited to the routing table.

There are several mechanisms that allow automatic update of routes in one routing table (dst) as a result of
changes in another routing table (src). They handle issues of recursive next hop resolving, flowspec validation
and RPKI validation.

The first such mechanism is handling of recursive next hops. A route in the dst table has an indirect next
hop address, which is resolved through a route in the src table (which may also be the same table) to get
an immediate next hop. This is implemented using structure hostcache attached to the src table, which
contains hostentry structures for each tracked next hop address. These structures are linked from recursive
routes in dst tables, possibly multiple routes sharing one hostentry (as many routes may have the same
indirect next hop). There is also a trie in the hostcache, which matches all prefixes that may influence
resolving of tracked next hops.

When a best route changes in the src table, the hostcache is notified using an auxiliary export request, which
checks using the trie whether the change is relevant and if it is, then it schedules asynchronous hostcache
recomputation. The recomputation is done by rt update hostcache() (called as an event of src table), it walks
through all hostentries and resolves them (by rt update hostentry()). It also updates the trie. If a change
in hostentry resolution was found, then it schedules asynchronous nexthop recomputation of associated dst
table. That is done by rt next hop update() (called from rt event() of dst table), it iterates over all routes in
the dst table and re-examines their hostentries for changes. Note that in contrast to hostcache update, next

2.2. Routing tables 10

hop update can be interrupted by main loop. These two full-table walks (over hostcache and dst table) are
necessary due to absence of direct lookups (route -> affected nexthop, nexthop -> its route).

The second mechanism is for flowspec validation, where validity of flowspec routes depends of resolving their
network prefixes in IP routing tables. This is similar to the recursive next hop mechanism, but simpler as
there are no intermediate hostcache and hostentries (because flows are less likely to share common net prefix
than routes sharing a common next hop). Every dst table has its own export request in every src table. Each
dst table has its own trie of prefixes that may influence validation of flowspec routes in it (flowspec trie).

When a best route changes in the src table, the notification mechanism is invoked by the export request which
checks its dst table’s trie to see whether the change is relevant, and if so, an asynchronous re-validation of
flowspec routes in the dst table is scheduled. That is also done by function rt next hop update(), like nexthop
recomputation above. It iterates over all flowspec routes and re-validates them. It also recalculates the trie.

Note that in contrast to the hostcache update, here the trie is recalculated during the rt next hop update(),
which may be interleaved with IP route updates. The trie is flushed at the beginning of recalculation, which
means that such updates may use partial trie to see if they are relevant. But it works anyway! Either
affected flowspec was already re-validated and added to the trie, then IP route change would match the trie
and trigger a next round of re-validation, or it was not yet re-validated and added to the trie, but will be
re-validated later in this round anyway.

The third mechanism is used for RPKI re-validation of IP routes and it is the simplest. It is also an auxiliary
export request belonging to the appropriate channel, triggering its reload/refeed timer after a settle time.

Function

int net roa check (rtable * tp, const net addr * n, u32 asn) – check validity of route origination in a ROA
table

Arguments

rtable * tp
– undescribed –

const net addr * n
network prefix to check

u32 asn
AS number of network prefix

Description
Implements RFC 6483 route validation for the given network prefix. The procedure is to find all candi-
date ROAs - ROAs whose prefixes cover the given network prefix. If there is no candidate ROA, return
ROA UNKNOWN. If there is a candidate ROA with matching ASN and maxlen field greater than or equal
to the given prefix length, return ROA VALID. Otherwise, return ROA INVALID. If caller cannot determine
origin AS, 0 could be used (in that case ROA VALID cannot happen). Table tab must have type NET ROA4
or NET ROA6, network n must have type NET IP4 or NET IP6, respectively.

Function

enum aspa result aspa check (rtable * tab, const adata * path, bool force upstream) – check validity of AS
Path in an ASPA table

Arguments

rtable * tab
ASPA table

const adata * path
AS Path to check

bool force upstream
– undescribed –

Description
Implements draft-ietf-sidrops-aspa-verification-16.

2.2. Routing tables 11

Function

void rte free (struct rte storage * e, struct rtable private * tab) – delete a rte (happens later)

Arguments

struct rte storage * e
struct rte storage to be deleted

struct rtable private * tab
the table which the rte belongs to

Description
rte free() deletes the given rte from the routing table it’s linked to.

Function

void rt refresh begin (struct rt import request * req) – start a refresh cycle

Arguments

struct rt import request * req
– undescribed –

Description
This function starts a refresh cycle for given routing table and announce hook. The refresh cycle is a sequence
where the protocol sends all its valid routes to the routing table (by rte update()). After that, all protocol
routes (more precisely routes with c as sender) not sent during the refresh cycle but still in the table from
the past are pruned. This is implemented by marking all related routes as stale by REF STALE flag in
rt refresh begin(), then marking all related stale routes with REF DISCARD flag in rt refresh end() and
then removing such routes in the prune loop.

Function

void rt refresh end (struct rt import request * req) – end a refresh cycle

Arguments

struct rt import request * req
– undescribed –

Description
This function ends a refresh cycle for given routing table and announce hook. See rt refresh begin() for
description of refresh cycles.

Function

void rt refresh trace (struct rtable private * tab, struct rt import hook * ih, const char * msg) – log infor-
mation about route refresh

Arguments

struct rtable private * tab
table

struct rt import hook * ih
import hook doing the route refresh

const char * msg
what is happening

Description
This function consistently logs route refresh messages.

2.2. Routing tables 12

Function

void rte dump (struct dump request * dreq , struct rte storage * e) – dump a route

Arguments

struct dump request * dreq
– undescribed –

struct rte storage * e
rte to be dumped

Description
This functions dumps contents of a rte to debug output.

Function

void rt dump (struct dump request * dreq , rtable * tab) – dump a routing table

Arguments

struct dump request * dreq
– undescribed –

rtable * tab
– undescribed –

Description
This function dumps contents of a given routing table to debug output.

Function

void rt dump all (struct dump request * dreq) – dump all routing tables

Arguments

struct dump request * dreq
– undescribed –

Description
This function dumps contents of all routing tables to debug output.

Function

void rt init (void) – initialize routing tables

Description
This function is called during BIRD startup. It initializes the routing table module.

Function

void rt prune table (void * tab) – prune a routing table

Arguments

void * tab
– undescribed –

Description
The prune loop scans routing tables and removes routes belonging to flushing protocols, discarded routes
and also stale network entries. It is called from rt event(). The event is rescheduled if the current iteration
do not finish the table. The pruning is directed by the prune state (prune state), specifying whether the
prune cycle is scheduled or running, and there is also a persistent pruning iterator (prune fit).
The prune loop is used also for channel flushing. For this purpose, the channels to flush are marked before
the iteration and notified after the iteration.

2.2. Routing tables 13

Function

void rt unlock trie (struct rtable private * tab, const struct f trie * trie) – unlock a prefix trie of a routing
table

Arguments

struct rtable private * tab
routing table with prefix trie to be locked

const struct f trie * trie
value returned by matching rt lock trie()

Description
Done for trie locked by rt lock trie() after walk over the trie is done. It may free the trie and schedule next
trie pruning.

Function

void rt lock table priv (struct rtable private * r , const char * file, uint line) – lock a routing table

Arguments

struct rtable private * r
routing table to be locked

const char * file
– undescribed –

uint line
– undescribed –

Description
Lock a routing table, because it’s in use by a protocol, preventing it from being freed when it gets undefined
in a new configuration.

Function

void rt unlock table priv (struct rtable private * r , const char * file, uint line) – unlock a routing table

Arguments

struct rtable private * r
routing table to be unlocked

const char * file
– undescribed –

uint line
– undescribed –

Description
Unlock a routing table formerly locked by rt lock table(), that is decrease its use count and delete it if it’s
scheduled for deletion by configuration changes.

Function

void rt commit (struct config * new , struct config * old) – commit new routing table configuration

2.3. Route attribute cache 14

Arguments

struct config * new
new configuration

struct config * old
original configuration or NULL if it’s boot time config

Description
Scan differences between old and new configuration and modify the routing tables according to these changes.
If new defines a previously unknown table, create it, if it omits a table existing in old , schedule it for
deletion (it gets deleted when all protocols disconnect from it by calling rt unlock table()), if it exists in both
configurations, leave it unchanged.

2.3 Route attribute cache

Each route entry carries a set of route attributes. Several of them vary from route to route, but most
attributes are usually common for a large number of routes. To conserve memory, we’ve decided to store
only the varying ones directly in the rte and hold the rest in a special structure called rta which is shared
among all the rte’s with these attributes.

Each rta contains all the static attributes of the route (i.e., those which are always present) as structure
members and a list of dynamic attributes represented by a linked list of ea list structures, each of them
consisting of an array of eattr’s containing the individual attributes. An attribute can be specified more
than once in the ea list chain and in such case the first occurrence overrides the others. This semantics is
used especially when someone (for example a filter) wishes to alter values of several dynamic attributes, but
it wants to preserve the original attribute lists maintained by another module.

Each eattr contains an attribute identifier (split to protocol ID and per-protocol attribute ID), protocol
dependent flags, a type code (consisting of several bit fields describing attribute characteristics) and either
an embedded 32-bit value or a pointer to a adata structure holding attribute contents.

There exist two variants of rta’s – cached and un-cached ones. Un-cached rta’s can have arbitrarily complex
structure of ea list’s and they can be modified by any module in the route processing chain. Cached rta’s
have their attribute lists normalized (that means at most one ea list is present and its values are sorted
in order to speed up searching), they are stored in a hash table to make fast lookup possible and they are
provided with a use count to allow sharing.

Routing tables always contain only cached rta’s.

Function

struct rte src * rt find source global (u32 id)

Arguments

u32 id
requested global ID

Route attribute cache
sources stored by their ID. Checking for non-existent or foreign source is unsafe.

Description
Returns the found source or dies. Result of this function is guaranteed to be a valid source as long as the
caller owns it.

Function

struct nexthop adata * nexthop merge (struct nexthop adata * xin, struct nexthop adata * yin, int max ,
linpool * lp) – merge nexthop lists

2.3. Route attribute cache 15

Arguments

struct nexthop adata * xin
– undescribed –

struct nexthop adata * yin
– undescribed –

int max
max number of nexthops

linpool * lp
linpool for allocating nexthops

Description
The nexthop merge() function takes two nexthop lists x and y and merges them, eliminating possible du-
plicates. The input lists must be sorted and the result is sorted too. The number of nexthops in result is
limited by max . New nodes are allocated from linpool lp.
The arguments rx and ry specify whether corresponding input lists may be consumed by the function (i.e.
their nodes reused in the resulting list), in that case the caller should not access these lists after that. To
eliminate issues with deallocation of these lists, the caller should use some form of bulk deallocation (e.g.
stack or linpool) to free these nodes when the resulting list is no longer needed. When reusability is not set,
the corresponding lists are not modified nor linked from the resulting list.

Function

eattr * ea find by id (ea list * e, unsigned id) – find an extended attribute

Arguments

ea list * e
attribute list to search in

unsigned id
attribute ID to search for

Description
Given an extended attribute list, ea find() searches for a first occurrence of an attribute with specified ID,
returning either a pointer to its eattr structure or NULL if no such attribute exists.

Function

eattr * ea walk (struct ea walk state * s, uint id , uint max) – walk through extended attributes

Arguments

struct ea walk state * s
walk state structure

uint id
start of attribute ID interval

uint max
length of attribute ID interval

Description
Given an extended attribute list, ea walk() walks through the list looking for first occurrences of attributes
with ID in specified interval from id to (id + max - 1), returning pointers to found eattr structures, storing
its walk state in s for subsequent calls.
The function ea walk() is supposed to be called in a loop, with initially zeroed walk state structure s with
filled the initial extended attribute list, returning one found attribute in each call or NULL when no other
attribute exists. The extended attribute list or the arguments should not be modified between calls. The
maximum value of max is 128.

2.3. Route attribute cache 16

Function

int ea same (ea list * x , ea list * y) – compare two ea list’s

Arguments

ea list * x
attribute list

ea list * y
attribute list

Description
ea same() compares two normalized attribute lists x and y and returns 1 if they contain the same attributes,
0 otherwise.

Function

ea list * ea normalize (ea list * e, u32 upto) – create a normalized version of attributes

Arguments

ea list * e
input attributes

u32 upto
bitmask of layers which should stay as an underlay

Description
This function squashes all updates done atop some ea list and creates the final structure useful for storage
or fast searching. The method is a bucket sort.
Returns the final ea list allocated from the tmp linpool. The adata is linked from the original places.

Function

void ea show (struct cli * c, const eattr * e) – print an eattr to CLI

Arguments

struct cli * c
destination CLI

const eattr * e
attribute to be printed

Description
This function takes an extended attribute represented by its eattr structure and prints it to the CLI
according to the type information.
If the protocol defining the attribute provides its own get attr() hook, it’s consulted first.

Function

void ea dump (struct dump request * dreq , ea list * e) – dump an extended attribute

Arguments

struct dump request * dreq
– undescribed –

ea list * e
attribute to be dumped

Description
ea dump() dumps contents of the extended attribute given to the debug output.

2.3. Route attribute cache 17

Function

uint ea hash (ea list * e) – calculate an ea list hash key

Arguments

ea list * e
attribute list

Description
ea hash() takes an extended attribute list and calculated a hopefully uniformly distributed hash value from
its contents.

Function

ea list * ea append (ea list * to, ea list * what) – concatenate ea list’s

Arguments

ea list * to
destination list (can be NULL)

ea list * what
list to be appended (can be NULL)

Description
This function appends the ea list what at the end of ea list to and returns a pointer to the resulting list.

Function

ea list * ea lookup slow (ea list * o, u32 squash upto, enum ea stored oid) – look up a rta in attribute cache

Arguments

ea list * o
a un-cached rta

u32 squash upto
– undescribed –

enum ea stored oid
– undescribed –

Description
rta lookup() gets an un-cached rta structure and returns its cached counterpart. It starts with examining
the attribute cache to see whether there exists a matching entry. If such an entry exists, it’s returned and
its use count is incremented, else a new entry is created with use count set to 1.
The extended attribute lists attached to the rta are automatically converted to the normalized form.

Function

void ea dump all (struct dump request * dreq) – dump attribute cache

Arguments

struct dump request * dreq
– undescribed –

Description
This function dumps the whole contents of route attribute cache to the debug output.

2.4. Routing protocols 18

Function

void rta init (void) – initialize route attribute cache

Description
This function is called during initialization of the routing table module to set up the internals of the attribute
cache.

Function

rta * rta clone (rta * r) – clone route attributes

Arguments

rta * r
a rta to be cloned

Description
rta clone() takes a cached rta and returns its identical cached copy. Currently it works by just returning
the original rta with its use count incremented.

Function

void rta free (rta * r) – free route attributes

Arguments

rta * r
a rta to be freed

Description
If you stop using a rta (for example when deleting a route which uses it), you need to call rta free() to
notify the attribute cache the attribute is no longer in use and can be freed if you were the last user (which
rta free() tests by inspecting the use count).

2.4 Routing protocols

2.4.1 Introduction

The routing protocols are the bird’s heart and a fine amount of code is dedicated to their management and
for providing support functions to them. (-: Actually, this is the reason why the directory with sources of
the core code is called nest :-).

When talking about protocols, one need to distinguish between protocols and protocol instances. A protocol
exists exactly once, not depending on whether it’s configured or not and it can have an arbitrary number of
instances corresponding to its ”incarnations” requested by the configuration file. Each instance is completely
autonomous, has its own configuration, its own status, its own set of routes and its own set of interfaces it
works on.

A protocol is represented by a protocol structure containing all the basic information (protocol name, default
settings and pointers to most of the protocol hooks). All these structures are linked in the protocol list list.

Each instance has its own proto structure describing all its properties: protocol type, configuration, a
resource pool where all resources belonging to the instance live, various protocol attributes (take a look at
the declaration of proto in protocol.h), protocol states (see below for what do they mean), connections
to routing tables, filters attached to the protocol and finally a set of pointers to the rest of protocol hooks
(they are the same for all instances of the protocol, but in order to avoid extra indirections when calling the
hooks from the fast path, they are stored directly in proto). The instance is always linked in both the global
instance list (proto list) and a per-status list (either active proto list for running protocols, initial proto list
for protocols being initialized or flush proto list when the protocol is being shut down).

The protocol hooks are described in the next chapter, for more information about configuration of protocols,
please refer to the configuration chapter and also to the description of the proto commit function.

2.4. Routing protocols 19

2.4.2 Protocol states

As startup and shutdown of each protocol are complex processes which can be affected by lots of external
events (user’s actions, reconfigurations, behavior of neighboring routers etc.), we have decided to supervise
them by a pair of simple state machines – the protocol state machine and a core state machine.

The protocol state machine corresponds to internal state of the protocol and the protocol can alter its state
whenever it wants to. There are the following states:

PS DOWN

The protocol is down and waits for being woken up by calling its start() hook.

PS START

The protocol is waiting for connection with the rest of the network. It’s active, it has resources
allocated, but it still doesn’t want any routes since it doesn’t know what to do with them.

PS UP

The protocol is up and running. It communicates with the core, delivers routes to tables and wants to
hear announcement about route changes.

PS STOP

The protocol has been shut down (either by being asked by the core code to do so or due to having
encountered a protocol error).

Unless the protocol is in the PS DOWN state, it can decide to change its state by calling the proto notify state
function.

At any time, the core code can ask the protocol to shut itself down by calling its stop() hook.

2.4.3 Functions of the protocol module

The protocol module provides the following functions:

Function

struct channel * proto find channel by table (struct proto * p, rtable * t) – find channel connected to a
routing table

Arguments

struct proto * p
protocol instance

rtable * t
routing table

Description
Returns pointer to channel or NULL

Function

struct channel * proto find channel by name (struct proto * p, const char * n) – find channel by its name

Arguments

struct proto * p
protocol instance

const char * n
channel name

Description
Returns pointer to channel or NULL

2.4. Routing protocols 20

Function

struct channel * proto add channel (struct proto * p, struct channel config * cf) – connect protocol to a
routing table

Arguments

struct proto * p
protocol instance

struct channel config * cf
channel configuration

Description
This function creates a channel between the protocol instance p and the routing table specified in the
configuration cf , making the protocol hear all changes in the table and allowing the protocol to update
routes in the table.
The channel is linked in the protocol channel list and when active also in the table channel list. Channels
are allocated from the global resource pool (proto pool) and they are automatically freed when the protocol
is removed.

Function

void * proto new (struct proto config * cf) – create a new protocol instance

Arguments

struct proto config * cf
– undescribed –

Description
When a new configuration has been read in, the core code starts initializing all the protocol instances
configured by calling their init() hooks with the corresponding instance configuration. The initialization
code of the protocol is expected to create a new instance according to the configuration by calling this
function and then modifying the default settings to values wanted by the protocol.

Function

void * proto config new (struct protocol * pr , int class) – create a new protocol configuration

Arguments

struct protocol * pr
protocol the configuration will belong to

int class
SYM PROTO or SYM TEMPLATE

Description
Whenever the configuration file says that a new instance of a routing protocol should be created, the
parser calls proto config new() to create a configuration entry for this instance (a structure staring with
the proto config header containing all the generic items followed by protocol-specific ones). Also, the
configuration entry gets added to the list of protocol instances kept in the configuration.
The function is also used to create protocol templates (when class SYM TEMPLATE is specified), the only
difference is that templates are not added to the list of protocol instances and therefore not initialized during
protos commit()).

2.4. Routing protocols 21

Function

void proto copy config (struct proto config * dest , struct proto config * src) – copy a protocol configuration

Arguments

struct proto config * dest
destination protocol configuration

struct proto config * src
source protocol configuration

Description
Whenever a new instance of a routing protocol is created from the template, proto copy config() is called to
copy a content of the source protocol configuration to the new protocol configuration. Name, class and a
node in protos list of dest are kept intact. copy config() protocol hook is used to copy protocol-specific data.

Function

void protos preconfig (struct config * c) – pre-configuration processing

Arguments

struct config * c
new configuration

Description
This function calls the preconfig() hooks of all routing protocols available to prepare them for reading of the
new configuration.

Function

void protos commit (struct config * new , struct config * old , int type) – commit new protocol configuration

Arguments

struct config * new
new configuration

struct config * old
old configuration or NULL if it’s boot time config

int type
type of reconfiguration (RECONFIG SOFT or RECONFIG HARD)

Description
Scan differences between old and new configuration and adjust all protocol instances to conform to the new
configuration.
When a protocol exists in the new configuration, but it doesn’t in the original one, it’s immediately started.
When a collision with the other running protocol would arise, the new protocol will be temporarily stopped
by the locking mechanism.
When a protocol exists in the old configuration, but it doesn’t in the new one, it’s shut down and deleted
after the shutdown completes.
When a protocol exists in both configurations, the core decides whether it’s possible to reconfigure it dy-
namically - it checks all the core properties of the protocol (changes in filters are ignored if type is RECON-
FIG SOFT) and if they match, it asks the reconfigure() hook of the protocol to see if the protocol is able to
switch to the new configuration. If it isn’t possible, the protocol is shut down and a new instance is started
with the new configuration after the shutdown is completed.

2.5. Graceful restart recovery 22

2.5 Graceful restart recovery

Graceful restart of a router is a process when the routing plane (e.g. BIRD) restarts but both the forwarding
plane (e.g kernel routing table) and routing neighbors keep proper routes, and therefore uninterrupted packet
forwarding is maintained.

BIRD implements graceful restart recovery by deferring export of routes to protocols until routing tables
are refilled with the expected content. After start, protocols generate routes as usual, but routes are not
propagated to them, until protocols report that they generated all routes. After that, graceful restart
recovery is finished and the export (and the initial feed) to protocols is enabled.

When graceful restart recovery need is detected during initialization, then enabled protocols are marked with
gr recovery flag before start. Such protocols then decide how to proceed with graceful restart, participation
is voluntary. Protocols could lock the recovery for each channel by function channel graceful restart lock()
(state stored in gr lock flag), which means that they want to postpone the end of the recovery until they
converge and then unlock it. They also could set gr wait before advancing to PS UP, which means that the
core should defer route export to that channel until the end of the recovery. This should be done by protocols
that expect their neigbors to keep the proper routes (kernel table, BGP sessions with BGP graceful restart
capability).

The graceful restart recovery is finished when either all graceful restart locks are unlocked or when graceful
restart wait timer fires.

Function

void graceful recovery done (struct callback * UNUSED) – finalize graceful restart

Arguments

struct callback * UNUSED
– undescribed –

Description
When there are no locks on graceful restart, the functions finalizes the graceful restart recovery. Protocols
postponing route export until the end of the recovery are awakened and the export to them is enabled.

Function

void graceful restart recovery (void) – request initial graceful restart recovery

Description
Called by the platform initialization code if the need for recovery after graceful restart is detected during
boot. Have to be called before protos commit().

Function

void graceful restart init (void) – initialize graceful restart

Description
When graceful restart recovery was requested, the function starts an active phase of the recovery and
initializes graceful restart wait timer. The function have to be called after protos commit().

Function

void channel graceful restart lock (struct channel * c) – lock graceful restart by channel

Arguments

struct channel * c
– undescribed –

Description
This function allows a protocol to postpone the end of graceful restart recovery until it converges. The lock
is removed when the protocol calls channel graceful restart unlock() or when the channel is closed.
The function have to be called during the initial phase of graceful restart recovery and only for protocols
that are part of graceful restart (i.e. their gr recovery is set), which means it should be called from protocol
start hooks.

2.5. Graceful restart recovery 23

Function

void channel graceful restart unlock (struct channel * c) – unlock graceful restart by channel

Arguments

struct channel * c
– undescribed –

Description
This function unlocks a lock from channel graceful restart lock(). It is also automatically called when the
lock holding protocol went down.

Function

void protos dump all (struct dump request * dreq) – dump status of all protocols

Arguments

struct dump request * dreq
– undescribed –

Description
This function dumps status of all existing protocol instances to the debug output. It involves printing of
general status information such as protocol states, its position on the protocol lists and also calling of a
dump() hook of the protocol to print the internals.

Function

void proto build (struct protocol * p) – make a single protocol available

Arguments

struct protocol * p
the protocol

Description
After the platform specific initialization code uses protos build() to add all the standard protocols, it should
call proto build() for all platform specific protocols to inform the core that they exist.

Function

void protos build (void) – build a protocol list

Description
This function is called during BIRD startup to insert all standard protocols to the global protocol list.
Insertion of platform specific protocols (such as the kernel syncer) is in the domain of competence of the
platform dependent startup code.

Function

void proto set message (struct proto * p, char * msg , int len) – set administrative message to protocol

Arguments

struct proto * p
protocol

char * msg
message

int len
message length (-1 for NULL-terminated string)

Description
The function sets administrative message (string) related to protocol state change. It is called by the nest
code for manual enable/disable/restart commands all routes to the protocol, and by protocol-specific code
when the protocol state change is initiated by the protocol. Using NULL message clears the last message.
The message string may be either NULL-terminated or with an explicit length.

2.6. Protocol hooks 24

Function

void proto notify state (struct proto * p, uint state) – notify core about protocol state change

Arguments

struct proto * p
protocol the state of which has changed

uint state
– undescribed –

Description
Whenever a state of a protocol changes due to some event internal to the protocol (i.e., not inside a start()
or shutdown() hook), it should immediately notify the core about the change by calling proto notify state()
which will write the new state to the proto structure and take all the actions necessary to adapt to the new
state. State change to PS DOWN immediately frees resources of protocol and might execute start callback
of protocol; therefore, it should be used at tail positions of protocol callbacks.

2.6 Protocol hooks

Each protocol can provide a rich set of hook functions referred to by pointers in either the proto or protocol
structure. They are called by the core whenever it wants the protocol to perform some action or to notify
the protocol about any change of its environment. All of the hooks can be set to NULL which means to ignore
the change or to take a default action.

Function

void preconfig (struct protocol * p, struct config * c) – protocol preconfiguration

Arguments

struct protocol * p
a routing protocol

struct config * c
new configuration

Description
The preconfig() hook is called before parsing of a new configuration.

Function

void postconfig (struct proto config * c) – instance post-configuration

Arguments

struct proto config * c
instance configuration

Description
The postconfig() hook is called for each configured instance after parsing of the new configuration is finished.

Function

struct proto * init (struct proto config * c) – initialize an instance

Arguments

struct proto config * c
instance configuration

Description
The init() hook is called by the core to create a protocol instance according to supplied protocol configuration.

Result
a pointer to the instance created

2.6. Protocol hooks 25

Function

int reconfigure (struct proto * p, struct proto config * c) – request instance reconfiguration

Arguments

struct proto * p
an instance

struct proto config * c
new configuration

Description
The core calls the reconfigure() hook whenever it wants to ask the protocol for switching to a new configu-
ration. If the reconfiguration is possible, the hook returns 1. Otherwise, it returns 0 and the core will shut
down the instance and start a new one with the new configuration.
After the protocol confirms reconfiguration, it must no longer keep any references to the old configuration
since the memory it’s stored in can be re-used at any time.

Function

void dump (struct proto * p) – dump protocol state

Arguments

struct proto * p
an instance

Description
This hook dumps the complete state of the instance to the debug output.

Function

int start (struct proto * p) – request instance startup

Arguments

struct proto * p
protocol instance

Description
The start() hook is called by the core when it wishes to start the instance. Multitable protocols should lock
their tables here.

Result
new protocol state

Function

int shutdown (struct proto * p) – request instance shutdown

Arguments

struct proto * p
protocol instance

Description
The stop() hook is called by the core when it wishes to shut the instance down for some reason.

Returns
new protocol state

2.6. Protocol hooks 26

Function

void cleanup (struct proto * p) – request instance cleanup

Arguments

struct proto * p
protocol instance

Description
The cleanup() hook is called by the core when the protocol became hungry/down, i.e. all protocol ahooks
and routes are flushed. Multitable protocols should unlock their tables here.

Function

void get status (struct proto * p, byte * buf) – get instance status

Arguments

struct proto * p
protocol instance

byte * buf
buffer to be filled with the status string

Description
This hook is called by the core if it wishes to obtain an brief one-line user friendly representation of the
status of the instance to be printed by the <cf/show protocols/ command.

Function

void get route info (rte * e, byte * buf , ea list * attrs) – get route information

Arguments

rte * e
a route entry

byte * buf
buffer to be filled with the resulting string

ea list * attrs
extended attributes of the route

Description
This hook is called to fill the buffer buf with a brief user friendly representation of metrics of a route belonging
to this protocol.

Function

int get attr (eattr * a, byte * buf , int buflen) – get attribute information

Arguments

eattr * a
an extended attribute

byte * buf
buffer to be filled with attribute information

int buflen
a length of the buf parameter

Description
The get attr() hook is called by the core to obtain a user friendly representation of an extended route
attribute. It can either leave the whole conversion to the core (by returning GA UNKNOWN), fill in only attribute
name (and let the core format the attribute value automatically according to the type field; by returning
GA NAME) or doing the whole conversion (used in case the value requires extra care; return GA FULL).

2.6. Protocol hooks 27

Function

void if notify (struct proto * p, unsigned flags, struct iface * i) – notify instance about interface changes

Arguments

struct proto * p
protocol instance

unsigned flags
interface change flags

struct iface * i
the interface in question

Description
This hook is called whenever any network interface changes its status. The change is described by a combi-
nation of status bits (IF CHANGE xxx) in the flags parameter.

Function

void ifa notify (struct proto * p, unsigned flags, struct ifa * a) – notify instance about interface address
changes

Arguments

struct proto * p
protocol instance

unsigned flags
address change flags

struct ifa * a
the interface address

Description
This hook is called to notify the protocol instance about an interface acquiring or losing one of its addresses.
The change is described by a combination of status bits (IF CHANGE xxx) in the flags parameter.

Function

void rt notify (struct proto * p, net * net , rte * new , rte * old , ea list * attrs) – notify instance about routing
table change

Arguments

struct proto * p
protocol instance

net * net
a network entry

rte * new
new route for the network

rte * old
old route for the network

ea list * attrs
extended attributes associated with the new entry

2.6. Protocol hooks 28

Description
The rt notify() hook is called to inform the protocol instance about changes in the connected routing table
table, that is a route old belonging to network net being replaced by a new route new with extended attributes
attrs. Either new or old or both can be NULL if the corresponding route doesn’t exist.
If the type of route announcement is RA OPTIMAL, it is an announcement of optimal route change, new
stores the new optimal route and old stores the old optimal route.
If the type of route announcement is RA ANY, it is an announcement of any route change, new stores the
new route and old stores the old route from the same protocol.
p->accept ra types specifies which kind of route announcements protocol wants to receive.

Function

void neigh notify (neighbor * neigh) – notify instance about neighbor status change

Arguments

neighbor * neigh
a neighbor cache entry

Description
The neigh notify() hook is called by the neighbor cache whenever a neighbor changes its state, that is it gets
disconnected or a sticky neighbor gets connected.

Function

int preexport (struct proto * p, rte ** e, ea list ** attrs, struct linpool * pool) – pre-filtering decisions before
route export

Arguments

struct proto * p
protocol instance the route is going to be exported to

rte ** e
the route in question

ea list ** attrs
extended attributes of the route

struct linpool * pool
linear pool for allocation of all temporary data

Description
The preexport() hook is called as the first step of a exporting a route from a routing table to the protocol
instance. It can modify route attributes and force acceptance or rejection of the route before the user-specified
filters are run. See rte announce() for a complete description of the route distribution process.
The standard use of this hook is to reject routes having originated from the same instance and to set default
values of the protocol’s metrics.

Result
1 if the route has to be accepted, -1 if rejected and 0 if it should be passed to the filters.

Function

int rte recalculate (struct rtable * table, struct network * net , struct rte * new , struct rte * old , struct rte *
old best) – prepare routes for comparison

Arguments

struct rtable * table
a routing table

2.6. Protocol hooks 29

struct network * net
a network entry

struct rte * new
new route for the network

struct rte * old
old route for the network

struct rte * old best
old best route for the network (may be NULL)

Description
This hook is called when a route change (from old to new for a net entry) is propagated to a table. It may
be used to prepare routes for comparison by rte better() in the best route selection. new may or may not be
in net->routes list, old is not there.

Result
1 if the ordering implied by rte better() changes enough that full best route calculation have to be done, 0
otherwise.

Function

int rte better (rte * new , rte * old) – compare metrics of two routes

Arguments

rte * new
the new route

rte * old
the original route

Description
This hook gets called when the routing table contains two routes for the same network which have originated
from different instances of a single protocol and it wants to select which one is preferred over the other one.
Protocols usually decide according to route metrics.

Result
1 if new is better (more preferred) than old , 0 otherwise.

Function

int rte same (rte * e1 , rte * e2) – compare two routes

Arguments

rte * e1
route

rte * e2
route

Description
The rte same() hook tests whether the routes e1 and e2 belonging to the same protocol instance have
identical contents. Contents of rta, all the extended attributes and rte preference are checked by the core
code, no need to take care of them here.

Result
1 if e1 is identical to e2 , 0 otherwise.

2.7. Interfaces 30

Function

void rte insert (net * n, rte * e) – notify instance about route insertion

Arguments

net * n
network

rte * e
route

Description
This hook is called whenever a rte belonging to the instance is accepted for insertion to a routing table.
Please avoid using this function in new protocols.

Function

void rte remove (net * n, rte * e) – notify instance about route removal

Arguments

net * n
network

rte * e
route

Description
This hook is called whenever a rte belonging to the instance is removed from a routing table.
Please avoid using this function in new protocols.

2.7 Interfaces

The interface module keeps track of all network interfaces in the system and their addresses.

Each interface is represented by an iface structure which carries interface capability flags (IF MULTIACCESS,
IF BROADCAST etc.), MTU, interface name and index and finally a linked list of network prefixes assigned to
the interface, each one represented by struct ifa.

The interface module keeps a ‘soft-up’ state for each iface which is a conjunction of link being up, the
interface being of a ‘sane’ type and at least one IP address assigned to it.

Function

void ifa dump (struct dump request * dreq , struct ifa * a) – dump interface address

Arguments

struct dump request * dreq
– undescribed –

struct ifa * a
interface address descriptor

Description
This function dumps contents of an ifa to the debug output.

2.7. Interfaces 31

Function

void if dump (struct dump request * dreq , struct iface * i) – dump interface

Arguments

struct dump request * dreq
– undescribed –

struct iface * i
interface to dump

Description
This function dumps all information associated with a given network interface to the debug output.

Function

void if dump all (struct dump request * dreq) – dump all interfaces

Arguments

struct dump request * dreq
– undescribed –

Description
This function dumps information about all known network interfaces to the debug output.

Function

void if delete (struct iface * old) – remove interface

Arguments

struct iface * old
interface

Description
This function is called by the low-level platform dependent code whenever it notices an interface disappears.
It is just a shorthand for if update().

Function

struct iface * if update (struct iface * new) – update interface status

Arguments

struct iface * new
new interface status

Description
if update() is called by the low-level platform dependent code whenever it notices an interface change.
There exist two types of interface updates – synchronous and asynchronous ones. In the synchronous case, the
low-level code calls if start update(), scans all interfaces reported by the OS, uses if update() and ifa update()
to pass them to the core and then it finishes the update sequence by calling if end update(). When working
asynchronously, the sysdep code calls if update() and ifa update() whenever it notices a change.
if update() will automatically notify all other modules about the change.

Function

void iface subscribe (struct iface subscription * s) – request interface updates

Arguments

struct iface subscription * s
subscription structure

Description
When a new protocol starts, this function sends it a series of notifications about all existing interfaces.

2.7. Interfaces 32

Function

void iface unsubscribe (struct iface subscription * s) – unsubscribe from interface updates

Arguments

struct iface subscription * s
subscription structure

Function

struct iface * if find by index locked (unsigned idx) – find interface by ifindex

Arguments

unsigned idx
ifindex

Description
This function finds an iface structure corresponding to an interface of the given index idx . Returns a
pointer to the structure or NULL if no such structure exists.

Function

struct iface * if find by name (const char * name) – find interface by name

Arguments

const char * name
interface name

Description
This function finds an iface structure corresponding to an interface of the given name name. Returns a
pointer to the structure or NULL if no such structure exists.

Function

struct ifa * ifa update (struct ifa * a) – update interface address

Arguments

struct ifa * a
new interface address

Description
This function adds address information to a network interface. It’s called by the platform dependent code
during the interface update process described under if update().

Function

void ifa delete (struct ifa * a) – remove interface address

Arguments

struct ifa * a
interface address

Description
This function removes address information from a network interface. It’s called by the platform dependent
code during the interface update process described under if update().

Function

void if init (void) – initialize interface module

Description
This function is called during BIRD startup to initialize all data structures of the interface module.

2.8. MPLS 33

2.8 MPLS

The MPLS subsystem manages MPLS labels and handles their allocation to MPLS-aware routing protocols.
These labels are then attached to IP or VPN routes representing label switched paths – LSPs. MPLS labels
are also used in special MPLS routes (which use labels as network address) that are exported to MPLS
routing table in kernel. The MPLS subsystem consists of MPLS domains (struct mpls domain), MPLS
channels (struct mpls channel) and FEC maps (struct mpls fec map).

The MPLS domain represents one MPLS label address space, implements the label allocator, and han-
dles associated configuration and management. The domain is declared in the configuration (struct
mpls domain config). There might be multiple MPLS domains representing separate label spaces, but
in most cases one domain is enough. MPLS-aware protocols and routing tables are associated with a specific
MPLS domain.

The MPLS domain has configurable label ranges (struct mpls range), by default it has two ranges: static
(16-1000) and dynamic (1000-10000). When a protocol wants to allocate labels, it first acquires a handle
(struct mpls handle) for a specific range using mpls new handle(), and then it allocates labels from that
with mpls new label(). When not needed, labels are freed by mpls free label() and the handle is released by
mpls free handle(). Note that all labels and handles must be freed manually.

Both MPLS domain and MPLS range are reference counted, so when deconfigured they could be freed just
after all labels and ranges are freed. Users are expected to hold a reference to a MPLS domain for whole time
they use something from that domain (e.g. mpls handle), but releasing reference to a range while holding
associated handle is OK.

The MPLS channel is subclass of a generic protocol channel. It has two distinct purposes - to handle per-
protocol MPLS configuration (e.g. which MPLS domain is associated with the protocol, which label range
is used by the protocol), and to announce MPLS routes to a routing table (as a regular protocol channel).

The FEC map is a helper structure that maps forwarding equivalent classes (FECs) to MPLS labels. It is
an internal matter of a routing protocol how to assign meaning to allocated labels, announce LSP routes
and associated MPLS routes (i.e. ILM entries). But the common behavior is implemented in the FEC map,
which can be used by the protocols that work with IP-prefix-based FECs.

The FEC map keeps hash tables of FECs (struct mpls fec) based on network prefix, next hop eattr and
assigned label. It has three general labeling policies: static assignment (MPLS POLICY STATIC), per-prefix
policy (MPLS POLICY PREFIX), and aggregating policy (MPLS POLICY AGGREGATE). In per-prefix policy, each
distinct LSP is a separate FEC and uses a separate label, which is kept even if the next hop of the LSP
changes. In aggregating policy, LSPs with a same next hop form one FEC and use one label, but when a next
hop (or remote label) of such LSP changes then the LSP must be moved to a different FEC and assigned
a different label. There is also a special VRF policy (MPLS POLICY VRF) applicable for L3VPN protocols,
which uses one label for all routes from a VRF, while replacing the original next hop with lookup in the
VRF.

The overall process works this way: A protocol wants to announce a LSP route, it does that by announcing
e.g. IP route with EA MPLS POLICY attribute. After the route is accepted by filters (which may also change
the policy attribute or set a static label), the mpls handle rte() is called from rte update2(), which applies
selected labeling policy, finds existing FEC or creates a new FEC (which includes allocating new label
and announcing related MPLS route by mpls announce fec()), and attach FEC label to the LSP route.
After that, the LSP route is stored in routing table by rte recalculate(). Changes in routing tables trigger
mpls rte insert() and mpls rte remove() hooks, which refcount FEC structures and possibly trigger removal
of FECs and withdrawal of MPLS routes.

TODO: - special handling of reserved labels

2.9 Neighbor cache

Most routing protocols need to associate their internal state data with neighboring routers, check whether
an address given as the next hop attribute of a route is really an address of a directly connected host and
which interface is it connected through. Also, they often need to be notified when a neighbor ceases to
exist or when their long awaited neighbor becomes connected. The neighbor cache is there to solve all these
problems.

The neighbor cache maintains a collection of neighbor entries. Each entry represents one IP address corre-

2.9. Neighbor cache 34

sponding to either our directly connected neighbor or our own end of the link (when the scope of the address
is set to SCOPE HOST) together with per-neighbor data belonging to a single protocol. A neighbor entry
may be bound to a specific interface, which is required for link-local IP addresses and optional for global IP
addresses.

Neighbor cache entries are stored in a hash table, which is indexed by triple (protocol, IP, requested-iface), so
if both regular and iface-bound neighbors are requested, they are represented by two neighbor cache entries.
Active entries are also linked in per-interface list (allowing quick processing of interface change events).
Inactive entries exist only when the protocol has explicitly requested it via the NEF STICKY flag because
it wishes to be notified when the node will again become a neighbor. Such entries are instead linked in a
special list, which is walked whenever an interface changes its state to up. Neighbor entry VRF association
is implied by respective protocol.

Besides the already mentioned NEF STICKY flag, there is also NEF ONLINK, which specifies that neighbor
should be considered reachable on given iface regardless of associated address ranges, and NEF IFACE, which
represents pseudo-neighbor entry for whole interface (and uses IPA NONE IP address).

When a neighbor event occurs (a neighbor gets disconnected or a sticky inactive neighbor becomes connected),
the protocol hook neigh notify() is called to advertise the change.

Function

neighbor * neigh find (struct proto * p, ip addr a, struct iface * iface, uint flags) – find or create a neighbor
entry

Arguments

struct proto * p
protocol which asks for the entry

ip addr a
IP address of the node to be searched for

struct iface * iface
optionally bound neighbor to this iface (may be NULL)

uint flags
NEF STICKY for sticky entry, NEF ONLINK for onlink entry

Description
Search the neighbor cache for a node with given IP address. Iface can be specified for link-local addresses
or for cases, where neighbor is expected on given interface. If it is found, a pointer to the neighbor entry is
returned. If no such entry exists and the node is directly connected on one of our active interfaces, a new
entry is created and returned to the caller with protocol-dependent fields initialized to zero. If the node is
not connected directly or *a is not a valid unicast IP address, neigh find() returns NULL.

Function

void neigh dump (struct dump request * dreq , neighbor * n) – dump specified neighbor entry.

Arguments

struct dump request * dreq
– undescribed –

neighbor * n
the entry to dump

Description
This functions dumps the contents of a given neighbor entry to debug output.

2.9. Neighbor cache 35

Function

void neigh dump all (struct dump request * dreq) – dump all neighbor entries.

Arguments

struct dump request * dreq
– undescribed –

Description
This function dumps the contents of the neighbor cache to debug output.

Function

void neigh update (neighbor * n, struct iface * iface)

Arguments

neighbor * n
neighbor to update

struct iface * iface
changed iface

Description
The function recalculates state of the neighbor entry n assuming that only the interface iface may changed
its state or addresses. Then, appropriate actions are executed (the neighbor goes up, down, up-down, or just
notified).

Function

void neigh if up (struct iface * i)

Arguments

struct iface * i
interface in question

Description
Tell the neighbor cache that a new interface became up.
The neighbor cache wakes up all inactive sticky neighbors with addresses belonging to prefixes of the interface
i .

Function

void neigh if down (struct iface * i) – notify neighbor cache about interface down event

Arguments

struct iface * i
the interface in question

Description
Notify the neighbor cache that an interface has ceased to exist.
It causes all neighbors connected to this interface to be updated or removed.

Function

void neigh if link (struct iface * i) – notify neighbor cache about interface link change

Arguments

struct iface * i
the interface in question

Description
Notify the neighbor cache that an interface changed link state. All owners of neighbor entries connected to
this interface are notified.

2.10. Command line interface 36

Function

void neigh ifa up (struct ifa * a)

Arguments

struct ifa * a
interface address in question

Description
Tell the neighbor cache that an address was added or removed.
The neighbor cache wakes up all inactive sticky neighbors with addresses belonging to prefixes of the interface
belonging to ifa and causes all unreachable neighbors to be flushed.

Function

void neigh init (pool * if pool) – initialize the neighbor cache.

Arguments

pool * if pool
resource pool to be used for neighbor entries.

Description
This function is called during BIRD startup to initialize the neighbor cache module.

2.10 Command line interface

This module takes care of the BIRD’s command-line interface (CLI). The CLI exists to provide a way to
control BIRD remotely and to inspect its status. It uses a very simple textual protocol over a stream
connection provided by the platform dependent code (on UNIX systems, it’s a UNIX domain socket).

Each session of the CLI consists of a sequence of request and replies, slightly resembling the FTP and SMTP
protocols. Requests are commands encoded as a single line of text, replies are sequences of lines starting
with a four-digit code followed by either a space (if it’s the last line of the reply) or a minus sign (when
the reply is going to continue with the next line), the rest of the line contains a textual message semantics
of which depends on the numeric code. If a reply line has the same code as the previous one and it’s a
continuation line, the whole prefix can be replaced by a single white space character.

Reply codes starting with 0 stand for ‘action successfully completed’ messages, 1 means ‘table entry’, 8
‘runtime error’ and 9 ‘syntax error’.

Each CLI session is internally represented by a cli structure and a resource pool containing all resources
associated with the connection, so that it can be easily freed whenever the connection gets closed, not
depending on the current state of command processing.

The CLI commands are declared as a part of the configuration grammar by using the CF CLI macro. When
a command is received, it is processed by the same lexical analyzer and parser as used for the configuration,
but it’s switched to a special mode by prepending a fake token to the text, so that it uses only the CLI
command rules. Then the parser invokes an execution routine corresponding to the command, which either
constructs the whole reply and returns it back or (in case it expects the reply will be long) it prints a partial
reply and asks the CLI module (using the cont hook) to call it again when the output is transferred to the
user.

The this cli variable points to a cli structure of the session being currently parsed, but it’s of course available
only in command handlers not entered using the cont hook.

TX buffer management works as follows: At cli.tx buf there is a list of TX buffers (struct cli out), cli.tx write
is the buffer currently used by the producer (cli printf(), cli alloc out()) and cli.tx pos is the buffer currently
used by the consumer (cli write(), in system dependent code). The producer uses cli out.wpos ptr as the
current write position and the consumer uses cli out.outpos ptr as the current read position. When the
producer produces something, it calls cli write trigger(). If there is not enough space in the current buffer,
the producer allocates the new one. When the consumer processes everything in the buffer queue, it calls
cli written(), tha frees all buffers (except the first one) and schedules cli.event .

2.11. Object locks 37

Function

void cli vprintf (cli * c, int code, const char * msg , va list args) – send reply to a CLI connection

Arguments

cli * c
CLI connection

int code
numeric code of the reply, negative for continuation lines

const char * msg
a printf()-like formatting string.

va list args
– undescribed –

Description
This function send a single line of reply to a given CLI connection. In works in all aspects like bsprintf()
except that it automatically prepends the reply line prefix.
Please note that if the connection can be already busy sending some data in which case cli printf() stores
the output to a temporary buffer, so please avoid sending a large batch of replies without waiting for the
buffers to be flushed.
If you want to write to the current CLI output, you can use the cli msg() macro instead.

Function

void cli init (void) – initialize the CLI module

Description
This function is called during BIRD startup to initialize the internal data structures of the CLI module.

2.11 Object locks

The lock module provides a simple mechanism for avoiding conflicts between various protocols which would
like to use a single physical resource (for example a network port). It would be easy to say that such collisions
can occur only when the user specifies an invalid configuration and therefore he deserves to get what he has
asked for, but unfortunately they can also arise legitimately when the daemon is reconfigured and there exists
(although for a short time period only) an old protocol instance being shut down and a new one willing to
start up on the same interface.

The solution is very simple: when any protocol wishes to use a network port or some other non-shareable
resource, it asks the core to lock it and it doesn’t use the resource until it’s notified that it has acquired the
lock.

Object locks are represented by object lock structures which are in turn a kind of resource. Lockable
resources are uniquely determined by resource type (OBJLOCK UDP for a UDP port etc.), IP address (usually
a broadcast or multicast address the port is bound to), port number, interface and optional instance ID.

Function

struct object lock * olock new (pool * p) – create an object lock

Arguments

pool * p
resource pool to create the lock in.

Description
The olock new() function creates a new resource of type object lock and returns a pointer to it. After
filling in the structure, the caller should call olock acquire() to do the real locking.

2.11. Object locks 38

Function

void olock acquire (struct object lock * l) – acquire a lock

Arguments

struct object lock * l
the lock to acquire

Description
This function attempts to acquire exclusive access to the non-shareable resource described by the lock l . It
returns immediately, but as soon as the resource becomes available, it calls the hook() function set up by
the caller.
When you want to release the resource, just rfree() the lock.

Function

void olock init (void) – initialize the object lock mechanism

Description
This function is called during BIRD startup. It initializes all the internal data structures of the lock module.

Chapter 3: Configuration

3.1 Configuration manager

Configuration of BIRD is complex, yet straightforward. There are three modules taking care of the configu-
ration: config manager (which takes care of storage of the config information and controls switching between
configs), lexical analyzer and parser.

The configuration manager stores each config as a config structure accompanied by a linear pool from which
all information associated with the config and pointed to by the config structure is allocated.

There can exist up to four different configurations at one time: an active one (pointed to by config), configu-
ration we are just switching from (old config), one queued for the next reconfiguration (future config ; if there
is one and the user wants to reconfigure once again, we just free the previous queued config and replace it
with the new one) and finally a config being parsed (new config). The stored old config is also used for undo
reconfiguration, which works in a similar way. Reconfiguration could also have timeout (using config timer)
and undo is automatically called if the new configuration is not confirmed later. The new config (new config)
and associated linear pool (cfg mem) is non-NULL only during parsing.

Loading of new configuration is very simple: just call config alloc() to get a new config structure, then
use config parse() to parse a configuration file and fill all fields of the structure and finally ask the config
manager to switch to the new config by calling config commit().

CLI commands are parsed in a very similar way – there is also a stripped-down config structure associated
with them and they are lex-ed and parsed by the same functions, only a special fake token is prepended
before the command text to make the parser recognize only the rules corresponding to CLI commands.

Function

struct config * config alloc (const char * name) – allocate a new configuration

Arguments

const char * name
name of the config

Description
This function creates new config structure, attaches a resource pool and a linear memory pool to it and
makes it available for further use. Returns a pointer to the structure.

Function

int config parse (struct config * c) – parse a configuration

Arguments

struct config * c
configuration

Description
config parse() reads input by calling a hook function pointed to by cf read hook and parses it according to
the configuration grammar. It also calls all the preconfig and postconfig hooks before, resp. after parsing.

Result
1 if the config has been parsed successfully, 0 if any error has occurred (such as anybody calling cf error())
and the err msg field has been set to the error message.

Function

int cli parse (struct config * main config , struct config * c) – parse a CLI command

39

3.1. Configuration manager 40

Arguments

struct config * main config
– undescribed –

struct config * c
temporary config structure

Description
cli parse() is similar to config parse(), but instead of a configuration, it parses a CLI command. See the CLI
module for more information.

Function

void config free (struct config * c) – free a configuration

Arguments

struct config * c
configuration to be freed

Description
This function takes a config structure and frees all resources associated with it.

Function

void config free old (void) – free stored old configuration

Description
This function frees the old configuration (old config) that is saved for the purpose of undo. It is useful
before parsing a new config when reconfig is requested, to avoid keeping three (perhaps memory-heavy)
configs together. Configuration is not freed when it is still active during reconfiguration.

Function

int config commit (config ref * cr , int type, uint timeout) – commit a configuration

Arguments

config ref * cr
– undescribed –

int type
type of reconfiguration (RECONFIG SOFT or RECONFIG HARD)

uint timeout
timeout for undo (in seconds; or 0 for no timeout)

Description
When a configuration is parsed and prepared for use, the config commit() function starts the process of re-
configuration. It checks whether there is already a reconfiguration in progress in which case it just queues the
new config for later processing. Else it notifies all modules about the new configuration by calling their com-
mit() functions which can either accept it immediately or call config add obstacle() to report that they need
some time to complete the reconfiguration. After all such obstacles are removed using config del obstacle(),
the old configuration is freed and everything runs according to the new one.
When timeout is nonzero, the undo timer is activated with given timeout. The timer is deactivated when
config commit(), config confirm() or config undo() is called.

Result
CONF DONE if the configuration has been accepted immediately, CONF PROGRESS if it will take some time
to switch to it, CONF QUEUED if it’s been queued due to another reconfiguration being in progress now or
CONF SHUTDOWN if BIRD is in shutdown mode and no new configurations are accepted.

3.1. Configuration manager 41

Function

int config confirm (void) – confirm a commited configuration

Description
When the undo timer is activated by config commit() with nonzero timeout, this function can be used to
deactivate it and therefore confirm the current configuration.

Result
CONF CONFIRM when the current configuration is confirmed, CONF NONE when there is nothing to confirm (i.e.
undo timer is not active).

Function

int config undo (void) – undo a configuration

Description
Function config undo() can be used to change the current configuration back to stored old config. If no
reconfiguration is running, this stored configuration is commited in the same way as a new configuration in
config commit(). If there is already a reconfiguration in progress and no next reconfiguration is scheduled,
then the undo is scheduled for later processing as usual, but if another reconfiguration is already scheduled,
then such reconfiguration is removed instead (i.e. undo is applied on the last commit that scheduled it).

Result
CONF DONE if the configuration has been accepted immediately, CONF PROGRESS if it will take some time
to switch to it, CONF QUEUED if it’s been queued due to another reconfiguration being in progress now,
CONF UNQUEUED if a scheduled reconfiguration is removed, CONF NOTHING if there is no relevant configuration
to undo (the previous config request was config undo() too) or CONF SHUTDOWN if BIRD is in shutdown mode
and no new configuration changes are accepted.

Function

void order shutdown (int gr) – order BIRD shutdown

Arguments

int gr
– undescribed –

Description
This function initiates shutdown of BIRD. It’s accomplished by asking for switching to an empty configura-
tion.

Function

void cf error (const char * msg ,) – report a configuration error

Arguments

const char * msg
printf-like format string

... ...
variable arguments

Description
cf error() can be called during execution of config parse(), that is from the parser, a preconfig hook or a
postconfig hook, to report an error in the configuration.

3.2. Lexical analyzer 42

Function

char * cfg strdup (const char * c) – copy a string to config memory

Arguments

const char * c
string to copy

Description
cfg strdup() creates a new copy of the string in the memory pool associated with the configuration being
currently parsed. It’s often used when a string literal occurs in the configuration and we want to preserve it
for further use.

3.2 Lexical analyzer

The lexical analyzer used for configuration files and CLI commands is generated using the flex tool ac-
companied by a couple of functions maintaining the hash tables containing information about symbols and
keywords.

Each symbol is represented by a symbol structure containing name of the symbol, its lexical scope, symbol
class (SYM PROTO for a name of a protocol, SYM CONSTANT for a constant etc.) and class dependent data.
When an unknown symbol is encountered, it’s automatically added to the symbol table with class SYM VOID.

The keyword tables are generated from the grammar templates using the gen keywords.m4 script.

Function

void cf lex unwind (void) – unwind lexer state during error

Lexical analyzer
cf lex unwind() frees the internal state on IFS stack when the lexical analyzer is terminated by cf error().

Function

struct symbol * cf find symbol scope (const struct sym scope * scope, const byte * c) – find a symbol by
name

Arguments

const struct sym scope * scope
config scope

const byte * c
symbol name

Description
This functions searches the symbol table in the scope scope for a symbol of given name. First it examines
the current scope, then the underlying one and so on until it either finds the symbol and returns a pointer
to its symbol structure or reaches the end of the scope chain and returns NULL to signify no match.

Function

struct symbol * cf get symbol (struct config * conf , const byte * c) – get a symbol by name

Arguments

struct config * conf
– undescribed –

const byte * c
symbol name

Description
This functions searches the symbol table of the currently parsed config (new config) for a symbol of given
name. It returns either the already existing symbol or a newly allocated undefined (SYM VOID) symbol if no
existing symbol is found.

3.2. Lexical analyzer 43

Function

struct symbol * cf localize symbol (struct config * conf , struct symbol * sym) – get the local instance of
given symbol

Arguments

struct config * conf
– undescribed –

struct symbol * sym
the symbol to localize

Description
This functions finds the symbol that is local to current scope for purposes of cf define symbol().

Function

void cf lex init (struct config * cli main config , struct config * c) – initialize the lexer

Arguments

struct config * cli main config
main configuration structure if we’re going to parse CLI command, NULL for new configuration

struct config * c
configuration structure

Description
cf lex init() initializes the lexical analyzer and prepares it for parsing of a new input.

Function

void cf push scope (struct config * conf , struct symbol * sym) – enter new scope

Arguments

struct config * conf
– undescribed –

struct symbol * sym
symbol representing scope name

Description
If we want to enter a new scope to process declarations inside a nested block, we can just call cf push scope()
to push a new scope onto the scope stack which will cause all new symbols to be defined in this scope and
all existing symbols to be sought for in all scopes stored on the stack.

Function

void cf pop scope (struct config * conf) – leave a scope

Arguments

struct config * conf
– undescribed –

Description
cf pop scope() pops the topmost scope from the scope stack, leaving all its symbols in the symbol table, but
making them invisible to the rest of the config.

3.2. Lexical analyzer 44

Function

void cf push soft scope (struct config * conf) – enter new soft scope

Arguments

struct config * conf
– undescribed –

Description
If we want to enter a new anonymous scope that most likely will not contain any symbols, we can use
cf push soft scope() insteas of cf push scope(). Such scope will be converted to a regular scope on first use.

Function

void cf pop soft scope (struct config * conf) – leave a soft scope

Arguments

struct config * conf
– undescribed –

Description
Leave a soft scope entered by cf push soft scope().

Function

void cf swap soft scope (struct config * conf) – convert soft scope to regular scope

Arguments

struct config * conf
– undescribed –

Description
Soft scopes cannot hold symbols, so they must be converted to regular scopes on first use. It is done
automatically by cf new symbol().

Function

void cf enter filters (void) – enable filter / route attributes namespace

Function

void cf exit filters (void) – disable filter / route attributes namespace

Function

char * cf symbol class name (struct symbol * sym) – get name of a symbol class

Arguments

struct symbol * sym
symbol

Description
This function returns a string representing the class of the given symbol.

3.3. Parser 45

3.3 Parser

Both the configuration and CLI commands are analyzed using a syntax driven parser generated by the
bison tool from a grammar which is constructed from information gathered from grammar snippets by the
gen parser.m4 script.

Grammar snippets are files (usually with extension .Y) contributed by various BIRD modules in order to
provide information about syntax of their configuration and their CLI commands. Each snipped consists
of several sections, each of them starting with a special keyword: CF HDR for a list of #include directives
needed by the C code, CF DEFINES for a list of C declarations, CF DECLS for bison declarations including
keyword definitions specified as CF KEYWORDS, CF GRAMMAR for the grammar rules, CF CODE for auxiliary C
code and finally CF END at the end of the snippet.

To create references between the snippets, it’s possible to define multi-part rules by utilizing the CF ADDTO

macro which adds a new alternative to a multi-part rule.

CLI commands are defined using a CF CLI macro. Its parameters are: the list of keywords determining the
command, the list of parameters, help text for the parameters and help text for the command.

Values of enum filter types can be defined using CF ENUM with the following parameters: name of filter type,
prefix common for all literals of this type and names of all the possible values.

Chapter 4: Filters

4.1 Filters

You can find sources of the filter language in filter/ directory. File filter/config.Y contains filter
grammar and basically translates the source from user into a tree of f inst structures. These trees are later
interpreted using code in filter/filter.c.

A filter is represented by a tree of f inst structures, later translated into lists called f line. All the
instructions are defined and documented in filter/f-inst.c definition file.

Filters use a f val structure for their data. Each f val contains type and value (types are constants prefixed
with T). Look into filter/data.h for more information and appropriate calls.

Function

enum filter return interpret (struct filter state * fs, const struct f line * line, uint argc, const struct f val *
argv , uint resc, struct f val * resv)

Arguments

struct filter state * fs
filter state

const struct f line * line
– undescribed –

uint argc
– undescribed –

const struct f val * argv
– undescribed –

uint resc
– undescribed –

struct f val * resv
– undescribed –

Description
Interpret given tree of filter instructions. This is core function of filter system and does all the hard work.

Each instruction has 4 fields
code (which is instruction code), aux (which is extension to instruction code, typically type), arg1 and
arg2 - arguments. Depending on instruction, arguments are either integers, or pointers to instruction trees.
Common instructions like +, that have two expressions as arguments use TWOARGS macro to get both of
them evaluated.

Function

enum filter return f run (const struct filter * filter , struct rte * rte, int flags) – run a filter for a route

Arguments

const struct filter * filter
filter to run

struct rte * rte
route being filtered, must be write-able

int flags
flags

Description
If rte->attrs is cached, the returned rte allocates a new rta on tmp pool, otherwise the filters may modify
it.

46

4.1. Filters 47

Function

enum filter return f eval rte (const struct f line * expr , struct rte * rte, uint argc, const struct f val * argv ,
uint resc, struct f val * resv) – run a filter line for an uncached route

Arguments

const struct f line * expr
filter line to run

struct rte * rte
route being filtered, may be modified

uint argc
– undescribed –

const struct f val * argv
– undescribed –

uint resc
– undescribed –

struct f val * resv
– undescribed –

Description
This specific filter entry point runs the given filter line (which must not have any arguments) on the given
route.
The route MUST NOT have REF COW set and its attributes MUST NOT be cached by rta lookup().

Function

int filter same (const struct filter * new , const struct filter * old) – compare two filters

Arguments

const struct filter * new
first filter to be compared

const struct filter * old
second filter to be compared

Description
Returns 1 in case filters are same, otherwise 0. If there are underlying bugs, it will rather say 0 on same
filters than say 1 on different.

Function

void filter commit (struct config * new , struct config * old) – do filter comparisons on all the named functions
and filters

Arguments

struct config * new
– undescribed –

struct config * old
– undescribed –

4.2. Trie for prefix sets 48

Function

struct f tree * build tree (struct f tree * from)

Arguments

struct f tree * from
degenerated tree (linked by tree->left) to be transformed into form suitable for find tree()

Description
Transforms degenerated tree into balanced tree.

Function

int same tree (const struct f tree * t1 , const struct f tree * t2)

Arguments

const struct f tree * t1
first tree to be compared

const struct f tree * t2
second one

Description
Compares two trees and returns 1 if they are same

4.2 Trie for prefix sets

We use a (compressed) trie to represent prefix sets. Every node in the trie represents one prefix (addr/plen)
and plen also indicates the index of bits in the address that are used to branch at the node. Note that
such prefix is not necessary a member of the prefix set, it is just a canonical prefix associated with a node.
Prefix lengths of nodes are aligned to multiples of TRIE STEP (4) and there is 16-way branching in each node.
Therefore, we say that a node is associated with a range of prefix lengths (plen .. plen + TRIE STEP - 1).

The prefix set is not just a set of prefixes, it is defined by a set of prefix patterns. Each prefix pattern consists
of ppaddr/pplen and two integers: low and high. The tested prefix paddr/plen matches that pattern if
the first MIN(plen, pplen) bits of paddr and ppaddr are the same and low <= plen <= high.

There are two ways to represent accepted prefixes for a node. First, there is a bitmask local, which
represents independently all 15 prefixes that extend the canonical prefix of the node and are within a
range of prefix lengths associated with the node. E.g., for node 10.0.0.0/8 they are 10.0.0.0/8, 10.0.0.0/9,
10.128.0.0/9, .. 10.224.0.0/11. This order (first by length, then lexicographically) is used for indexing the
bitmask local, starting at position 1. I.e., index is 2ˆ(plen - base) + offset within the same length, see
function trie local mask6() for details.

Second, we use a bitmask accept to represent accepted prefix lengths at a node. The bit is set means that
all prefixes of given length that are either subprefixes or superprefixes of the canonical prefix are accepted.
As there are 33 prefix lengths (0..32 for IPv4), but there is just one prefix of zero length in the whole trie
so we have zero flag in f trie (indicating whether the trie accepts prefix 0.0.0.0/0) as a special case, and
accept bitmask represents accepted prefix lengths from 1 to 32.

One complication is handling of prefix patterns with unaligned prefix length. When such pattern is to be
added, we add a primary node above (with rounded down prefix length nlen) and a set of secondary nodes
below (with rounded up prefix lengths slen). Accepted prefix lengths of the original prefix pattern are then
represented in different places based on their lengths. For prefixes shorter than nlen, it is accept bitmask
of the primary node, for prefixes between nlen and slen - 1 it is local bitmask of the primary node, and
for prefixes longer of equal slen it is accept bitmasks of secondary nodes.

There are two cases in prefix matching - a match when the length of the prefix is smaller that the length
of the prefix pattern, (plen < pplen) and otherwise. The second case is simple - we just walk through the
trie and look at every visited node whether that prefix accepts our prefix length (plen). The first case is

4.2. Trie for prefix sets 49

tricky - we do not want to examine every descendant of a final node, so (when we create the trie) we have
to propagate that information from nodes to their ascendants.

There are two kinds of propagations - propagation from child’s accept bitmask to parent’s accept bitmask,
and propagation from child’s accept bitmask to parent’s local bitmask. The first kind is simple - as all
superprefixes of a parent are also all superprefixes of appropriate length of a child, then we can just add
(by bitwise or) a child accept mask masked by parent prefix length mask to the parent accept mask. This
handles prefixes shorter than node plen.

The second kind of propagation is necessary to handle superprefixes of a child that are represented by parent
local mask - that are in the range of prefix lengths associated with the parent. For each accepted (by child
accept mask) prefix length from that range, we need to set appropriate bit in local mask. See function
trie amask to local() for details.

There are four cases when we walk through a trie:

- we are in NULL - we are out of path (prefixes are inconsistent) - we are in the wanted (final) node (node
length == plen) - we are beyond the end of path (node length > plen) - we are still on path and keep
walking (node length < plen)

The walking code in trie match net() is structured according to these cases.

Iteration over prefixes in a trie can be done using TRIE WALK() macro, or directly using trie walk init()
and trie walk next() functions. The second approach allows suspending the iteration and continuing in it
later. Prefixes are enumerated in the usual lexicographic order and may be restricted to a subset of the trie
(all subnets of a specified prefix).

Note that the trie walk does not reliably enumerate ‘implicit’ prefixes defined by low and high fields in prefix
patterns, it is supposed to be used on tries constructed from ‘explicit’ prefixes (low == plen == high in
call to trie add prefix()).

The trie walk has three basic state variables stored in the struct f trie walk state – the current node in
stack[stack pos], accept length for iteration over inter-node prefixes (non-branching prefixes on compressed
path between the current node and its parent node, stored in the bitmap accept of the current node) and
local pos for iteration over intra-node prefixes (stored in the bitmap local).

The trie also supports longest-prefix-match query by trie match longest ip4() and it can be ex-
tended to iteration over all covering prefixes for a given prefix (from longest to shortest) using
TRIE WALK TO ROOT IP4() macro. There are also IPv6 versions (for practical reasons, these func-
tions and macros are separate for IPv4 and IPv6). There is the same limitation to enumeration of ‘implicit’
prefixes like with the previous TRIE WALK() macro.

Function

struct f trie * f new trie (linpool * lp, uint data size) – allocates and returns a new empty trie

Arguments

linpool * lp
linear pool to allocate items from

uint data size
user data attached to node

Function

void * trie add prefix (struct f trie * t , const net addr * net , uint l , uint h)

Arguments

struct f trie * t
trie to add to

const net addr * net
IP network prefix

uint l
prefix lower bound

4.2. Trie for prefix sets 50

uint h
prefix upper bound

Description
Adds prefix (prefix pattern) n to trie t . l and h are lower and upper bounds on accepted prefix lengths,
both inclusive. 0 <= l, h <= 32 (128 for IPv6).
Returns a pointer to the allocated node. The function can return a pointer to an existing node if px and
plen are the same. If px/plen == 0/0 (or ::/0), a pointer to the root node is returned. Returns NULL when
called with mismatched IPv4/IPv6 net type.

Function

int trie match net (const struct f trie * t , const net addr * n)

Arguments

const struct f trie * t
trie

const net addr * n
net address

Description
Tries to find a matching net in the trie such that prefix n matches that prefix pattern. Returns 1 if there is
such prefix pattern in the trie.

Function

int trie match longest ip4 (const struct f trie * t , const net addr ip4 * net , net addr ip4 * dst , ip4 addr *
found0)

Arguments

const struct f trie * t
trie

const net addr ip4 * net
net address

net addr ip4 * dst
return value

ip4 addr * found0
optional returned bitmask of found nodes

Description
Perform longest prefix match for the address net and return the resulting prefix in the buffer dst . The
bitmask found0 is used to report lengths of prefixes on the path from the root to the resulting prefix.
E.g., if there is also a /20 shorter matching prefix, then 20-th bit is set in found0 . This can be used to
enumerate all matching prefixes for the network net using function trie match next longest ip4() or macro
TRIE WALK TO ROOT IP4().
This function assumes IPv4 trie, there is also an IPv6 variant. The net argument is typed as net addr ip4,
but would accept any IPv4-based net addr, like net4 prefix(). Anyway, returned dst is always net addr ip4.

Result
1 if a matching prefix was found, 0 if not.

Function

int trie match longest ip6 (const struct f trie * t , const net addr ip6 * net , net addr ip6 * dst , ip6 addr *
found0)

4.2. Trie for prefix sets 51

Arguments

const struct f trie * t
trie

const net addr ip6 * net
net address

net addr ip6 * dst
return value

ip6 addr * found0
optional returned bitmask of found nodes

Description
Perform longest prefix match for the address net and return the resulting prefix in the buffer dst . The
bitmask found0 is used to report lengths of prefixes on the path from the root to the resulting prefix.
E.g., if there is also a /20 shorter matching prefix, then 20-th bit is set in found0 . This can be used to
enumerate all matching prefixes for the network net using function trie match next longest ip6() or macro
TRIE WALK TO ROOT IP6().
This function assumes IPv6 trie, there is also an IPv4 variant. The net argument is typed as net addr ip6,
but would accept any IPv6-based net addr, like net6 prefix(). Anyway, returned dst is always net addr ip6.

Result
1 if a matching prefix was found, 0 if not.

Function

void trie walk init (struct f trie walk state * s, const struct f trie * t , const net addr * net)

Arguments

struct f trie walk state * s
walk state

const struct f trie * t
trie

const net addr * net
optional subnet for walk

Description
Initialize walk state for subsequent walk through nodes of the trie t by trie walk next(). The argument net
allows to restrict walk to given subnet, otherwise full walk over all nodes is used. This is done by finding
node at or below net and starting position in it.

Function

int trie walk next (struct f trie walk state * s, net addr * net)

Arguments

struct f trie walk state * s
walk state

net addr * net
return value

Description
Find the next prefix in the trie walk and return it in the buffer net . Prefixes are walked in the usual
lexicographic order and may be restricted to a subset of the trie during walk setup by trie walk init(). Note
that the trie walk does not iterate reliably over ’implicit’ prefixes defined by low and high fields in prefix
patterns, it is supposed to be used on tries constructed from ’explicit’ prefixes (low == plen == high in
call to trie add prefix()).

Result
1 if the next prefix was found, 0 for the end of walk.

4.2. Trie for prefix sets 52

Function

int trie same (const struct f trie * t1 , const struct f trie * t2)

Arguments

const struct f trie * t1
first trie to be compared

const struct f trie * t2
second one

Description
Compares two tries and returns 1 if they are same

Function

void trie format (const struct f trie * t , buffer * buf)

Arguments

const struct f trie * t
trie to be formatted

buffer * buf
destination buffer

Description
Prints the trie to the supplied buffer.

Chapter 5: Protocols

5.1 The Babel protocol

The Babel is a loop-avoiding distance-vector routing protocol that is robust and efficient both in ordinary
wired networks and in wireless mesh networks.

The Babel protocol keeps state for each neighbour in a babel neighbor struct, tracking received Hello and
I Heard You (IHU) messages. A babel interface struct keeps hello and update times for each interface,
and a separate hello seqno is maintained for each interface.

For each prefix, Babel keeps track of both the possible routes (with next hop and router IDs), as well as
the feasibility distance for each prefix and router id. The prefix itself is tracked in a babel entry struct,
while the possible routes for the prefix are tracked as babel route entries and the feasibility distance is
maintained through babel source structures.

The main route selection is done in babel select route(). This is called when an entry is updated by receiving
updates from the network or when modified by internal timers. The function selects from feasible and
reachable routes the one with the lowest metric to be announced to the core.

Supported standards: RFC 8966 - The Babel Routing Protocol RFC 8967 - MAC Authentication for Babel
RFC 9079 - Source Specific Routing for Babel RFC 9229 - IPv4 Routes with IPv6 Next Hop for Babel

Function

void babel announce rte (struct babel proto * p, struct babel entry * e) – announce selected route to the
core

Arguments

struct babel proto * p
Babel protocol instance

struct babel entry * e
Babel route entry to announce

Description
This function announces a Babel entry to the core if it has a selected incoming path, and retracts it otherwise.
If there is no selected route but the entry is valid and ours, the unreachable route is announced instead.

Function

void babel select route (struct babel proto * p, struct babel entry * e, struct babel route * mod) – select
best route for given route entry

Arguments

struct babel proto * p
Babel protocol instance

struct babel entry * e
Babel entry to select the best route for

struct babel route * mod
Babel route that was modified or NULL if unspecified

Description
Select the best reachable and feasible route for a given prefix among the routes received from peers, and
propagate it to the nest. This just selects the reachable and feasible route with the lowest metric, but keeps
selected the old one in case of tie.
If no feasible route is available for a prefix that previously had a route selected, a seqno request is sent to
try to get a valid route. If the entry is valid and not owned by us, the unreachable route is announced to

53

5.1. The Babel protocol 54

the nest (to blackhole packets going to it, as per section 2.8). It is later removed by babel expire routes().
Otherwise, the route is just removed from the nest.
Argument mod is used to optimize best route calculation. When specified, the function can assume that
only the mod route was modified to avoid full best route selection and announcement when non-best route
was modified in minor way. The caller is advised to not call babel select route() when no change is done
(e.g. periodic route updates) to avoid unnecessary announcements of the same best route. The caller is not
required to call the function in case of a retraction of a non-best route.
Note that the function does not active triggered updates. That is done by babel rt notify() when the change
is propagated back to Babel.

Function

void babel send update (struct babel iface * ifa, btime changed , struct fib * rtable) – send route table updates

Arguments

struct babel iface * ifa
Interface to transmit on

btime changed
Only send entries changed since this time

struct fib * rtable
– undescribed –

Description
This function produces update TLVs for all entries changed since the time indicated by the changed param-
eter and queues them for transmission on the selected interface. During the process, the feasibility distance
for each transmitted entry is updated.

Function

void babel handle update (union babel msg * m, struct babel iface * ifa) – handle incoming route updates

Arguments

union babel msg * m
Incoming update TLV

struct babel iface * ifa
Interface the update was received on

Description
This function is called as a handler for update TLVs and handles the updating and maintenance of route
entries in Babel’s internal routing cache. The handling follows the actions described in the Babel RFC, and
at the end of each update handling, babel select route() is called on the affected entry to optionally update
the selected routes and propagate them to the core.

Function

void babel auth reset index (struct babel iface * ifa) – Reset authentication index on interface

Arguments

struct babel iface * ifa
Interface to reset

Description
This function resets the authentication index and packet counter for an interface, and should be called on
interface configuration, or when the packet counter overflows.

5.1. The Babel protocol 55

Function

void babel iface timer (timer * t) – Babel interface timer handler

Arguments

timer * t
Timer

Description
This function is called by the per-interface timer and triggers sending of periodic Hello’s and both triggered
and periodic updates. Periodic Hello’s and updates are simply handled by setting the next {hello,regular}
variables on the interface, and triggering an update (and resetting the variable) whenever ’now’ exceeds that
value.
For triggered updates, babel trigger iface update() will set the want triggered field on the interface to a
timestamp value. If this is set (and the next triggered time has passed; this is a rate limiting mechanism),
babel send update() will be called with this timestamp as the second parameter. This causes updates to be
send consisting of only the routes that have changed since the time saved in want triggered.
Mostly when an update is triggered, the route being modified will be set to the value of ’now’ at the time
of the trigger; the >= comparison for selecting which routes to send in the update will make sure this is
included.

Function

void babel timer (timer * t) – global timer hook

Arguments

timer * t
Timer

Description
This function is called by the global protocol instance timer and handles expiration of routes and neighbours
as well as pruning of the seqno request cache.

Function

uint babel write queue (struct babel iface * ifa, list * queue) – Write a TLV queue to a transmission buffer

Arguments

struct babel iface * ifa
Interface holding the transmission buffer

list * queue
TLV queue to write (containing internal-format TLVs)

Description
This function writes a packet to the interface transmission buffer with as many TLVs from the queue as
will fit in the buffer. It returns the number of bytes written (NOT counting the packet header). The
function is called by babel send queue() and babel send unicast() to construct packets for transmission, and
uses per-TLV helper functions to convert the internal-format TLVs to their wire representations.
The TLVs in the queue are freed after they are written to the buffer.

Function

void babel send unicast (union babel msg * msg , struct babel iface * ifa, ip addr dest) – send a single TLV
via unicast to a destination

5.1. The Babel protocol 56

Arguments

union babel msg * msg
TLV to send

struct babel iface * ifa
Interface to send via

ip addr dest
Destination of the TLV

Description
This function is used to send a single TLV via unicast to a designated receiver. This is used for replying to
certain incoming requests, and for sending unicast requests to refresh routes before they expire.

Function

void babel enqueue (union babel msg * msg , struct babel iface * ifa) – enqueue a TLV for transmission on
an interface

Arguments

union babel msg * msg
TLV to enqueue (in internal TLV format)

struct babel iface * ifa
Interface to enqueue to

Description
This function is called to enqueue a TLV for subsequent transmission on an interface. The transmission event
is triggered whenever a TLV is enqueued; this ensures that TLVs will be transmitted in a timely manner,
but that TLVs which are enqueued in rapid succession can be transmitted together in one packet.

Function

void babel process packet (struct babel iface * ifa, struct babel pkt header * pkt , int len, ip addr saddr , u16
sport , ip addr daddr , u16 dport) – process incoming data packet

Arguments

struct babel iface * ifa
Interface packet was received on

struct babel pkt header * pkt
Pointer to the packet data

int len
Length of received packet

ip addr saddr
Address of packet sender

u16 sport
Packet source port

ip addr daddr
Destination address of packet

u16 dport
Packet destination port

Description
This function is the main processing hook of incoming Babel packets. It checks that the packet header is
well-formed, then processes the TLVs contained in the packet. This is done in two passes: First all TLVs are
parsed into the internal TLV format. If a TLV parser fails, processing of the rest of the packet is aborted.
After the parsing step, the TLV handlers are called for each parsed TLV in order.

5.1. The Babel protocol 57

Function

int babel auth check (struct babel iface * ifa, ip addr saddr , u16 sport , ip addr daddr , u16 dport , struct
babel pkt header * pkt , byte * trailer , uint trailer len) – Check authentication for a packet

Arguments

struct babel iface * ifa
Interface holding the transmission buffer

ip addr saddr
Source address the packet was received from

u16 sport
Source port the packet was received from

ip addr daddr
Destination address the packet was sent to

u16 dport
Destination port the packet was sent to

struct babel pkt header * pkt
Pointer to start of the packet data

byte * trailer
Pointer to the packet trailer

uint trailer len
Length of the packet trailer

Description
This function performs any necessary authentication checks on a packet and returns 0 if the packet should
be accepted (either because it has been successfully authenticated or because authentication is disabled or
configured in permissive mode), or 1 if the packet should be dropped without further processing.

Function

int babel auth add tlvs (struct babel iface * ifa, struct babel tlv * hdr , uint max len) – Add authentication-
related TLVs to a packet

Arguments

struct babel iface * ifa
Interface holding the transmission buffer

struct babel tlv * hdr
– undescribed –

uint max len
Maximum length available for adding new TLVs

Description
This function adds any new TLVs required by the authentication mode to a packet before it is shipped out.
For MAC authentication, this is the packet counter TLV that must be included in every packet.

Function

int babel auth sign (struct babel iface * ifa, ip addr dest) – Sign an outgoing packet before transmission

5.2. Bidirectional Forwarding Detection 58

Arguments

struct babel iface * ifa
Interface holding the transmission buffer

ip addr dest
Destination address of the packet

Description
This function adds authentication signature(s) to the packet trailer for each of the configured authentication
keys on the interface.

Function

void babel auth set tx overhead (struct babel iface * ifa) – Set interface TX overhead for authentication

Arguments

struct babel iface * ifa
Interface to configure

Description
This function sets the TX overhead for an interface based on its authentication configuration.

5.2 Bidirectional Forwarding Detection

The BFD protocol is implemented in three files: bfd.c containing the protocol logic and the protocol glue
with BIRD core, packets.c handling BFD packet processing, RX, TX and protocol sockets. io.c then
contains generic code for the event loop, threads and event sources (sockets, microsecond timers). This
generic code will be merged to the main BIRD I/O code in the future.

The BFD implementation uses a separate thread with an internal event loop for handling the protocol logic,
which requires high-res and low-latency timing, so it is not affected by the rest of BIRD, which has several
low-granularity hooks in the main loop, uses second-based timers and cannot offer good latency. The core
of BFD protocol (the code related to BFD sessions, interfaces and packets) runs in the BFD thread, while
the rest (the code related to BFD requests, BFD neighbors and the protocol glue) runs in the main thread.

BFD sessions are represented by structure bfd session that contains a state related to the session and two
timers (TX timer for periodic packets and hold timer for session timeout). These sessions are allocated from
session slab and are accessible by two hash tables, session hash id (by session ID) and session hash ip (by
IP addresses of neighbors and associated interfaces). Slab and both hashes are in the main protocol structure
bfd proto. The protocol logic related to BFD sessions is implemented in internal functions bfd session *(),
which are expected to be called from the context of BFD thread, and external functions bfd add session(),
bfd remove session() and bfd reconfigure session(), which form an interface to the BFD core for the rest and
are expected to be called from the context of main thread.

Each BFD session has an associated BFD interface, represented by structure bfd iface. A BFD interface
contains a socket used for TX (the one for RX is shared in bfd proto), an interface configuration and
reference counter. Compared to interface structures of other protocols, these structures are not created
and removed based on interface notification events, but according to the needs of BFD sessions. When a
new session is created, it requests a proper BFD interface by function bfd get iface(), which either finds
an existing one in iface list (from bfd proto) or allocates a new one. When a session is removed, an
associated iface is discharged by bfd free iface().

BFD requests are the external API for the other protocols. When a protocol wants a BFD session, it
calls bfd request session(), which creates a structure bfd request containing approprite information and an
notify hook. This structure is a resource associated with the caller’s resource pool. When a BFD protocol is
available, a BFD request is submitted to the protocol, an appropriate BFD session is found or created and the
request is attached to the session. When a session changes state, all attached requests (and related protocols)
are notified. Note that BFD requests do not depend on BFD protocol running. When the BFD protocol
is stopped or removed (or not available from beginning), related BFD requests are stored in bfd wait list ,
where waits for a new protocol.

5.3. Border Gateway Protocol 59

BFD neighbors are just a way to statically configure BFD sessions without requests from other protocol.
Structures bfd neighbor are part of BFD configuration (like static routes in the static protocol). BFD
neighbors are handled by BFD protocol like it is a BFD client – when a BFD neighbor is ready, the protocol
just creates a BFD request like any other protocol.

The protocol uses a new generic event loop (structure birdloop) from io.c, which supports sockets, timers
and events like the main loop. A birdloop is associated with a thread (field thread) in which event hooks
are executed. Most functions for setting event sources (like sk start() or tm start()) must be called from
the context of that thread. Birdloop allows to temporarily acquire the context of that thread for the
main thread by calling birdloop enter() and then birdloop leave(), which also ensures mutual exclusion with
all event hooks. Note that resources associated with a birdloop (like timers) should be attached to the
independent resource pool, detached from the main resource tree.

There are two kinds of interaction between the BFD core (running in the BFD thread) and the rest of
BFD (running in the main thread). The first kind are configuration calls from main thread to the BFD
thread (like bfd add session()). These calls are synchronous and use birdloop enter() mechanism for mutual
exclusion. The second kind is a notification about session changes from the BFD thread to the main thread.
This is done in an asynchronous way, sesions with pending notifications are linked (in the BFD thread) to
notify list in bfd proto, and then bfd notify hook() in the main thread is activated using a standard event
sending code. The hook then processes scheduled sessions and calls hooks from associated BFD requests.
This notify list (and state fields in structure bfd session) is protected by a spinlock in bfd proto and
functions bfd lock sessions() / bfd unlock sessions().

There are few data races (accessing p->p.debug from TRACE() from the BFD thread and accessing some
some private fields of bfd session from bfd show sessions() from the main thread, but these are harmless
(i hope).

TODO: document functions and access restrictions for fields in BFD structures.

Supported standards: - RFC 5880 - main BFD standard - RFC 5881 - BFD for IP links - RFC 5882 - generic
application of BFD - RFC 5883 - BFD for multihop paths

5.3 Border Gateway Protocol

The BGP protocol is implemented in three parts: bgp.c which takes care of the connection and most of
the interface with BIRD core, packets.c handling both incoming and outgoing BGP packets and attrs.c

containing functions for manipulation with BGP attribute lists.

As opposed to the other existing routing daemons, BIRD has a sophisticated core architecture which is
able to keep all the information needed by BGP in the primary routing table, therefore no complex data
structures like a central BGP table are needed. This increases memory footprint of a BGP router with many
connections, but not too much and, which is more important, it makes BGP much easier to implement.

Each instance of BGP (corresponding to a single BGP peer) is described by a bgp proto structure to which
are attached individual connections represented by bgp connection (usually, there exists only one connec-
tion, but during BGP session setup, there can be more of them). The connections are handled according to
the BGP state machine defined in the RFC with all the timers and all the parameters configurable.

In incoming direction, we listen on the connection’s socket and each time we receive some input, we pass
it to bgp rx(). It decodes packet headers and the markers and passes complete packets to bgp rx packet()
which distributes the packet according to its type.

In outgoing direction, we gather all the routing updates and sort them to buckets (bgp bucket) according
to their attributes (we keep a hash table for fast comparison of rta’s and a fib which helps us to find if we
already have another route for the same destination queued for sending, so that we can replace it with the
new one immediately instead of sending both updates). There also exists a special bucket holding all the
route withdrawals which cannot be queued anywhere else as they don’t have any attributes. If we have any
packet to send (due to either new routes or the connection tracking code wanting to send a Open, Keepalive
or Notification message), we call bgp schedule packet() which sets the corresponding bit in a packet to send
bit field in bgp conn and as soon as the transmit socket buffer becomes empty, we call bgp fire tx(). It
inspects state of all the packet type bits and calls the corresponding bgp create xx() functions, eventually
rescheduling the same packet type if we have more data of the same type to send.

The processing of attributes consists of two functions: bgp decode attrs() for checking of the attribute blocks
and translating them to the language of BIRD’s extended attributes and bgp encode attrs() which does the

5.3. Border Gateway Protocol 60

converse. Both functions are built around a bgp attr table array describing all important characteristics of
all known attributes. Unknown transitive attributes are attached to the route as EAF TYPE OPAQUE byte
streams.

BGP protocol implements graceful restart in both restarting (local restart) and receiving (neighbor restart)
roles. The first is handled mostly by the graceful restart code in the nest, BGP protocol just handles capa-
bilities, sets gr wait and locks graceful restart until end-of-RIB mark is received. The second is implemented
by internal restart of the BGP state to BS IDLE and protocol state to PS START, but keeping the proto-
col up from the core point of view and therefore maintaining received routes. Routing table refresh cycle
(rt refresh begin(), rt refresh end()) is used for removing stale routes after reestablishment of BGP session
during graceful restart.

Supported standards: RFC 4271 - Border Gateway Protocol 4 (BGP) RFC 1997 - BGP Communities
Attribute RFC 2385 - Protection of BGP Sessions via TCP MD5 Signature RFC 2545 - Use of BGP Multi-
protocol Extensions for IPv6 RFC 2918 - Route Refresh Capability RFC 3107 - Carrying Label Information
in BGP RFC 4360 - BGP Extended Communities Attribute RFC 4364 - BGP/MPLS IPv4 Virtual Private
Networks RFC 4456 - BGP Route Reflection RFC 4486 - Subcodes for BGP Cease Notification Message RFC
4659 - BGP/MPLS IPv6 Virtual Private Networks RFC 4724 - Graceful Restart Mechanism for BGP RFC
4760 - Multiprotocol extensions for BGP RFC 4798 - Connecting IPv6 Islands over IPv4 MPLS RFC 5065
- AS confederations for BGP RFC 5082 - Generalized TTL Security Mechanism RFC 5492 - Capabilities
Advertisement with BGP RFC 5575 - Dissemination of Flow Specification Rules RFC 5668 - 4-Octet AS
Specific BGP Extended Community RFC 6286 - AS-Wide Unique BGP Identifier RFC 6608 - Subcodes
for BGP Finite State Machine Error RFC 6793 - BGP Support for 4-Octet AS Numbers RFC 7311 - Ac-
cumulated IGP Metric Attribute for BGP RFC 7313 - Enhanced Route Refresh Capability for BGP RFC
7606 - Revised Error Handling for BGP UPDATE Messages RFC 7911 - Advertisement of Multiple Paths
in BGP RFC 7947 - Internet Exchange BGP Route Server RFC 8092 - BGP Large Communities Attribute
RFC 8203 - BGP Administrative Shutdown Communication RFC 8212 - Default EBGP Route Propagation
Behavior without Policies RFC 8654 - Extended Message Support for BGP RFC 8950 - Advertising IPv4
NLRI with an IPv6 Next Hop RFC 9072 - Extended Optional Parameters Length for BGP OPEN Message
RFC 9117 - Revised Validation Procedure for BGP Flow Specifications RFC 9234 - Route Leak Prevention
and Detection Using Roles RFC 9687 - Send Hold Timer draft-uttaro-idr-bgp-persistence-04 draft-walton-
bgp-hostname-capability-02

Function

void bgp close (struct bgp proto * p) – close a BGP instance

Arguments

struct bgp proto * p
BGP instance

Description
This function frees and deconfigures shared BGP resources.

Function

void bgp open (struct bgp proto * p) – open a BGP instance

Arguments

struct bgp proto * p
BGP instance

Description
This function allocates and configures shared BGP resources, mainly listening sockets. Should be called as
the last step during initialization (when lock is acquired and neighbor is ready). When error, caller should
change state to PS DOWN and return immediately.

Function

void bgp start timer (struct bgp proto * p, timer * t , uint value) – start a BGP timer

5.3. Border Gateway Protocol 61

Arguments

struct bgp proto * p
– undescribed –

timer * t
timer

uint value
time (in seconds) to fire (0 to disable the timer)

Description
This functions calls tm start() on t with time value and the amount of randomization suggested by the BGP
standard. Please use it for all BGP timers.

Function

void bgp close conn (struct bgp conn * conn) – close a BGP connection

Arguments

struct bgp conn * conn
connection to close

Description
This function takes a connection described by the bgp conn structure, closes its socket and frees all resources
associated with it.

Function

void bgp update startup delay (struct bgp proto * p) – update a startup delay

Arguments

struct bgp proto * p
BGP instance

Description
This function updates a startup delay that is used to postpone next BGP connect. It also handles dis-
able after error and might stop BGP instance when error happened and disable after error is on.
It should be called when BGP protocol error happened.

Function

void bgp handle graceful restart (struct bgp proto * p) – handle detected BGP graceful restart

Arguments

struct bgp proto * p
BGP instance

Description
This function is called when a BGP graceful restart of the neighbor is detected (when the TCP connection
fails or when a new TCP connection appears). The function activates processing of the restart - starts
routing table refresh cycle and activates BGP restart timer. The protocol state goes back to PS START, but
changing BGP state back to BS IDLE is left for the caller.

Function

void bgp graceful restart done (struct bgp channel * c) – finish active BGP graceful restart

5.3. Border Gateway Protocol 62

Arguments

struct bgp channel * c
BGP channel

Description
This function is called when the active BGP graceful restart of the neighbor should be finished for channel
c - either successfully (the neighbor sends all paths and reports end-of-RIB for given AFI/SAFI on the new
session) or unsuccessfully (the neighbor does not support BGP graceful restart on the new session). The
function ends the routing table refresh cycle.

Function

void bgp graceful restart timeout (timer * t) – timeout of graceful restart ’restart timer’

Arguments

timer * t
timer

Description
This function is a timeout hook for gr timer , implementing BGP restart time limit for reestablisment of the
BGP session after the graceful restart. When fired, we just proceed with the usual protocol restart.

Function

void bgp refresh begin (struct bgp channel * c) – start incoming enhanced route refresh sequence

Arguments

struct bgp channel * c
BGP channel

Description
This function is called when an incoming enhanced route refresh sequence is started by the neighbor, demar-
cated by the BoRR packet. The function updates the load state and starts the routing table refresh cycle.
Note that graceful restart also uses routing table refresh cycle, but RFC 7313 and load states ensure that
these two sequences do not overlap.

Function

void bgp refresh end (struct bgp channel * c) – finish incoming enhanced route refresh sequence

Arguments

struct bgp channel * c
BGP channel

Description
This function is called when an incoming enhanced route refresh sequence is finished by the neighbor,
demarcated by the EoRR packet. The function updates the load state and ends the routing table refresh
cycle. Routes not received during the sequence are removed by the nest.

Function

void bgp connect (struct bgp proto * p) – initiate an outgoing connection

Arguments

struct bgp proto * p
BGP instance

Description
The bgp connect() function creates a new bgp conn and initiates a TCP connection to the peer. The rest of
connection setup is governed by the BGP state machine as described in the standard.

5.3. Border Gateway Protocol 63

Function

struct bgp proto * bgp find proto (sock * sk) – find existing proto for incoming connection

Arguments

sock * sk
TCP socket

Function

int bgp incoming connection (sock * sk , uint dummy UNUSED) – handle an incoming connection

Arguments

sock * sk
TCP socket

uint dummy UNUSED
– undescribed –

Description
This function serves as a socket hook for accepting of new BGP connections. It searches a BGP instance
corresponding to the peer which has connected and if such an instance exists, it creates a bgp conn structure,
attaches it to the instance and either sends an Open message or (if there already is an active connection) it
closes the new connection by sending a Notification message.

Function

void bgp error (struct bgp conn * c, uint code, uint subcode, byte * data, int len) – report a protocol error

Arguments

struct bgp conn * c
connection

uint code
error code (according to the RFC)

uint subcode
error sub-code

byte * data
data to be passed in the Notification message

int len
length of the data

Description
bgp error() sends a notification packet to tell the other side that a protocol error has occurred (including the
data considered erroneous if possible) and closes the connection.

Function

void bgp store error (struct bgp proto * p, struct bgp conn * c, u8 class, u32 code) – store last error for
status report

Arguments

struct bgp proto * p
BGP instance

5.3. Border Gateway Protocol 64

struct bgp conn * c
connection

u8 class
error class (BE xxx constants)

u32 code
error code (class specific)

Description
bgp store error() decides whether given error is interesting enough and store that error to last error variables
of p

Function

int bgp fire tx (struct bgp conn * conn) – transmit packets

Arguments

struct bgp conn * conn
connection

Description
Whenever the transmit buffers of the underlying TCP connection are free and we have any packets queued
for sending, the socket functions call bgp fire tx() which takes care of selecting the highest priority packet
queued (Notification > Keepalive > Open > Update), assembling its header and body and sending it to the
connection.

Function

void bgp schedule packet (struct bgp conn * conn, struct bgp channel * c, int type) – schedule a packet for
transmission

Arguments

struct bgp conn * conn
connection

struct bgp channel * c
channel

int type
packet type

Description
Schedule a packet of type type to be sent as soon as possible.

Function

const char * bgp error dsc (uint code, uint subcode) – return BGP error description

Arguments

uint code
BGP error code

uint subcode
BGP error subcode

Description
bgp error dsc() returns error description for BGP errors which might be static string or given temporary
buffer.

5.3. Border Gateway Protocol 65

Function

void bgp rx packet (struct bgp conn * conn, byte * pkt , uint len) – handle a received packet

Arguments

struct bgp conn * conn
BGP connection

byte * pkt
start of the packet

uint len
packet size

Description
bgp rx packet() takes a newly received packet and calls the corresponding packet handler according to the
packet type.

Function

int bgp rx (sock * sk , uint size) – handle received data

Arguments

sock * sk
socket

uint size
amount of data received

Description
bgp rx() is called by the socket layer whenever new data arrive from the underlying TCP connection. It
assembles the data fragments to packets, checks their headers and framing and passes complete packets to
bgp rx packet().

Function

ea list * bgp export attrs (struct bgp export state * s, ea list * a) – export BGP attributes

Arguments

struct bgp export state * s
BGP export state

ea list * a
– undescribed –

Description
The bgp export attrs() function takes a list of attributes and merges it to one newly allocated and sorted
segment. Attributes are validated and normalized by type-specific export hooks and attribute flags are
updated. Some attributes may be eliminated (e.g. unknown non-tranitive attributes, or empty community
sets).

Result
one sorted attribute list segment, or NULL if attributes are unsuitable.

5.4. BGP Monitoring Protocol (BMP) 66

Function

int bgp encode attrs (struct bgp write state * s, ea list * attrs, byte * buf , byte * end) – encode BGP
attributes

Arguments

struct bgp write state * s
BGP write state

ea list * attrs
a list of extended attributes

byte * buf
buffer

byte * end
buffer end

Description
The bgp encode attrs() function takes a list of extended attributes and converts it to its BGP representation
(a part of an Update message). BGP write state may be fake when called from MRT protocol.

Result
Length of the attribute block generated or -1 if not enough space.

Function

ea list * bgp decode attrs (struct bgp parse state * s, byte * data, uint len) – check and decode BGP attributes

Arguments

struct bgp parse state * s
BGP parse state

byte * data
start of attribute block

uint len
length of attribute block

Description
This function takes a BGP attribute block (a part of an Update message), checks its consistency and converts
it to a list of BIRD route attributes represented by an (uncached) rta.

5.4 BGP Monitoring Protocol (BMP)

Supported standards: o RFC 7854 - BMP standard

TODO: - Support Peer Distinguisher ID in Per-Peer Header - Support peer type as RD Instance in Peer Type
field of Per-Peer Header. Currently, there are supported Global and Local Instance Peer types - Support
corresponding FSM event code during send PEER DOWN NOTIFICATION - Support DE CONFIGURED
PEER DOWN REASON code in PEER DOWN NOTIFICATION message - If connection with BMP col-
lector will lost then we don’t establish connection again - Set Peer Type by its a global and local-scope IP
address

The BMP session is managed by a simple state machine with three states: Idle (!started, !sk), Connect
(!started, sk active), and Established (started). It has three events: connect successful (Connect -> Es-
tablished), socket error (any -> Idle), and connect timeout (Idle/Connect -> Connect, resetting the TCP
socket).

5.4. BGP Monitoring Protocol (BMP) 67

Function

void bmp put per peer hdr (buffer * stream, const struct bmp peer hdr info * peer) – serializes Per-Peer
Header

Arguments

buffer * stream
– undescribed –

const struct bmp peer hdr info * peer
– undescribed –

BGP Monitoring Protocol (BMP)

Function

void bmp startup (struct bmp proto * p) – enter established state

Arguments

struct bmp proto * p
BMP instance

Description
The bgp startup() function is called when the BMP session is established. It sends initiation and peer up
messagages.

Function

void bmp down (struct bmp proto * p) – leave established state

Arguments

struct bmp proto * p
BMP instance

Description
The bgp down() function is called when the BMP session fails. The caller is responsible for changing protocol
state.

Function

void bmp connect (struct bmp proto * p) – initiate an outgoing connection

Arguments

struct bmp proto * p
BMP instance

Description
The bmp connect() function creates the socket and initiates an outgoing TCP connection to the monitoring
station. It is called to enter Connect state.

Function

int bmp start (struct proto * P) – initialize internal resources of BMP implementation.

Arguments

struct proto * P
– undescribed –

NOTE
It does not connect to BMP collector yet.

5.5. Open Shortest Path First (OSPF) 68

5.5 Open Shortest Path First (OSPF)

The OSPF protocol is quite complicated and its complex implemenation is split to many files. In ospf.c,
you will find mainly the interface for communication with the core (e.g., reconfiguration hooks, shutdown
and initialisation and so on). File iface.c contains the interface state machine and functions for alloca-
tion and deallocation of OSPF’s interface data structures. Source neighbor.c includes the neighbor state
machine and functions for election of Designated Router and Backup Designated router. In packet.c, you
will find various functions for sending and receiving generic OSPF packets. There are also routines for au-
thentication and checksumming. In hello.c, there are routines for sending and receiving of hello packets
as well as functions for maintaining wait times and the inactivity timer. Files lsreq.c, lsack.c, dbdes.c
contain functions for sending and receiving of link-state requests, link-state acknowledgements and database
descriptions respectively. In lsupd.c, there are functions for sending and receiving of link-state updates and
also the flooding algorithm. Source topology.c is a place where routines for searching LSAs in the link-state
database, adding and deleting them reside, there also are functions for originating of various types of LSAs
(router LSA, net LSA, external LSA). File rt.c contains routines for calculating the routing table. lsalib.c
is a set of various functions for working with the LSAs (endianity conversions, calculation of checksum etc.).

One instance of the protocol is able to hold LSA databases for multiple OSPF areas, to exchange routing
information between multiple neighbors and to calculate the routing tables. The core structure is ospf proto

to which multiple ospf area and ospf iface structures are connected. ospf proto is also connected to
top hash graph which is a dynamic hashing structure that describes the link-state database. It allows fast
search, addition and deletion. Each LSA is kept in two pieces: header and body. Both of them are kept in
the endianity of the CPU.

In OSPFv2 specification, it is implied that there is one IP prefix for each physical network/interface (unless
it is an ptp link). But in modern systems, there might be more independent IP prefixes associated with an
interface. To handle this situation, we have one ospf iface for each active IP prefix (instead for each active
iface); This behaves like virtual interface for the purpose of OSPF. If we receive packet, we associate it with
a proper virtual interface mainly according to its source address.

OSPF keeps one socket per ospf iface. This allows us (compared to one socket approach) to evade problems
with a limit of multicast groups per socket and with sending multicast packets to appropriate interface in
a portable way. The socket is associated with underlying physical iface and should not receive packets
received on other ifaces (unfortunately, this is not true on BSD). Generally, one packet can be received by
more sockets (for example, if there are more ospf iface on one physical iface), therefore we explicitly filter
received packets according to src/dst IP address and received iface.

Vlinks are implemented using particularly degenerate form of ospf iface, which has several exceptions: it
does not have its iface or socket (it copies these from ’parent’ ospf iface) and it is present in iface list even
when down (it is not freed in ospf iface down()).

The heart beat of ospf is ospf disp(). It is called at regular intervals (ospf proto->tick). It is responsible
for aging and flushing of LSAs in the database, updating topology information in LSAs and for routing table
calculation.

To every ospf iface, we connect one or more ospf neighbor’s – a structure containing many timers and
queues for building adjacency and for exchange of routing messages.

BIRD’s OSPF implementation respects RFC2328 in every detail, but some of internal algorithms do differ.
The RFC recommends making a snapshot of the link-state database when a new adjacency is forming and
sending the database description packets based on the information in this snapshot. The database can be
quite large in some networks, so rather we walk through a slist structure which allows us to continue even
if the actual LSA we were working with is deleted. New LSAs are added at the tail of this slist.

We also do not keep a separate OSPF routing table, because the core helps us by being able to recognize
when a route is updated to an identical one and it suppresses the update automatically. Due to this, we can
flush all the routes we have recalculated and also those we have deleted to the core’s routing table and the
core will take care of the rest. This simplifies the process and conserves memory.

Supported standards: - RFC 2328 - main OSPFv2 standard - RFC 5340 - main OSPFv3 standard - RFC
3101 - OSPFv2 NSSA areas - RFC 3623 - OSPFv2 Graceful Restart - RFC 4576 - OSPFv2 VPN loop
prevention - RFC 5187 - OSPFv3 Graceful Restart - RFC 5250 - OSPFv2 Opaque LSAs - RFC 5709 -
OSPFv2 HMAC-SHA Cryptographic Authentication - RFC 5838 - OSPFv3 Support of Address Families -
RFC 6549 - OSPFv2 Multi-Instance Extensions - RFC 6987 - OSPF Stub Router Advertisement - RFC 7166
- OSPFv3 Authentication Trailer - RFC 7770 - OSPF Router Information LSA

5.5. Open Shortest Path First (OSPF) 69

Function

void ospf disp (timer * timer) – invokes routing table calculation, aging and also area disp()

Arguments

timer * timer
timer usually called every ospf proto->tick second, timer ->data point to ospf proto

Function

int ospf preexport (struct channel * C , rte * e) – accept or reject new route from nest’s routing table

Arguments

struct channel * C
– undescribed –

rte * e
– undescribed –

Description
Its quite simple. It does not accept our own routes and leaves the decision on import to the filters.

Function

int ospf shutdown (struct proto * P) – Finish of OSPF instance

Arguments

struct proto * P
OSPF protocol instance

Description
RFC does not define any action that should be taken before router shutdown. To make my neighbors react
as fast as possible, I send them hello packet with empty neighbor list. They should start their neighbor state
machine with event NEIGHBOR 1WAY.

Function

int ospf reconfigure (struct proto * P , struct proto config * CF) – reconfiguration hook

Arguments

struct proto * P
current instance of protocol (with old configuration)

struct proto config * CF
– undescribed –

Description
This hook tries to be a little bit intelligent. Instance of OSPF will survive change of many constants like hello
interval, password change, addition or deletion of some neighbor on nonbroadcast network, cost of interface,
etc.

Function

struct top hash entry * ospf install lsa (struct ospf proto * p, struct ospf lsa header * lsa, u32 type, u32
domain, void * body) – install new LSA into database

5.5. Open Shortest Path First (OSPF) 70

Arguments

struct ospf proto * p
OSPF protocol instance

struct ospf lsa header * lsa
LSA header

u32 type
type of LSA

u32 domain
domain of LSA

void * body
pointer to LSA body

Description
This function ensures installing new LSA received in LS update into LSA database. Old instance is re-
placed. Several actions are taken to detect if new routing table calculation is necessary. This is described
in 13.2 of RFC 2328. This function is for received LSA only, locally originated LSAs are installed by
ospf originate lsa().
The LSA body in body is expected to be mb allocated by the caller and its ownership is transferred to the
LSA entry structure.

Function

void ospf advance lsa (struct ospf proto * p, struct top hash entry * en, struct ospf lsa header * lsa, u32
type, u32 domain, void * body) – handle received unexpected self-originated LSA

Arguments

struct ospf proto * p
OSPF protocol instance

struct top hash entry * en
current LSA entry or NULL

struct ospf lsa header * lsa
new LSA header

u32 type
type of LSA

u32 domain
domain of LSA

void * body
pointer to LSA body

Description
This function handles received unexpected self-originated LSA (lsa, body) by either advancing sequence
number of the local LSA instance (en) and propagating it, or installing the received LSA and immediately
flushing it (if there is no local LSA; i.e., en is NULL or MaxAge).
The LSA body in body is expected to be mb allocated by the caller and its ownership is transferred to the
LSA entry structure or it is freed.

Function

struct top hash entry * ospf originate lsa (struct ospf proto * p, struct ospf new lsa * lsa) – originate new
LSA

5.5. Open Shortest Path First (OSPF) 71

Arguments

struct ospf proto * p
OSPF protocol instance

struct ospf new lsa * lsa
New LSA specification

Description
This function prepares a new LSA, installs it into the LSA database and floods it. If the new LSA cannot be
originated now (because the old instance was originated within MinLSInterval, or because the LSA seqnum
is currently wrapping), the origination is instead scheduled for later. If the new LSA is equivalent to the
current LSA, the origination is skipped. In all cases, the corresponding LSA entry is returned. The new
LSA is based on the LSA specification (lsa) and the LSA body from lsab buffer of p, which is emptied after
the call. The opposite of this function is ospf flush lsa().

Function

void ospf flush lsa (struct ospf proto * p, struct top hash entry * en) – flush LSA from OSPF domain

Arguments

struct ospf proto * p
OSPF protocol instance

struct top hash entry * en
LSA entry to flush

Description
This function flushes en from the OSPF domain by setting its age to LSA MAXAGE and flooding it. That also
triggers subsequent events in LSA lifecycle leading to removal of the LSA from the LSA database (e.g. the
LSA content is freed when flushing is acknowledged by neighbors). The function does nothing if the LSA is
already being flushed. LSA entries are not immediately removed when being flushed, the caller may assume
that en still exists after the call. The function is the opposite of ospf originate lsa() and is supposed to do
the right thing even in cases of postponed origination.

Function

void ospf update lsadb (struct ospf proto * p) – update LSA database

Arguments

struct ospf proto * p
OSPF protocol instance

Description
This function is periodicaly invoked from ospf disp(). It does some periodic or postponed processing related
to LSA entries. It originates postponed LSAs scheduled by ospf originate lsa(), It continues in flushing
processes started by ospf flush lsa(). It also periodically refreshs locally originated LSAs – when the current
instance is older LSREFRESHTIME, a new instance is originated. Finally, it also ages stored LSAs and flushes
ones that reached LSA MAXAGE.
The RFC 2328 says that a router should periodically check checksums of all stored LSAs to detect hardware
problems. This is not implemented.

Function

void ospf originate ext lsa (struct ospf proto * p, struct ospf area * oa, ort * nf , u8 mode, u32 metric, u32
ebit , ip addr fwaddr , u32 tag , int pbit , int dn) – new route received from nest and filters

5.5. Open Shortest Path First (OSPF) 72

Arguments

struct ospf proto * p
OSPF protocol instance

struct ospf area * oa
ospf area for which LSA is originated

ort * nf
network prefix and mask

u8 mode
the mode of the LSA (LSA M EXPORT or LSA M RTCALC)

u32 metric
the metric of a route

u32 ebit
E-bit for route metric (bool)

ip addr fwaddr
the forwarding address

u32 tag
the route tag

int pbit
P-bit for NSSA LSAs (bool), ignored for external LSAs

int dn
– undescribed –

Description
If I receive a message that new route is installed, I try to originate an external LSA. If oa is an NSSA
area, NSSA-LSA is originated instead. oa should not be a stub area. src does not specify whether the
LSA is external or NSSA, but it specifies the source of origination - the export from ospf rt notify(), or the
NSSA-EXT translation.

Function

struct top graph * ospf top new (struct ospf proto * p, pool * pool) – allocated new topology database

Arguments

struct ospf proto * p
OSPF protocol instance

pool * pool
pool for allocation

Description
This dynamically hashed structure is used for keeping LSAs. Mainly it is used for the LSA database of the
OSPF protocol, but also for LSA retransmission and request lists of OSPF neighbors.

Function

void ospf neigh chstate (struct ospf neighbor * n, u8 state) – handles changes related to new or lod state of
neighbor

5.5. Open Shortest Path First (OSPF) 73

Arguments

struct ospf neighbor * n
OSPF neighbor

u8 state
new state

Description
Many actions have to be taken acording to a change of state of a neighbor. It starts rxmt timers, call
interface state machine etc.

Function

void ospf neigh sm (struct ospf neighbor * n, int event) – ospf neighbor state machine

Arguments

struct ospf neighbor * n
neighor

int event
actual event

Description
This part implements the neighbor state machine as described in 10.3 of RFC 2328. The only difference is
that state NEIGHBOR ATTEMPT is not used. We discover neighbors on nonbroadcast networks in the same way
as on broadcast networks. The only difference is in sending hello packets. These are sent to IPs listed in
ospf iface->nbma list .

Function

void ospf dr election (struct ospf iface * ifa) – (Backup) Designed Router election

Arguments

struct ospf iface * ifa
actual interface

Description
When the wait timer fires, it is time to elect (Backup) Designated Router. Structure describing me is added
to this list so every electing router has the same list. Backup Designated Router is elected before Designated
Router. This process is described in 9.4 of RFC 2328. The function is supposed to be called only from
ospf iface sm() as a part of the interface state machine.

Function

void ospf iface chstate (struct ospf iface * ifa, u8 state) – handle changes of interface state

Arguments

struct ospf iface * ifa
OSPF interface

u8 state
new state

Description
Many actions must be taken according to interface state changes. New network LSAs must be originated,
flushed, new multicast sockets to listen for messages for ALLDROUTERS have to be opened, etc.

5.5. Open Shortest Path First (OSPF) 74

Function

void ospf iface sm (struct ospf iface * ifa, int event) – OSPF interface state machine

Arguments

struct ospf iface * ifa
OSPF interface

int event
event comming to state machine

Description
This fully respects 9.3 of RFC 2328 except we have slightly different handling of DOWN and LOOP state. We
remove intefaces that are DOWN. DOWN state is used when an interface is waiting for a lock. LOOP state is used
when an interface does not have a link.

Function

int ospf rx hook (sock * sk , uint len)

Arguments

sock * sk
socket we received the packet.

uint len
length of the packet

Description
This is the entry point for messages from neighbors. Many checks (like authentication, checksums, size) are
done before the packet is passed to non generic functions.

Function

int lsa validate (struct ospf lsa header * lsa, u32 lsa type, int ospf2 , void * body) – check whether given LSA
is valid

Arguments

struct ospf lsa header * lsa
LSA header

u32 lsa type
internal LSA type (LSA T xxx)

int ospf2
true for OSPFv2, false for OSPFv3

void * body
pointer to LSA body

Description
Checks internal structure of given LSA body (minimal length, consistency). Returns true if valid.

Function

void ospf send dbdes (struct ospf proto * p, struct ospf neighbor * n) – transmit database description packet

5.6. Pipe 75

Arguments

struct ospf proto * p
OSPF protocol instance

struct ospf neighbor * n
neighbor

Description
Sending of a database description packet is described in 10.8 of RFC 2328. Reception of each packet is
acknowledged in the sequence number of another. When I send a packet to a neighbor I keep a copy in a
buffer. If the neighbor does not reply, I don’t create a new packet but just send the content of the buffer.

Function

void ospf rt spf (struct ospf proto * p) – calculate internal routes

Arguments

struct ospf proto * p
OSPF protocol instance

Description
Calculation of internal paths in an area is described in 16.1 of RFC 2328. It’s based on Dijkstra’s shortest
path tree algorithms. This function is invoked from ospf disp().

5.6 Pipe

The Pipe protocol is very simple. It just connects to two routing tables using proto add announce hook()
and whenever it receives a rt notify() about a change in one of the tables, it converts it to a rte update() in
the other one.

To avoid pipe loops, Pipe keeps a ‘being updated’ flag in each routing table.

A pipe has two announce hooks, the first connected to the main table, the second connected to the peer
table. When a new route is announced on the main table, it gets checked by an export filter in ahook 1, and,
after that, it is announced to the peer table via rte update(), an import filter in ahook 2 is called. When
a new route is announced in the peer table, an export filter in ahook2 and an import filter in ahook 1 are
used. Oviously, there is no need in filtering the same route twice, so both import filters are set to accept,
while user configured ’import’ and ’export’ filters are used as export filters in ahooks 2 and 1. Route limits
are handled similarly, but on the import side of ahooks.

5.7 Router Advertisements

The RAdv protocol is implemented in two files: radv.c containing the interface with BIRD core and the
protocol logic and packets.c handling low level protocol stuff (RX, TX and packet formats). The protocol
does not export any routes.

The RAdv is structured in the usual way - for each handled interface there is a structure radv iface that
contains a state related to that interface together with its resources (a socket, a timer). There is also a
prepared RA stored in a TX buffer of the socket associated with an iface. These iface structures are created
and removed according to iface events from BIRD core handled by radv if notify() callback.

The main logic of RAdv consists of two functions: radv iface notify(), which processes asynchronous events
(specified by RA EV * codes), and radv timer(), which triggers sending RAs and computes the next timeout.

The RAdv protocol could receive routes (through radv preexport() and radv rt notify()), but only the con-
figured trigger route is tracked (in active var). When a radv protocol is reconfigured, the connected routing
table is examined (in radv check active()) to have proper active value in case of the specified trigger prefix
was changed.

Supported standards: RFC 4861 - main RA standard RFC 4191 - Default Router Preferences and More-
Specific Routes RFC 6106 - DNS extensions (RDDNS, DNSSL)

5.8. Routing Information Protocol (RIP) 76

5.8 Routing Information Protocol (RIP)

The RIP protocol is implemented in two files: rip.c containing the protocol logic, route management and
the protocol glue with BIRD core, and packets.c handling RIP packet processing, RX, TX and protocol
sockets.

Each instance of RIP is described by a structure rip proto, which contains an internal RIP routing table,
a list of protocol interfaces and the main timer responsible for RIP routing table cleanup.

RIP internal routing table contains incoming and outgoing routes. For each network (represented by structure
rip entry) there is one outgoing route stored directly in rip entry and an one-way linked list of incoming
routes (structures rip rte). The list contains incoming routes from different RIP neighbors, but only routes
with the lowest metric are stored (i.e., all stored incoming routes have the same metric).

Note that RIP itself does not select outgoing route, that is done by the core routing table. When a new
incoming route is received, it is propagated to the RIP table by rip update rte() and possibly stored in the list
of incoming routes. Then the change may be propagated to the core by rip announce rte(). The core selects
the best route and propagate it to RIP by rip rt notify(), which updates outgoing route part of rip entry

and possibly triggers route propagation by rip trigger update().

RIP interfaces are represented by structures rip iface. A RIP interface contains a per-interface socket, a list
of associated neighbors, interface configuration, and state information related to scheduled interface events
and running update sessions. RIP interfaces are added and removed based on core interface notifications.

There are two RIP interface events - regular updates and triggered updates. Both are managed from the
RIP interface timer (rip iface timer()). Regular updates are called at fixed interval and propagate the whole
routing table, while triggered updates are scheduled by rip trigger update() due to some routing table change
and propagate only the routes modified since the time they were scheduled. There are also unicast-destined
requested updates, but these are sent directly as a reaction to received RIP request message. The update
session is started by rip send table(). There may be at most one active update session per interface, as the
associated state (including the fib iterator) is stored directly in rip iface structure.

RIP neighbors are represented by structures rip neighbor. Compared to neighbor handling in other routing
protocols, RIP does not have explicit neighbor discovery and adjacency maintenance, which makes the
rip neighbor related code a bit peculiar. RIP neighbors are interlinked with core neighbor structures
(neighbor) and use core neighbor notifications to ensure that RIP neighbors are timely removed. RIP
neighbors are added based on received route notifications and removed based on core neighbor and RIP
interface events.

RIP neighbors are linked by RIP routes and use counter to track the number of associated routes, but when
these RIP routes timeout, associated RIP neighbor is still alive (with zero counter). When RIP neighbor is
removed but still has some associated routes, it is not freed, just changed to detached state (core neighbors
and RIP ifaces are unlinked), then during the main timer cleanup phase the associated routes are removed
and the rip neighbor structure is finally freed.

Supported standards: RFC 1058 - RIPv1 RFC 2453 - RIPv2 RFC 2080 - RIPng RFC 2091 - Triggered RIP
for demand circuits RFC 4822 - RIP cryptographic authentication

Function

void rip announce rte (struct rip proto * p, struct rip entry * en) – announce route from RIP routing table
to the core

Arguments

struct rip proto * p
RIP instance

struct rip entry * en
related network

Description
The function takes a list of incoming routes from en, prepare appropriate rte for the core and propagate it
by rte update().

5.8. Routing Information Protocol (RIP) 77

Function

void rip update rte (struct rip proto * p, net addr * n, struct rip rte * new) – enter a route update to RIP
routing table

Arguments

struct rip proto * p
RIP instance

net addr * n
– undescribed –

struct rip rte * new
a rip rte representing the new route

Description
The function is called by the RIP packet processing code whenever it receives a reachable route. The
appropriate routing table entry is found and the list of incoming routes is updated. Eventually, the change
is also propagated to the core by rip announce rte(). Note that for unreachable routes, rip withdraw rte()
should be called instead of rip update rte().

Function

void rip withdraw rte (struct rip proto * p, net addr * n, struct rip neighbor * from) – enter a route withdraw
to RIP routing table

Arguments

struct rip proto * p
RIP instance

net addr * n
– undescribed –

struct rip neighbor * from
a rip neighbor propagating the withdraw

Description
The function is called by the RIP packet processing code whenever it receives an unreachable route. The
incoming route for given network from nbr from is removed. Eventually, the change is also propagated by
rip announce rte().

Function

void rip timer (timer * t) – RIP main timer hook

Arguments

timer * t
timer

Description
The RIP main timer is responsible for routing table maintenance. Invalid or expired routes (rip rte) are
removed and garbage collection of stale routing table entries (rip entry) is done. Changes are propagated
to core tables, route reload is also done here. Note that garbage collection uses a maximal GC time, while
interfaces maintain an illusion of per-interface GC times in rip send response().
Keeping incoming routes and the selected outgoing route are two independent functions, therefore after
garbage collection some entries now considered invalid (RIP ENTRY DUMMY) still may have non-empty
list of incoming routes, while some valid entries (representing an outgoing route) may have that list empty.
The main timer is not scheduled periodically but it uses the time of the current next event and the minimal
interval of any possible event to compute the time of the next run.

5.9. RPKI To Router (RPKI-RTR) 78

Function

void rip iface timer (timer * t) – RIP interface timer hook

Arguments

timer * t
timer

Description
RIP interface timers are responsible for scheduling both regular and triggered updates. Fixed, delay-
independent period is used for regular updates, while minimal separating interval is enforced for triggered
updates. The function also ensures that a new update is not started when the old one is still running.

Function

void rip send table (struct rip proto * p, struct rip iface * ifa, ip addr addr , btime changed) – RIP interface
timer hook

Arguments

struct rip proto * p
RIP instance

struct rip iface * ifa
RIP interface

ip addr addr
destination IP address

btime changed
time limit for triggered updates

Description
The function activates an update session and starts sending routing update packets (using
rip send response()). The session may be finished during the call or may continue in rip tx hook() until
all appropriate routes are transmitted. Note that there may be at most one active update session per
interface, the function will terminate the old active session before activating the new one.

Function

void rip rxmt timeout (timer * t) – RIP retransmission timer hook

Arguments

timer * t
timer

Description
In Demand Circuit mode, update packets must be acknowledged to ensure reliability. If they are not
acknowledged, we need to retransmit them.

5.9 RPKI To Router (RPKI-RTR)

The RPKI-RTR protocol is implemented in several files: rpki.c containing the routes handling, pro-
tocol logic, timer events, cache connection, reconfiguration, configuration and protocol glue with BIRD
core, packets.c containing the RPKI packets handling and finally all transports files: transport.c,
tcp transport.c and ssh transport.c.

The transport.c is a middle layer and interface for each specific transport. Transport is a way how to wrap
a communication with a cache server. There is supported an unprotected TCP transport and an encrypted

5.9. RPKI To Router (RPKI-RTR) 79

SSHv2 transport. The SSH transport requires LibSSH library. LibSSH is loading dynamically using dlopen()
function. SSH support is integrated in sysdep/unix/io.c. Each transport must implement an initialization
function, an open function and a socket identification function. That’s all.

This implementation is based on the RTRlib (http://rpki.realmv6.org/). The BIRD takes over files
packets.c, rtr.c (inside rpki.c), transport.c, tcp transport.c and ssh transport.c from RTRlib.

A RPKI-RTR connection is described by a structure rpki cache. The main logic is located in
rpki cache change state() function. There is a state machine. The standard starting state flow looks like
Down > Connecting > Sync-Start > Sync-Running > Established and then the last three states are
periodically repeated.

Connecting state establishes the transport connection. The state from a call
rpki cache change state(CONNECTING) to a call rpki connected hook()

Sync-Start state starts with sending Reset Query or Serial Query and then waits for Cache Response.
The state from rpki connected hook() to rpki handle cache response pdu()

During Sync-Running BIRD receives data with IPv4/IPv6 Prefixes from cache server. The state starts from
rpki handle cache response pdu() and ends in rpki handle end of data pdu().

Established state means that BIRD has synced all data with cache server. Schedules a refresh timer event
that invokes Sync-Start. Schedules Expire timer event and stops a Retry timer event.

Transport Error state means that we have some troubles with a network connection. We cannot connect to
a cache server or we wait too long for some expected PDU for received - Cache Response or End of Data.
It closes current connection and schedules a Retry timer event.

Fatal Protocol Error is occurred e.g. by received a bad Session ID. We restart a protocol, so all ROAs
are flushed immediately.

The RPKI-RTR protocol (RFC 6810 bis) defines configurable refresh, retry and expire intervals. For
maintaining a connection are used timer events that are scheduled by rpki schedule next refresh(),
rpki schedule next retry() and rpki schedule next expire() functions.

A Refresh timer event performs a sync of Established connection. So it shifts state to Sync-Start. If at
the beginning of second call of a refresh event is connection in Sync-Start state then we didn’t receive a
Cache Response from a cache server and we invoke Transport Error state.

A Retry timer event attempts to connect cache server. It is activated after Transport Error state and
terminated by reaching Established state. If cache connection is still connecting to the cache server at the
beginning of an event call then the Retry timer event invokes Transport Error state.

An Expire timer event checks expiration of ROAs. If a last successful sync was more ago than the expire
interval then the Expire timer event invokes a protocol restart thereby removes all ROAs learned from that
cache server and continue trying to connect to cache server. The Expire event is activated by initial successful
loading of ROAs, receiving End of Data PDU.

A reconfiguration of cache connection works well without restarting when we change only intervals values.

Supported standards: - RFC 6810 - main RPKI-RTR standard - RFC 6810 bis - an explicit timing parameters
and protocol version number negotiation

Function

const char * rpki cache state to str (enum rpki cache state state) – give a text representation of cache state

Arguments

enum rpki cache state state
A cache state

Description
The function converts logic cache state into string.

Function

void rpki start cache (struct rpki cache * cache) – connect to a cache server

Arguments

5.9. RPKI To Router (RPKI-RTR) 80

struct rpki cache * cache
RPKI connection instance

Description
This function is a high level method to kick up a connection to a cache server.

Function

void rpki force restart proto (struct rpki proto * p) – force shutdown and start protocol again

Arguments

struct rpki proto * p
RPKI protocol instance

Description
This function calls shutdown and frees all protocol resources as well. After calling this function should be
no operations with protocol data, they could be freed already.

Function

void rpki cache change state (struct rpki cache * cache, const enum rpki cache state new state) – check and
change cache state

Arguments

struct rpki cache * cache
RPKI cache instance

const enum rpki cache state new state
suggested new state

Description
This function makes transitions between internal states. It represents the core of logic management of RPKI
protocol. Cannot transit into the same state as cache is in already.

Function

void rpki refresh hook (timer * tm) – control a scheduling of downloading data from cache server

Arguments

timer * tm
refresh timer with cache connection instance in data

Description
This function is periodically called during ESTABLISHED or SYNC* state cache connection. The first refresh
schedule is invoked after receiving a End of Data PDU and has run by some ERROR is occurred.

Function

void rpki retry hook (timer * tm) – control a scheduling of retrying connection to cache server

Arguments

timer * tm
retry timer with cache connection instance in data

Description
This function is periodically called during ERROR* state cache connection. The first retry schedule is invoked
after any ERROR* state occurred and ends by reaching of ESTABLISHED state again.

5.9. RPKI To Router (RPKI-RTR) 81

Function

void rpki expire hook (timer * tm) – control a expiration of ROA entries

Arguments

timer * tm
expire timer with cache connection instance in data

Description
This function is scheduled after received a End of Data PDU. A waiting interval is calculated dynamically
by last update. If we reach an expiration time then we invoke a restarting of the protocol.

Function

const char * rpki check refresh interval (uint seconds) – check validity of refresh interval value

Arguments

uint seconds
suggested value

Description
This function validates value and should return NULL. If the check doesn’t pass then returns error message.

Function

const char * rpki check retry interval (uint seconds) – check validity of retry interval value

Arguments

uint seconds
suggested value

Description
This function validates value and should return NULL. If the check doesn’t pass then returns error message.

Function

const char * rpki check expire interval (uint seconds) – check validity of expire interval value

Arguments

uint seconds
suggested value

Description
This function validates value and should return NULL. If the check doesn’t pass then returns error message.

Function

const char * rpki get cache ident (struct rpki cache * cache) – give a text representation of cache server
name

Arguments

struct rpki cache * cache
RPKI connection instance

Description
The function converts cache connection into string.

5.9. RPKI To Router (RPKI-RTR) 82

Function

int rpki reconfigure cache (struct rpki proto *p UNUSED , struct rpki cache * cache, struct rpki config *
new , struct rpki config * old) – a cache reconfiguration

Arguments

struct rpki proto *p UNUSED
– undescribed –

struct rpki cache * cache
a cache connection

struct rpki config * new
new RPKI configuration

struct rpki config * old
old RPKI configuration

Description
This function reconfigures existing single cache server connection with new existing configuration. Generally,
a change of time intervals could be reconfigured without restarting and all others changes requires a restart
of protocol. Returns NEED TO RESTART or SUCCESSFUL RECONF.

Function

int rpki reconfigure (struct proto * P , struct proto config * CF) – a protocol reconfiguration hook

Arguments

struct proto * P
a protocol instance

struct proto config * CF
a new protocol configuration

Description
This function reconfigures whole protocol. It sets new protocol configuration into a protocol structure.
Returns NEED TO RESTART or SUCCESSFUL RECONF.

Function

void rpki check config (struct rpki config * cf) – check and complete configuration of RPKI protocol

Arguments

struct rpki config * cf
RPKI configuration

Description
This function is called at the end of parsing RPKI protocol configuration.

Function

struct pdu header * rpki pdu back to network byte order (struct pdu header * out , const struct pdu header
* in) – convert host-byte order PDU back to network-byte order

Arguments

struct pdu header * out
allocated memory for writing a converted PDU of size in->len

const struct pdu header * in
host-byte order PDU

Assumed
A == ntoh(ntoh(A))

5.9. RPKI To Router (RPKI-RTR) 83

Function

int rpki check receive packet (struct rpki cache * cache, const struct pdu header * pdu) – make a basic
validation of received RPKI PDU header

Arguments

struct rpki cache * cache
cache connection instance

const struct pdu header * pdu
RPKI PDU in network byte order

Description
This function checks protocol version, PDU type, version and size. If all is all right then function returns
RPKI SUCCESS otherwise sends Error PDU and returns RPKI ERROR.

Function

net addr union * rpki prefix pdu 2 net addr (const struct pdu header * pdu, net addr union * n) – convert
IPv4/IPv6 Prefix PDU into net addr union

Arguments

const struct pdu header * pdu
host byte order IPv4/IPv6 Prefix PDU

net addr union * n
allocated net addr union for save ROA

Description
This function reads ROA data from IPv4/IPv6 Prefix PDU and write them into net addr roa4 or
net addr roa6 data structure.

Function

void rpki rx packet (struct rpki cache * cache, struct pdu header * pdu) – process a received RPKI PDU

Arguments

struct rpki cache * cache
RPKI connection instance

struct pdu header * pdu
a RPKI PDU in network byte order

Function

int rpki send error pdu (struct rpki cache * cache, const enum pdu error type error code, u32 err pdu len,
const struct pdu header * erroneous pdu, const char * fmt ,) – send RPKI Error PDU

Arguments

struct rpki cache * cache
RPKI connection instance

const enum pdu error type error code
PDU Error type

u32 err pdu len
length of erroneous pdu

5.9. RPKI To Router (RPKI-RTR) 84

const struct pdu header * erroneous pdu
optional network byte-order PDU that invokes Error by us or NULL

const char * fmt
optional description text of error or NULL

... ...
variable arguments

Description
This function prepares Error PDU and sends it to a cache server.

Function

ip addr rpki hostname autoresolv (const char * host , const char ** err msg) – auto-resolve an IP address
from a hostname

Arguments

const char * host
domain name of host, e.g. ”rpki-validator.realmv6.org”

const char ** err msg
error message returned in case of errors

Description
This function resolves an IP address from a hostname. Returns ip addr structure with IP address or
IPA NONE.

Function

int rpki tr open (struct rpki tr sock * tr) – prepare and open a socket connection

Arguments

struct rpki tr sock * tr
initialized transport socket

Description
Prepare and open a socket connection specified by tr that must be initialized before. This function ends
with a calling the sk open() function. Returns RPKI TR SUCCESS or RPKI TR ERROR.

Function

void rpki tr close (struct rpki tr sock * tr) – close socket and prepare it for possible next open

Arguments

struct rpki tr sock * tr
successfully opened transport socket

Description
Close socket and free resources.

Function

const char * rpki tr ident (struct rpki tr sock * tr) – Returns a string identifier for the rpki transport socket

Arguments

struct rpki tr sock * tr
successfully opened transport socket

Description
Returns a \0 terminated string identifier for the socket endpoint, e.g. ”<host>:<port>”. Memory is
allocated inside tr structure.

5.10. Static 85

Function

void rpki tr tcp init (struct rpki tr sock * tr) – initializes the RPKI transport structure for a TCP connection

Arguments

struct rpki tr sock * tr
allocated RPKI transport structure

Function

void rpki tr ssh init (struct rpki tr sock * tr) – initializes the RPKI transport structure for a SSH connection

Arguments

struct rpki tr sock * tr
allocated RPKI transport structure

5.10 Static

The Static protocol is implemented in a straightforward way. It keeps a list of static routes. Routes of dest
RTD UNICAST have associated sticky node in the neighbor cache to be notified about gaining or losing the
neighbor and about interface-related events (e.g. link down). They may also have a BFD request if associated
with a BFD session. When a route is notified, static decide() is used to see whether the route activeness is
changed. In such case, the route is marked as dirty and scheduled to be announced or withdrawn, which is
done asynchronously from event hook. Routes of other types (e.g. black holes) are announced all the time.

Multipath routes are a bit tricky. To represent additional next hops, dummy static route nodes are used,
which are chained using mp next field and link to the master node by mp head field. Each next hop has a
separate neighbor entry and an activeness state, but the master node is used for most purposes. Note that
most functions DO NOT accept dummy nodes as arguments.

The only other thing worth mentioning is that when asked for reconfiguration, Static not only compares the
two configurations, but it also calculates difference between the lists of static routes and it just inserts the
newly added routes, removes the obsolete ones and reannounces changed ones.

5.11 Direct

The Direct protocol works by converting all ifa notify() events it receives to rte update() calls for the corre-
sponding network.

Chapter 6: System dependent parts

6.1 Introduction

We’ve tried to make BIRD as portable as possible, but unfortunately communication with the network stack
differs from one OS to another, so we need at least some OS specific code. The good news is that this code
is isolated in a small set of modules:

config.h

is a header file with configuration information, definition of the standard set of types and so on.

Startup module
controls BIRD startup. Common for a family of OS’s (e.g., for all Unices).

Logging module
manages the system logs. [per OS family]

IO module
gives an implementation of sockets, timers and the global event queue. [per OS family]

KRT module
implements the Kernel and Device protocols. This is the most arcane part of the system dependent
stuff and some functions differ even between various releases of a single OS.

6.2 Logging

The Logging module offers a simple set of functions for writing messages to system logs and to the debug
output. Message classes used by this module are described in birdlib.h and also in the user’s manual.

Function

void log commit (log buffer * buf) – commit a log message

Arguments

log buffer * buf
message to write

Description
This function writes a message prepared in the log buffer to the log file (as specified in the configuration).
The log buffer is reset after that. The log message is a full line, log commit() terminates it.
The message class is an integer, not a first char of a string like in log(), so it should be written like *L INFO.

Function

void log msg (const char * msg ,) – log a message

Arguments

const char * msg
printf-like formatting string with message class information prepended (L DEBUG to L BUG, see
lib/birdlib.h)

... ...
variable arguments

Description
This function formats a message according to the format string msg and writes it to the corresponding log
file (as specified in the configuration). Please note that the message is automatically formatted as a full line,
no need to include \n inside. It is essentially a sequence of log reset(), logn() and log commit().

86

6.2. Logging 87

Function

void bug (const char * msg ,) – report an internal error

Arguments

const char * msg
a printf-like error message

... ...
variable arguments

Description
This function logs an internal error and aborts execution of the program.

Function

void die (const char * msg ,) – report a fatal error

Arguments

const char * msg
a printf-like error message

... ...
variable arguments

Description
This function logs a fatal error and aborts execution of the program.

Function

void debug (const char * msg ,) – write to debug output

Arguments

const char * msg
a printf-like message

... ...
variable arguments

Description
This function formats the message msg and prints it out to the debugging output. No newline character is
appended.

Function

void debug safe (const char * msg) – async-safe write to debug output

Arguments

const char * msg
a string message

Description
This function prints the message msg to the debugging output in a way that is async safe and can be used
in signal handlers. No newline character is appended.

6.3. Kernel synchronization 88

6.3 Kernel synchronization

This system dependent module implements the Kernel and Device protocol, that is synchronization of inter-
face lists and routing tables with the OS kernel.

The whole kernel synchronization is a bit messy and touches some internals of the routing table engine,
because routing table maintenance is a typical example of the proverbial compatibility between different
Unices and we want to keep the overhead of our KRT business as low as possible and avoid maintaining a
local routing table copy.

The kernel syncer can work in three different modes (according to system config header): Either with a
single routing table and single KRT protocol [traditional UNIX] or with many routing tables and separate
KRT protocols for all of them or with many routing tables, but every scan including all tables, so we start
separate KRT protocols which cooperate with each other [Linux]. In this case, we keep only a single scan
timer.

We use FIB node flags in the routing table to keep track of route synchronization status. We also attach tem-
porary rte’s to the routing table, but it cannot do any harm to the rest of BIRD since table synchronization
is an atomic process.

When starting up, we cheat by looking if there is another KRT instance to be initialized later and performing
table scan only once for all the instances.

The code uses OS-dependent parts for kernel updates and scans. These parts are in more specific sysdep
directories (e.g. sysdep/linux) in functions krt sys * and kif sys * (and some others like krt replace rte())
and krt-sys.h header file. This is also used for platform specific protocol options and route attributes.

There was also an old code that used traditional UNIX ioctls for these tasks. It was unmaintained and later
removed. For reference, see sysdep/krt-* files in commit 396dfa9042305f62da1f56589c4b98fac57fc2f6

Function

int krt assume onlink (struct iface * iface, int ipv6) – check if routes on interface are considered onlink

Arguments

struct iface * iface
The interface of the next hop

int ipv6
Switch to only consider IPv6 or IPv4 addresses.

Description
The BSD kernel does not support an onlink flag. If the interface has only host addresses configured, all routes
should be considered as onlink and the function returns 1. This is used when CONFIG ASSUME ONLINK
is set.

Chapter 7: Library functions

7.1 IP addresses

BIRD uses its own abstraction of IP address in order to share the same code for both IPv4 and IPv6. IP
addresses are represented as entities of type ip addr which are never to be treated as numbers and instead
they must be manipulated using the following functions and macros.

Function

char * ip scope text (uint scope) – get textual representation of address scope

Arguments

uint scope
scope (SCOPE xxx)

Description
Returns a pointer to a textual name of the scope given.

Function

int ipa equal (ip addr x , ip addr y) – compare two IP addresses for equality

Arguments

ip addr x
IP address

ip addr y
IP address

Description
ipa equal() returns 1 if x and y represent the same IP address, else 0.

Function

int ipa nonzero (ip addr x) – test if an IP address is defined

Arguments

ip addr x
IP address

Description
ipa nonzero returns 1 if x is a defined IP address (not all bits are zero), else 0.
The undefined all-zero address is reachable as a IPA NONE macro.

Function

ip addr ipa and (ip addr x , ip addr y) – compute bitwise and of two IP addresses

Arguments

ip addr x
IP address

ip addr y
IP address

Description
This function returns a bitwise and of x and y . It’s primarily used for network masking.

89

7.1. IP addresses 90

Function

ip addr ipa or (ip addr x , ip addr y) – compute bitwise or of two IP addresses

Arguments

ip addr x
IP address

ip addr y
IP address

Description
This function returns a bitwise or of x and y .

Function

ip addr ipa xor (ip addr x , ip addr y) – compute bitwise xor of two IP addresses

Arguments

ip addr x
IP address

ip addr y
IP address

Description
This function returns a bitwise xor of x and y .

Function

ip addr ipa not (ip addr x) – compute bitwise negation of two IP addresses

Arguments

ip addr x
IP address

Description
This function returns a bitwise negation of x .

Function

ip addr ipa mkmask (int x) – create a netmask

Arguments

int x
prefix length

Description
This function returns an ip addr corresponding of a netmask of an address prefix of size x .

Function

int ipa masklen (ip addr x) – calculate netmask length

Arguments

ip addr x
IP address

Description
This function checks whether x represents a valid netmask and returns the size of the associate network
prefix or -1 for invalid mask.

7.1. IP addresses 91

Function

int ipa hash (ip addr x) – hash IP addresses

Arguments

ip addr x
IP address

Description
ipa hash() returns a 16-bit hash value of the IP address x .

Function

void ipa hton (ip addr x) – convert IP address to network order

Arguments

ip addr x
IP address

Description
Converts the IP address x to the network byte order.
Beware, this is a macro and it alters the argument!

Function

void ipa ntoh (ip addr x) – convert IP address to host order

Arguments

ip addr x
IP address

Description
Converts the IP address x from the network byte order.
Beware, this is a macro and it alters the argument!

Function

int ipa classify (ip addr x) – classify an IP address

Arguments

ip addr x
IP address

Description
ipa classify() returns an address class of x , that is a bitwise or of address type (IADDR INVALID,
IADDR HOST, IADDR BROADCAST, IADDR MULTICAST) with address scope (SCOPE HOST to SCOPE UNIVERSE)
or -1 (IADDR INVALID) for an invalid address.

Function

ip4 addr ip4 class mask (ip4 addr x) – guess netmask according to address class

Arguments

ip4 addr x
IPv4 address

Description
This function (available in IPv4 version only) returns a network mask according to the address class of x .
Although classful addressing is nowadays obsolete, there still live routing protocols transferring no prefix
lengths nor netmasks and this function could be useful to them.

7.1. IP addresses 92

Function

u32 ipa from u32 (ip addr x) – convert IPv4 address to an integer

Arguments

ip addr x
IP address

Description
This function takes an IPv4 address and returns its numeric representation.

Function

ip addr ipa to u32 (u32 x) – convert integer to IPv4 address

Arguments

u32 x
a 32-bit integer

Description
ipa to u32() takes a numeric representation of an IPv4 address and converts it to the corresponding ip addr.

Function

int ipa compare (ip addr x , ip addr y) – compare two IP addresses for order

Arguments

ip addr x
IP address

ip addr y
IP address

Description
The ipa compare() function takes two IP addresses and returns -1 if x is less than y in canonical ordering
(lexicographical order of the bit strings), 1 if x is greater than y and 0 if they are the same.

Function

ip addr ipa build6 (u32 a1 , u32 a2 , u32 a3 , u32 a4) – build an IPv6 address from parts

Arguments

u32 a1
part #1

u32 a2
part #2

u32 a3
part #3

u32 a4
part #4

Description
ipa build() takes a1 to a4 and assembles them to a single IPv6 address. It’s used for example when a protocol
wants to bind its socket to a hard-wired multicast address.

7.2. Linked lists 93

Function

char * ip ntop (ip addr a, char * buf) – convert IP address to textual representation

Arguments

ip addr a
IP address

char * buf
buffer of size at least STD ADDRESS P LENGTH

Description
This function takes an IP address and creates its textual representation for presenting to the user.

Function

char * ip ntox (ip addr a, char * buf) – convert IP address to hexadecimal representation

Arguments

ip addr a
IP address

char * buf
buffer of size at least STD ADDRESS P LENGTH

Description
This function takes an IP address and creates its hexadecimal textual representation. Primary use: debugging
dumps.

Function

int ip pton (char * a, ip addr * o) – parse textual representation of IP address

Arguments

char * a
textual representation

ip addr * o
where to put the resulting address

Description
This function parses a textual IP address representation and stores the decoded address to a variable pointed
to by o. Returns 0 if a parse error has occurred, else 0.

7.2 Linked lists

The BIRD library provides a set of functions for operating on linked lists. The lists are internally represented
as standard doubly linked lists with synthetic head and tail which makes all the basic operations run in
constant time and contain no extra end-of-list checks. Each list is described by a list structure, nodes can
have any format as long as they start with a node structure. If you want your nodes to belong to multiple
lists at once, you can embed multiple node structures in them and use the SKIP BACK() macro to calculate
a pointer to the start of the structure from a node pointer, but beware of obscurity.

There also exist safe linked lists (slist, snode and all functions being prefixed with s) which support
asynchronous walking very similar to that used in the fib structure.

7.2. Linked lists 94

Function

LIST INLINE void add tail (list * l , node * n) – append a node to a list

Arguments

list * l
linked list

node * n
list node

Description
add tail() takes a node n and appends it at the end of the list l .

Function

LIST INLINE void add head (list * l , node * n) – prepend a node to a list

Arguments

list * l
linked list

node * n
list node

Description
add head() takes a node n and prepends it at the start of the list l .

Function

LIST INLINE void insert node (node * n, node * after) – insert a node to a list

Arguments

node * n
a new list node

node * after
a node of a list

Description
Inserts a node n to a linked list after an already inserted node after .

Function

LIST INLINE void rem node (node * n) – remove a node from a list

Arguments

node * n
node to be removed

Description
Removes a node n from the list it’s linked in. Afterwards, node n is cleared.

Function

LIST INLINE void update node (node * n) – update node after calling realloc on it

Arguments

node * n
node to be updated

Description
Fixes neighbor pointers.

7.3. Miscellaneous functions. 95

Function

LIST INLINE void init list (list * l) – create an empty list

Arguments

list * l
list

Description
init list() takes a list structure and initializes its fields, so that it represents an empty list.

Function

LIST INLINE void add tail list (list * to, list * l) – concatenate two lists

Arguments

list * to
destination list

list * l
source list

Description
This function appends all elements of the list l to the list to in constant time.

7.3 Miscellaneous functions.

Function

int ipsum verify (void * frag , uint len,) – verify an IP checksum

Arguments

void * frag
first packet fragment

uint len
length in bytes

... ...
variable arguments

Description
This function verifies whether a given fragmented packet has correct one’s complement checksum as used by
the IP protocol.
It uses all the clever tricks described in RFC 1071 to speed up checksum calculation as much as possible.

Result
1 if the checksum is correct, 0 else.

Function

u16 ipsum calculate (void * frag , uint len,) – compute an IP checksum

Arguments

void * frag
first packet fragment

7.3. Miscellaneous functions. 96

uint len
length in bytes

... ...
variable arguments

Description
This function calculates a one’s complement checksum of a given fragmented packet.
It uses all the clever tricks described in RFC 1071 to speed up checksum calculation as much as possible.

Function

u32 u32 mkmask (uint n) – create a bit mask

Arguments

uint n
number of bits

Description
u32 mkmask() returns an unsigned 32-bit integer which binary representation consists of n ones followed by
zeroes.

Function

uint u32 masklen (u32 x) – calculate length of a bit mask

Arguments

u32 x
bit mask

Description
This function checks whether the given integer x represents a valid bit mask (binary representation contains
first ones, then zeroes) and returns the number of ones or 255 if the mask is invalid.

Function

u32 u32 log2 (u32 v) – compute a binary logarithm.

Arguments

u32 v
number

Description
This function computes a integral part of binary logarithm of given integer v and returns it. The computed
value is also an index of the most significant non-zero bit position.

Function

u32 u32 bitflip (u32 n) – flips bits in number.

Arguments

u32 n
number

Description
This function flips bits in the given number such that MSB becomes LSB and vice versa.

7.3. Miscellaneous functions. 97

Function

int patmatch (byte * p, byte * s) – match shell-like patterns

Arguments

byte * p
pattern

byte * s
string

Description
patmatch() returns whether given string s matches the given shell-like pattern p. The patterns consist
of characters (which are matched literally), question marks which match any single character, asterisks
which match any (possibly empty) string of characters and backslashes which are used to escape any special
characters and force them to be treated literally.
The matching process is not optimized with respect to time, so please avoid using this function for complex
patterns.

Function

int bvsnprintf (char * buf , int size, const char * fmt , va list args) – BIRD’s vsnprintf()

Arguments

char * buf
destination buffer

int size
size of the buffer

const char * fmt
format string

va list args
a list of arguments to be formatted

Description
This functions acts like ordinary sprintf() except that it checks available

space to avoid buffer overflows and it allows some more format specifiers
I for formatting of IP addresses (width of 1 is automatically replaced by standard IP address width which
depends on whether we use IPv4 or IPv6; I4 or I6 can be used for explicit ip4 addr / ip6 addr arguments, N
for generic network addresses (net addr *), R for Router / Network ID (u32 value printed as IPv4 address),
lR for 64bit Router / Network ID (u64

value printed as eight
-separated octets), t for time values (btime) with specified subsecond precision, and m resp. M for error
messages (uses strerror() to translate errno code to message text). On the other hand, it doesn’t support
floating point numbers. The bvsnprintf() supports h and l qualifiers, but l is used for s64/u64 instead of
long/ulong.

Result
number of characters of the output string or -1 if the buffer space was insufficient.

Function

int bvsprintf (char * buf , const char * fmt , va list args) – BIRD’s vsprintf()

7.3. Miscellaneous functions. 98

Arguments

char * buf
buffer

const char * fmt
format string

va list args
a list of arguments to be formatted

Description
This function is equivalent to bvsnprintf() with an infinite buffer size. Please use carefully only when you
are absolutely sure the buffer won’t overflow.

Function

int bsprintf (char * buf , const char * fmt ,) – BIRD’s sprintf()

Arguments

char * buf
buffer

const char * fmt
format string

... ...
variable arguments

Description
This function is equivalent to bvsnprintf() with an infinite buffer size and variable arguments instead of a
va list. Please use carefully only when you are absolutely sure the buffer won’t overflow.

Function

int bsnprintf (char * buf , int size, const char * fmt ,) – BIRD’s snprintf()

Arguments

char * buf
buffer

int size
buffer size

const char * fmt
format string

... ...
variable arguments

Description
This function is equivalent to bsnprintf() with variable arguments instead of a va list.

Function

void * xmalloc (uint size) – malloc with checking

Arguments

uint size
block size

Description
This function is equivalent to malloc() except that in case of failure it calls die() to quit the program instead
of returning a NULL pointer.
Wherever possible, please use the memory resources instead.

7.4. Message authentication codes 99

Function

void * xrealloc (void * ptr , uint size) – realloc with checking

Arguments

void * ptr
original memory block

uint size
block size

Description
This function is equivalent to realloc() except that in case of failure it calls die() to quit the program instead
of returning a NULL pointer.
Wherever possible, please use the memory resources instead.

7.4 Message authentication codes

MAC algorithms are simple cryptographic tools for message authentication. They use shared a secret key a
and message text to generate authentication code, which is then passed with the message to the other side,
where the code is verified. There are multiple families of MAC algorithms based on different cryptographic
primitives, BIRD implements two MAC families which use hash functions.

The first family is simply a cryptographic hash camouflaged as MAC algorithm. Originally supposed to be
(m|k)-hash (message is concatenated with key, and that is hashed), but later it turned out that a raw hash
is more practical. This is used for cryptographic authentication in OSPFv2, RIP and BFD.

The second family is the standard HMAC (RFC 2104), using inner and outer hash to process key and
message. HMAC (with SHA) is used in advanced OSPF and RIP authentication (RFC 5709, RFC 4822).

Function

void mac init (struct mac context * ctx , uint id , const byte * key , uint keylen) – initialize MAC algorithm

Arguments

struct mac context * ctx
context to initialize

uint id
MAC algorithm ID

const byte * key
MAC key

uint keylen
MAC key length

Description
Initialize MAC context ctx for algorithm id (e.g., ALG HMAC SHA1), with key key of length keylen. After that,
message data could be added using mac update() function.

Function

void mac update (struct mac context * ctx , const byte * data, uint datalen) – add more data to MAC
algorithm

7.4. Message authentication codes 100

Arguments

struct mac context * ctx
MAC context

const byte * data
data to add

uint datalen
length of data

Description
Push another datalen bytes of data pointed to by data into the MAC algorithm currently in ctx . Can be
called multiple times for the same MAC context. It has the same effect as concatenating all the data together
and passing them at once.

Function

byte * mac final (struct mac context * ctx) – finalize MAC algorithm

Arguments

struct mac context * ctx
MAC context

Description
Finish MAC computation and return a pointer to the result. No more @mac update() calls could be done,
but the context may be reinitialized later.
Note that the returned pointer points into data in the ctx context. If it ceases to exist, the pointer becomes
invalid.

Function

void mac cleanup (struct mac context * ctx) – cleanup MAC context

Arguments

struct mac context * ctx
MAC context

Description
Cleanup MAC context after computation (by filling with zeros). Not strictly necessary, just to erase sensitive
data from stack. This also invalidates the pointer returned by @mac final().

Function

void mac fill (uint id , const byte * key , uint keylen, const byte * data, uint datalen, byte * mac) – compute
and fill MAC

Arguments

uint id
MAC algorithm ID

const byte * key
secret key

uint keylen
key length

const byte * data
message data

7.5. Flow specification (flowspec) 101

uint datalen
message length

byte * mac
place to fill MAC

Description
Compute MAC for specified key key and message data using algorithm id and copy it to buffermac. mac fill()
is a shortcut function doing all usual steps for transmitted messages.

Function

int mac verify (uint id , const byte * key , uint keylen, const byte * data, uint datalen, const byte * mac) –
compute and verify MAC

Arguments

uint id
MAC algorithm ID

const byte * key
secret key

uint keylen
key length

const byte * data
message data

uint datalen
message length

const byte * mac
received MAC

Description
Compute MAC for specified key key and message data using algorithm id and compare it with received
mac, return whether they are the same. mac verify() is a shortcut function doing all usual steps for received
messages.

7.5 Flow specification (flowspec)

Flowspec are rules (RFC 5575) for firewalls disseminated using BGP protocol. The flowspec.c is a library
for handling flowspec binary streams and flowspec data structures. You will find there functions for validation
incoming flowspec binary streams, iterators for jumping over components, functions for handling a length
and functions for formatting flowspec data structure into user-friendly text representation.

In this library, you will find also flowspec builder. In confbase.Y, there are grammar’s rules for parsing
and building new flowspec data structure from BIRD’s configuration files and from BIRD’s command line
interface. Finalize function will assemble final net addr flow4 or net addr flow6 data structure.

The data structures net addr flow4 and net addr flow6 are defined in net.h file. The attribute length is
size of whole data structure plus binary stream representation of flowspec including a compressed encoded
length of flowspec.

Sometimes in code, it is used expression flowspec type, it should mean flowspec component type.

Function

const char * flow type str (enum flow type type, int ipv6) – get stringified flowspec name of component

7.5. Flow specification (flowspec) 102

Arguments

enum flow type type
flowspec component type

int ipv6
IPv4/IPv6 decide flag, use zero for IPv4 and one for IPv6

Description
This function returns flowspec name of component type in string.

Function

uint flow write length (byte * data, u16 len) – write compressed length value

Arguments

byte * data
destination buffer to write

u16 len
the value of the length (0 to 0xfff) for writing

Description
This function writes appropriate as (1- or 2-bytes) the value of len into buffer data. The function returns
number of written bytes, thus 1 or 2 bytes.

Function

const byte * flow4 first part (const net addr flow4 * f) – get position of the first flowspec component

Arguments

const net addr flow4 * f
flowspec data structure net addr flow4

Description
This function return a position to the beginning of the first flowspec component in IPv4 flowspec f .

Function

const byte * flow6 first part (const net addr flow6 * f) – get position of the first flowspec component

Arguments

const net addr flow6 * f
flowspec data structure net addr flow6

Description
This function return a position to the beginning of the first flowspec component in IPv6 flowspec f .

Function

const byte * flow4 next part (const byte * pos, const byte * end) – an iterator over flowspec components in
flowspec binary stream

Arguments

const byte * pos
the beginning of a previous or the first component in flowspec binary stream

const byte * end
the last valid byte in scanned flowspec binary stream

Description
This function returns a position to the beginning of the next component (to a component type byte) in
flowspec binary stream or NULL for the end.

7.5. Flow specification (flowspec) 103

Function

const byte * flow6 next part (const byte * pos, const byte * end) – an iterator over flowspec components in
flowspec binary stream

Arguments

const byte * pos
the beginning of a previous or the first component in flowspec binary stream

const byte * end
the last valid byte in scanned flowspec binary stream

Description
This function returns a position to the beginning of the next component (to a component type byte) in
flowspec binary stream or NULL for the end.

Function

const char * flow validated state str (enum flow validated state code) – return a textual description of vali-
dation process

Arguments

enum flow validated state code
validation result

Description
This function return well described validation state in string.

Function

void flow check cf bmk values (struct flow builder * fb, u8 neg , u32 val , u32 mask) – check value/bitmask
part of flowspec component

Arguments

struct flow builder * fb
flow builder instance

u8 neg
negation operand

u32 val
value from value/mask pair

u32 mask
bitmap mask from value/mask pair

Description
This function checks value/bitmask pair. If some problem will appear, the function calls cf error() function
with a textual description of reason to failing of validation.

Function

void flow check cf value length (struct flow builder * fb, u32 val) – check value by flowspec component type

Arguments

struct flow builder * fb
flow builder instance

u32 val
value

Description
This function checks if the value is in range of component’s type support. If some problem will appear, the
function calls cf error() function with a textual description of reason to failing of validation.

7.5. Flow specification (flowspec) 104

Function

enum flow validated state flow4 validate (const byte * nlri , uint len) – check untrustworthy IPv4 flowspec
data stream

Arguments

const byte * nlri
flowspec data stream without compressed encoded length value

uint len
length of nlri

Description
This function checks meaningfulness of binary flowspec. It should return FLOW ST VALID or
FLOW ST UNKNOWN COMPONENT. If some problem appears, it returns some other FLOW ST xxx state.

Function

enum flow validated state flow6 validate (const byte * nlri , uint len) – check untrustworthy IPv6 flowspec
data stream

Arguments

const byte * nlri
flowspec binary stream without encoded length value

uint len
length of nlri

Description
This function checks meaningfulness of binary flowspec. It should return FLOW ST VALID or
FLOW ST UNKNOWN COMPONENT. If some problem appears, it returns some other FLOW ST xxx state.

Function

void flow4 validate cf (net addr flow4 * f) – validate flowspec data structure net addr flow4 in parsing
time

Arguments

net addr flow4 * f
flowspec data structure net addr flow4

Description
Check if f is valid flowspec data structure. Can call cf error() function with a textual description of reason
to failing of validation.

Function

void flow6 validate cf (net addr flow6 * f) – validate flowspec data structure net addr flow6 in parsing
time

Arguments

net addr flow6 * f
flowspec data structure net addr flow6

Description
Check if f is valid flowspec data structure. Can call cf error() function with a textual description of reason
to failing of validation.

7.5. Flow specification (flowspec) 105

Function

struct flow builder * flow builder init (pool * pool) – constructor for flowspec builder instance

Arguments

pool * pool
memory pool

Description
This function prepares flowspec builder instance using memory pool pool .

Function

int flow builder4 add pfx (struct flow builder * fb, const net addr ip4 * n4) – add IPv4 prefix

Arguments

struct flow builder * fb
flowspec builder instance

const net addr ip4 * n4
net address of type IPv4

Description
This function add IPv4 prefix into flowspec builder instance.

Function

int flow builder6 add pfx (struct flow builder * fb, const net addr ip6 * n6 , u32 pxoffset) – add IPv6 prefix

Arguments

struct flow builder * fb
flowspec builder instance

const net addr ip6 * n6
net address of type IPv4

u32 pxoffset
prefix offset for n6

Description
This function add IPv4 prefix into flowspec builder instance. This function should return 1 for successful
adding, otherwise returns 0.

Function

int flow builder add op val (struct flow builder * fb, byte op, u32 value) – add operator/value pair

Arguments

struct flow builder * fb
flowspec builder instance

byte op
operator

u32 value
value

Description
This function add operator/value pair as a part of a flowspec component. It is required to set appropriate
flowspec component type using function flow builder set type(). This function should return 1 for successful
adding, otherwise returns 0.

7.5. Flow specification (flowspec) 106

Function

int flow builder add val mask (struct flow builder * fb, byte op, u32 value, u32 mask) – add value/bitmask
pair

Arguments

struct flow builder * fb
flowspec builder instance

byte op
operator

u32 value
value

u32 mask
bitmask

Description
It is required to set appropriate flowspec component type using function flow builder set type(). Note that
for negation, value must be zero or equal to bitmask.

Function

void flow builder set type (struct flow builder * fb, enum flow type type) – set type of next flowspec compo-
nent

Arguments

struct flow builder * fb
flowspec builder instance

enum flow type type
flowspec component type

Description
This function sets type of next flowspec component. It is necessary to call this function before each changing
of adding flowspec component.

Function

net addr flow4 * flow builder4 finalize (struct flow builder * fb, linpool * lpool) – assemble final flowspec
data structure net addr flow4

Arguments

struct flow builder * fb
flowspec builder instance

linpool * lpool
linear memory pool

Description
This function returns final flowspec data structure net addr flow4 allocated onto lpool linear memory pool.

Function

net addr flow6 * flow builder6 finalize (struct flow builder * fb, linpool * lpool) – assemble final flowspec
data structure net addr flow6

7.5. Flow specification (flowspec) 107

Arguments

struct flow builder * fb
flowspec builder instance

linpool * lpool
linear memory pool for allocation of

Description
This function returns final flowspec data structure net addr flow6 allocated onto lpool linear memory pool.

Function

void flow builder clear (struct flow builder * fb) – flush flowspec builder instance for another flowspec creation

Arguments

struct flow builder * fb
flowspec builder instance

Description
This function flushes all data from builder but it maintains pre-allocated buffer space.

Function

uint flow explicate buffer size (const byte * part) – return buffer size needed for explication

Arguments

const byte * part
flowspec part to explicate

Description
This function computes and returns a required buffer size that has to be preallocated and passed to
flow explicate part(). Note that it returns number of records, not number of bytes.

Function

uint flow explicate part (const byte * part , uint (*buf) – compute explicit interval list from flowspec part

Arguments

const byte * part
flowspec part to explicate

uint (*buf
– undescribed –

Description
This function analyzes a flowspec part with numeric operators (e.g. port) and computes an explicit interval
list of allowed values. The result is written to provided buffer buf , which must have space for enough interval
records as returned by flow explicate buffer size(). The intervals are represented as two-sized arrays of lower
and upper bound, both including. The return value is the number of intervals in the buffer.

Function

uint flow4 net format (char * buf , uint blen, const net addr flow4 * f) – stringify flowspec data structure
net addr flow4

7.5. Flow specification (flowspec) 108

Arguments

char * buf
pre-allocated buffer for writing a stringify net address flowspec

uint blen
free allocated space in buf

const net addr flow4 * f
flowspec data structure net addr flow4 for stringify

Description
This function writes stringified f into buf . The function returns number of written chars. If final string is
too large, the string will ends the with ’ ...}’ sequence and zero-terminator.

Function

uint flow6 net format (char * buf , uint blen, const net addr flow6 * f) – stringify flowspec data structure
net addr flow6

Arguments

char * buf
pre-allocated buffer for writing a stringify net address flowspec

uint blen
free allocated space in buf

const net addr flow6 * f
flowspec data structure net addr flow4 for stringify

Description
This function writes stringified f into buf . The function returns number of written chars. If final string is
too large, the string will ends the with ’ ...}’ sequence and zero-terminator.

Chapter 8: Resources

8.1 Introduction

Most large software projects implemented in classical procedural programming languages usually end up with
lots of code taking care of resource allocation and deallocation. Bugs in such code are often very difficult to
find, because they cause only ‘resource leakage’, that is keeping a lot of memory and other resources which
nobody references to.

We’ve tried to solve this problem by employing a resource tracking system which keeps track of all the
resources allocated by all the modules of BIRD, deallocates everything automatically when a module shuts
down and it is able to print out the list of resources and the corresponding modules they are allocated by.

Each allocated resource (from now we’ll speak about allocated resources only) is represented by a structure
starting with a standard header (struct resource) consisting of a list node (resources are often linked to
various lists) and a pointer to resclass – a resource class structure pointing to functions implementing
generic resource operations (such as freeing of the resource) for the particular resource type.

There exist the following types of resources:

� Resource pools (pool)

� Memory blocks

� Linear memory pools (linpool)

� Slabs (slab)

� Events (event)

� Timers (timer)

� Sockets (socket)

8.2 Resource pools

Resource pools (pool) are just containers holding a list of other resources. Freeing a pool causes all the
listed resources to be freed as well. Each existing resource is linked to some pool except for a root pool
which isn’t linked anywhere, so all the resources form a tree structure with internal nodes corresponding to
pools and leaves being the other resources.

Example: Almost all modules of BIRD have their private pool which is freed upon shutdown of the module.

Function

pool * rp new (pool * p, struct domain generic * dom, const char * name) – create a resource pool

Arguments

pool * p
parent pool

struct domain generic * dom
– undescribed –

const char * name
pool name (to be included in debugging dumps)

Description
rp new() creates a new resource pool inside the specified parent pool.

109

8.2. Resource pools 110

Function

void rmove (void * res, pool * p) – move a resource

Arguments

void * res
resource

pool * p
pool to move the resource to

Description
rmove() moves a resource from one pool to another.

Function

void rfree (void * res) – free a resource

Arguments

void * res
resource

Description
rfree() frees the given resource and all information associated with it. In case it’s a resource pool, it also
frees all the objects living inside the pool.
It works by calling a class-specific freeing function.

Function

void rdump (struct dump request * dreq , void * res) – dump a resource

Arguments

struct dump request * dreq
– undescribed –

void * res
resource

Description
This function prints out all available information about the given resource to the debugging output.
It works by calling a class-specific dump function.

Function

void * ralloc (pool * p, struct resclass * c) – create a resource

Arguments

pool * p
pool to create the resource in

struct resclass * c
class of the new resource

Description
This function is called by the resource classes to create a new resource of the specified class and link it to
the given pool. Allocated memory is zeroed. Size of the resource structure is taken from the size field of the
resclass.

8.3. Memory blocks 111

Function

void rlookup (unsigned long a) – look up a memory location

Arguments

unsigned long a
memory address

Description
This function examines all existing resources to see whether the address a is inside any resource. It’s used
for debugging purposes only.
It works by calling a class-specific lookup function for each resource.

Function

void resource init (void) – initialize the resource manager

Description
This function is called during BIRD startup. It initializes all data structures of the resource manager and
creates the root pool.

8.3 Memory blocks

Memory blocks are pieces of contiguous allocated memory. They are a bit non-standard since they are
represented not by a pointer to resource, but by a void pointer to the start of data of the memory block.
All memory block functions know how to locate the header given the data pointer.

Example: All ”unique” data structures such as hash tables are allocated as memory blocks.

Function

void * mb alloc (pool * p, unsigned size) – allocate a memory block

Arguments

pool * p
pool

unsigned size
size of the block

Description
mb alloc() allocates memory of a given size and creates a memory block resource representing this memory
chunk in the pool p.
Please note that mb alloc() returns a pointer to the memory chunk, not to the resource, hence you have to
free it using mb free(), not rfree().

Function

void * mb allocz (pool * p, unsigned size) – allocate and clear a memory block

Arguments

pool * p
pool

unsigned size
size of the block

Description
mb allocz() allocates memory of a given size, initializes it to zeroes and creates a memory block resource
representing this memory chunk in the pool p.
Please note that mb allocz() returns a pointer to the memory chunk, not to the resource, hence you have to
free it using mb free(), not rfree().

8.4. Linear memory pools 112

Function

void * mb realloc (void * m, unsigned size) – reallocate a memory block

Arguments

void * m
memory block

unsigned size
new size of the block

Description
mb realloc() changes the size of the memory block m to a given size. The contents will be unchanged to
the minimum of the old and new sizes; newly allocated memory will be uninitialized. Contrary to realloc()
behavior, m must be non-NULL, because the resource pool is inherited from it.
Like mb alloc(), mb realloc() also returns a pointer to the memory chunk, not to the resource, hence you
have to free it using mb free(), not rfree().

Function

void mb free (void * m) – free a memory block

Arguments

void * m
memory block

Description
mb free() frees all memory associated with the block m.

8.4 Linear memory pools

Linear memory pools are collections of memory blocks which support very fast allocation of new blocks, but
are able to free only the whole collection at once (or in stack order).

Example: Each configuration is described by a complex system of structures, linked lists and function trees
which are all allocated from a single linear pool, thus they can be freed at once when the configuration is no
longer used.

Function

linpool * lp new (pool * p) – create a new linear memory pool

Arguments

pool * p
pool

Description
lp new() creates a new linear memory pool resource inside the pool p. The linear pool consists of a list of
memory chunks of page size.

Function

void * lp alloc (linpool * m, uint size) – allocate memory from a linpool

8.4. Linear memory pools 113

Arguments

linpool * m
linear memory pool

uint size
amount of memory

Description
lp alloc() allocates size bytes of memory from a linpool m and it returns a pointer to the allocated memory.
It works by trying to find free space in the last memory chunk associated with the linpool and creating
a new chunk of the standard size (as specified during lp new()) if the free space is too small to satisfy the
allocation. If size is too large to fit in a standard size chunk, an ”overflow” chunk is created for it instead.

Function

void * lp allocu (linpool * m, uint size) – allocate unaligned memory from a linpool

Arguments

linpool * m
linear memory pool

uint size
amount of memory

Description
lp allocu() allocates size bytes of memory from a linpoolm and it returns a pointer to the allocated memory.
It doesn’t attempt to align the memory block, giving a very efficient way how to allocate strings without
any space overhead.

Function

void * lp allocz (linpool * m, uint size) – allocate cleared memory from a linpool

Arguments

linpool * m
linear memory pool

uint size
amount of memory

Description
This function is identical to lp alloc() except that it clears the allocated memory block.

Function

void lp flush (linpool * m) – flush a linear memory pool

Arguments

linpool * m
linear memory pool

Description
This function frees the whole contents of the given linpool m, but leaves the pool itself.

8.5. Slabs 114

Function

struct lp state * lp save (linpool * m) – save the state of a linear memory pool

Arguments

linpool * m
linear memory pool

Description
This function saves the state of a linear memory pool. Saved state can be used later to restore the pool (to
free memory allocated since).

Function

void lp restore (linpool * m, lp state * p) – restore the state of a linear memory pool

Arguments

linpool * m
linear memory pool

lp state * p
saved state

Description
This function restores the state of a linear memory pool, freeing all memory allocated since the state was
saved. Note that the function cannot un-free the memory, therefore the function also invalidates other states
that were saved between (on the same pool).

8.5 Slabs

Slabs are collections of memory blocks of a fixed size. They support very fast allocation and freeing of
such blocks, prevent memory fragmentation and optimize L2 cache usage. Slabs have been invented by Jeff
Bonwick and published in USENIX proceedings as ‘The Slab Allocator: An Object-Caching Kernel Memory
Allocator’. Our implementation follows this article except that we don’t use constructors and destructors.

When the DEBUGGING switch is turned on, we automatically fill all newly allocated and freed blocks with a
special pattern to make detection of use of uninitialized or already freed memory easier.

Example: Nodes of a FIB are allocated from a per-FIB Slab.

Function

slab * sl new (pool * p, uint size) – create a new Slab

Arguments

pool * p
resource pool

uint size
block size

Description
This function creates a new Slab resource from which objects of size size can be allocated.

Function

void sl delete (slab * s) – destroy an existing Slab

Arguments

slab * s
slab

Description
This function destroys the given Slab.

8.6. Events 115

Function

void * sl alloc (slab * s) – allocate an object from Slab

Arguments

slab * s
slab

Description
sl alloc() allocates space for a single object from the Slab and returns a pointer to the object.

Function

void * sl allocz (slab * s) – allocate an object from Slab and zero it

Arguments

slab * s
slab

Description
sl allocz() allocates space for a single object from the Slab and returns a pointer to the object after zeroing
out the object memory.

Function

void sl free (void * oo) – return a free object back to a Slab

Arguments

void * oo
object returned by sl alloc()

Description
This function frees memory associated with the object oo and returns it back to the Slab s.

8.6 Events

Events are there to keep track of deferred execution. Since BIRD is single-threaded, it requires long lasting
tasks to be split to smaller parts, so that no module can monopolize the CPU. To split such a task, just
create an event resource, point it to the function you want to have called and call ev schedule() to ask the
core to run the event when nothing more important requires attention.

You can also define your own event lists (the event list structure), enqueue your events in them and
explicitly ask to run them.

Function

event * ev new (pool * p) – create a new event

Arguments

pool * p
resource pool

Description
This function creates a new event resource. To use it, you need to fill the structure fields and call
ev schedule().

8.7. Sockets 116

Function

void ev run (event * e) – run an event

Arguments

event * e
an event

Description
This function explicitly runs the event e (calls its hook function) and removes it from an event list if it’s
linked to any.
From the hook function, you can call ev enqueue() or ev schedule() to re-add the event.

Function

void ev send (event list * l , event * e) – enqueue an event

Arguments

event list * l
an event list

event * e
an event

Description
ev enqueue() stores the event e to the specified event list l which can be run by calling ev run list().

Function

int ev run list limited (event list * l , uint limit) – run an event list

Arguments

event list * l
an event list

uint limit
– undescribed –

Description
This function calls ev run() for all events enqueued in the list l .

8.7 Sockets

Socket resources represent network connections. Their data structure (socket) contains a lot of fields defining
the exact type of the socket, the local and remote addresses and ports, pointers to socket buffers and finally
pointers to hook functions to be called when new data have arrived to the receive buffer (rx hook), when
the contents of the transmit buffer have been transmitted (tx hook) and when an error or connection close
occurs (err hook).

Freeing of sockets from inside socket hooks is perfectly safe.

Function

int sk setup multicast (sock * s) – enable multicast for given socket

Arguments

sock * s
socket

Description
Prepare transmission of multicast packets for given datagram socket. The socket must have defined iface.

Result
0 for success, -1 for an error.

8.7. Sockets 117

Function

int sk join group (sock * s, ip addr maddr) – join multicast group for given socket

Arguments

sock * s
socket

ip addr maddr
multicast address

Description
Join multicast group for given datagram socket and associated interface. The socket must have defined iface.

Result
0 for success, -1 for an error.

Function

int sk leave group (sock * s, ip addr maddr) – leave multicast group for given socket

Arguments

sock * s
socket

ip addr maddr
multicast address

Description
Leave multicast group for given datagram socket and associated interface. The socket must have defined
iface.

Result
0 for success, -1 for an error.

Function

int sk setup broadcast (sock * s) – enable broadcast for given socket

Arguments

sock * s
socket

Description
Allow reception and transmission of broadcast packets for given datagram socket. The socket must have
defined iface. For transmission, packets should be send to brd address of iface.

Result
0 for success, -1 for an error.

Function

int sk set ttl (sock * s, int ttl) – set transmit TTL for given socket

Arguments

sock * s
socket

int ttl
TTL value

Description
Set TTL for already opened connections when TTL was not set before. Useful for accepted connections
when different ones should have different TTL.

Result
0 for success, -1 for an error.

8.7. Sockets 118

Function

int sk set min ttl (sock * s, int ttl) – set minimal accepted TTL for given socket

Arguments

sock * s
socket

int ttl
TTL value

Description
Set minimal accepted TTL for given socket. Can be used for TTL security. implementations.

Result
0 for success, -1 for an error.

Function

int sk set md5 auth (sock * s, ip addr local , ip addr remote, struct iface * ifa, char * passwd , int setkey) –
add / remove MD5 security association for given socket

Arguments

sock * s
socket

ip addr local
IP address of local side

ip addr remote
IP address of remote side

struct iface * ifa
Interface for link-local IP address

char * passwd
Password used for MD5 authentication

int setkey
Update also system SA/SP database

Description
In TCP MD5 handling code in kernel, there is a set of security associations used for choosing password
and other authentication parameters according to the local and remote address. This function is useful for
listening socket, for active sockets it may be enough to set s->password field.
When called with passwd != NULL, the new pair is added, When called with passwd == NULL, the existing
pair is removed.
Note that while in Linux, the MD5 SAs are specific to socket, in BSD they are stored in global SA/SP
database (but the behavior also must be enabled on per-socket basis). In case of multiple sockets to the
same neighbor, the socket-specific state must be configured for each socket while global state just once per
src-dst pair. The setkey argument controls whether the global state (SA/SP database) is also updated.

Result
0 for success, -1 for an error.

Function

int sk set ipv6 checksum (sock * s, int offset) – specify IPv6 checksum offset for given socket

8.7. Sockets 119

Arguments

sock * s
socket

int offset
offset

Description
Specify IPv6 checksum field offset for given raw IPv6 socket. After that, the kernel will automatically fill it
for outgoing packets and check it for incoming packets. Should not be used on ICMPv6 sockets, where the
position is known to the kernel.

Result
0 for success, -1 for an error.

Function

sock * sock new (pool * p) – create a socket

Arguments

pool * p
pool

Description
This function creates a new socket resource. If you want to use it, you need to fill in all the required fields
of the structure and call sk open() to do the actual opening of the socket.
The real function name is sock new(), sk new() is a macro wrapper to avoid collision with OpenSSL.

Function

int sk open (sock * s, struct birdloop * loop) – open a socket

Arguments

sock * s
socket

struct birdloop * loop
loop

Description
This function takes a socket resource created by sk new() and initialized by the user and binds a corresponding
network connection to it.

Result
0 for success, -1 for an error.

Function

int sk send (sock * s, unsigned len) – send data to a socket

Arguments

sock * s
socket

unsigned len
number of bytes to send

Description
This function sends len bytes of data prepared in the transmit buffer of the socket s to the network connection.
If the packet can be sent immediately, it does so and returns 1, else it queues the packet for later processing,
returns 0 and calls the tx hook of the socket when the tranmission takes place.

8.7. Sockets 120

Function

int sk send to (sock * s, unsigned len, ip addr addr , unsigned port) – send data to a specific destination

Arguments

sock * s
socket

unsigned len
number of bytes to send

ip addr addr
IP address to send the packet to

unsigned port
port to send the packet to

Description
This is a sk send() replacement for connection-less packet sockets which allows destination of the packet to
be chosen dynamically. Raw IP sockets should use 0 for port .

Function

void io log event (void * hook , void * data, uint flag) – mark approaching event into event log

Arguments

void * hook
event hook address

void * data
event data address

uint flag
– undescribed –

Description
Store info (hook, data, timestamp) about the following internal event into a circular event log (event log).
When latency tracking is enabled, the log entry is kept open (in event open) so the duration can be filled
later.

	BIRD Design
	Introduction
	Design goals
	Architecture
	Implementation

	Core
	Forwarding Information Base
	Routing tables
	Route attribute cache
	Routing protocols
	Graceful restart recovery
	Protocol hooks
	Interfaces
	MPLS
	Neighbor cache
	Command line interface
	Object locks

	Configuration
	Configuration manager
	Lexical analyzer
	Parser

	Filters
	Filters
	Trie for prefix sets

	Protocols
	The Babel protocol
	Bidirectional Forwarding Detection
	Border Gateway Protocol
	BGP Monitoring Protocol (BMP)
	Open Shortest Path First (OSPF)
	Pipe
	Router Advertisements
	Routing Information Protocol (RIP)
	RPKI To Router (RPKI-RTR)
	Static
	Direct

	System dependent parts
	Introduction
	Logging
	Kernel synchronization

	Library functions
	IP addresses
	Linked lists
	Miscellaneous functions.
	Message authentication codes
	Flow specification (flowspec)

	Resources
	Introduction
	Resource pools
	Memory blocks
	Linear memory pools
	Slabs
	Events
	Sockets

